当前位置:文档之家› 数项级数练习题及答案

数项级数练习题及答案

数项级数练习题及答案

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

教案1无穷级数概念与性质

高等数学教案1 第十一章 无穷级数 编写人:吴炯圻 I. 授课题目: 第一节 常数项级数的概念和性质 Ⅱ.教学目的与要求 1、了解常数项级数的概念及其产生的背景; 2、掌握收敛级数的基本性质; 3、会采用级数敛散的定义或收敛级数的基本性质判断较简单级数的敛散性; 4、了解柯西审敛原理。 Ⅲ.教学重点与难点: 重点:级数收敛与发散的定义; 收敛级数的基本性质。 难点:无穷个数量求和与有限个量求和的差别。 关键: 1.会把级数的问题转化为部分和序列来处理; 2.熟悉数列的收敛与发散的判别. Ⅳ.讲授内容: 第一节 常数项级数的概念和性质 一、常数项级数的概念及其产生的背景 1.古代人如何求圆的面积? 我国古代数学家刘徽已经利用无穷级数的思想来计算圆的面积. 在半径为1的圆内作内接正六边形, 其面积记 为1a , 它是圆面积A 的一个近似值. 再以这正六边 形的每一边为底边分别作一个顶点在圆周上的等腰 三角形 (图1-1) , 算出这六个等腰三角形的面积之 和2a . 那么21a a (即内接正十二边形的面积)也是 图1-1

A 的一个近似值, 其近似程度比正六边形的好. 同样 地, 在这正十二边形的每一边上分别作一个顶点在圆周上的等腰三角形, 算出这十二个等腰三角形的面积之和3a . 那么321a a a ++(即内接正二十四边形的面积)是A 的一个更好的近似值. 如此继续进行n 次, 当n 是较大的整数时,得到的正多边形的面积 n n a a a s +++=Λ21就很接近A 的值了. 2.常数项级数的概念 古代数学家刘徽时代,人们只懂求有限个量之和,没有极限的概念,仅能把求圆面积的步骤和准确性停留在有限的数n 上。 随着科学的进步,人们认识的提高,人们自然认为,当n 无限增大时,则 n n a a a s +++=Λ21的极限就是圆的面积A ,即 )(lim lim 21n n n n a a a s A Λ++==∞ →∞ →. (1.1) 这时,上式右边括号中的项数无限增多,出现了无穷个数量累加的式子。 一般地, 给定一个数列 ΛΛ,,,,,321n u u u u , 则由这数列构成的表达式 ΛΛ+++++n u u u u 321 (1.2) 叫做(常数项)无穷级数, 简称(常数项)级数, 记为 ∑∞ =1 n n u , 即 ∑∞ =1 n n u ΛΛ+++++=n u u u u 321, 其中第n 项u n 叫做级数的一般项或通项. 上述级数的定义只是一个形式的定义,怎样理解无穷级数中无穷多个数量相加呢? 联系上面计算圆的面积的例子,即(1.1)式,用有限项的和S n 的极限来定义无穷多个数量相加的“和”,我们自然要问,对一般的级数是否也可以这样做? 这个思路是对的。 为此,我们把级数(1.2)的前n 项之和s n = u 1+u 2 +…+u n 称为级数(1.1)的部分和, n 依次取 1,2,L 时得数列 s 1, u 2 ,…, u n … 称为级数的部分和数列. 在上面求面积的例子中,部分和数列收敛(为什么?),并由此求得面积, 即求得无穷多个量之和12....n a a a A ++++=L 。 但是,能否由此推断, 所有级数的部分和数列收敛都收敛? (提问, 允许各种猜测.) 事实上, 正像一般的数列未必收敛一样,部分和数列也未必收敛。例如 1+(-1)+ 1+(-1)+ 1+(-1)+ 1+(-1)+……=1 1(1)n n -∞ =-∑. 其部分和数列是:1,0,1,0,…….,它显然不收敛。

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

考研级数典型例题完美版讲析

内容要点 一, 概念与性质 (一) 概念由数列 u 1,u 2, ,u n , 构成的式子 称为无穷级数,简称为级数 . u n 称为级数的一般项, s n 级数的部分和 二)性质 3, 级数增减或改变有限项,不改变其敛散性 . 4, 若级数收敛,则任意加括号后所成的级数仍收敛 5(收敛的必要条件 ), 若 u n 收敛,则 lim u n 0. n 1 n 注意:若 l n im u n 0.则 u n 必发散. 而若 u n 发散, n n n 1 n n 1 n lim u n 0. n (三) 两个常用级数 1, 等比级数 1, 若 u n 收敛,则 ku n 1 n 1 k u n . n1 2, 若 u n , v n 收敛,则 n1 n 1 u n v n1 u n1 v n . n1 n u i 称为 i1 如果 lim s n s , 则称级数 u n 收敛, s 称为该级数的 和 n1 . 此时记 u n n1 s . 否则称级数发散 则不一定

2, p 级数 二,正项级数敛散性判别法 ( 一 ) 比较判别法 设 u n , v n 均为正项级数,且 u n v n (n 1,2, ), 则 n 1 n1 v n 收敛 u n 收敛; n1 n 1 u n 发散 v n 发散 n1 n 1 ( 二) 极限判别法 如果对 p 1, l n im n p u n l(0 l ), 则 n1u n 则收敛 . ( 三 ) 比值判别法 设 u n 为正项级数,若 n1 二, 交错级数收敛性判别法 莱布尼兹判别法:设 1n 1u n (u n 0)为交错级数,如果满足: n1 1, u n u n 1(n 1,2, )2, lim u n n 则此交错级数收敛 . 三, 任意项级数与绝对收敛 (一) 绝对收敛如果 u n 收敛,则称 u n 绝对收敛 . n 1 n 1 二) 条件收敛如果 u n 收敛,但 u n 发散,则称 u n 条件收 n 1 n 1 n 1 敛. (三) 定理若级数绝对收敛,则该级数必收敛 . 函数项级数 一、主要内容 1、基本概念 函数列(函数项级数)的点收敛、一致收敛、内闭 如果 lim nu n l(0 l n ),则 u n 发散; n1

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注 2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一 的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

数项级数的敛散性的练习题及解析

数项级数的敛散性的练习题及解析 一、单项选择题(每小题4分,共24分) 1.若lim 0n n U →∞=则常数项级数1n n U ∞=∑( D ) A .发散 B.条件收敛 C .绝对收敛 D .不一定收敛 解:1lim 0n n →∞=,但11n n ∞=∑发散;21lim 0n n →∞=,但211n n ∞=∑收敛 选D 2.设 1n n U ∞=∑收敛,则下列级数一定收敛的是( B ) A . 1n n U ∞=∑ B.()12008n n U ∞=∑ C .()10.001n n U ∞ =+∑ D .11n u U ∞=∑ 解: ()12008n n U ∞=∑=20081n n U ∞=∑ 1 n n U ∞=∑收敛∴由性质()12008n n U ∞ =∑收敛 3.下列级数中一定收敛的是…( A ) A .21014n n ∞ =-∑ B .10244n n n n ∞=-∑ C .101n n n n ∞=?? ?+?? ∑ D +… 解:214n U n =- 0n ≥21n = lim 1n n n U V →∞=,且2101n n ∞=∑收敛,由比较法21014n n ∞=-∑收敛 4.下列级数条件收敛的是……( C ) A .11n n n ∞=+∑n (-1) B .()211n n n ∞=-∑ C .1n n ∞=- D .()1312n n n ∞=??- ???∑ 解:( 1 )n ∞∞=n=1发散(112p =<)( 2)1 1n n ∞=-为莱布尼兹级数收敛,选C 5.级数() 1 11cos n n k n ∞=??-- ???∑ (k>0)…( B ) A .发散 B .绝对收敛 C .条件收敛 D .敛散性与K 相关 解:11(1)(1cos )1cos n n n k k n n ∞ ∞-=??--=- ???∑∑

最新02 第二节 正项级数的判别法

第二节 正项级数的判别法 一般情况下,利用定义和准则来判断级数的收敛性是很困难的,能否找到更简单有效的判别方法呢?我们先从最简单的一类级数找到突破口,那就是正项级数. 分布图示 ★正项级数 ★比较判别法 ★例1 ★例2 ★例3 ★例4 ★例5 ★比较判别法的极限形式 ★例6 ★例7 ★例8 ★例9 ★例10 ★比值判别法 ★例11 ★例12 ★例13 ★根值判别法 ★例14 ★例15 ★例16 ★内容小结 ★课堂练习 ★习题7-2 内容要点 一、正项级数收敛的充要条件是:它的部分和数列}{n s 有界. 以此为基础推出一系列级数收敛性的判别法: 比较判别法;比较判别法的极限形式;推论(常用结论) 比较判别法是判断正项级数收敛性的一个重要方法. 对一给定的正项级数,如果要用比较判别法来判别其收敛性,则首先要通过观察,找到另一个已知级数与其进行比较,并应用定理2进行判断. 只有知道一些重要级数的收敛性,并加以灵活应用,才能熟练掌握比较判别法. 至今为止,我们熟悉的重要的已知级数包括等比级数、调和级数以及-p 级数等. 要应用比较判别法来判别给定级数的收敛性,就必须给定级数的一般项与某一已知级数的一般项之间的不等式. 但有时直接建立这样的不等式相当困难,为应用方便,我们给出比较判别法的极限形式. 使用比较判别法或其极限形式,需要找到一个已知级数作比较,这多少有些困难. 下面介绍的几个判别法,可以利用级数自身的特点,来判断级数的收敛性. 比值判别法(达朗贝尔判别法):适合1+n u 与n u 有公因式且n n n u u 1 lim +∞→ 存在或等于无穷 大的情形. 根值判别法(柯西判别法):适合n u 中含有表达式的n 次幂,且ρ=∞ →n n n u lim 或等于 ∞+的情形. 积分判别法:对于正项级数 ,1 ∑∞ =n n a ,如果}{n a 可看作由一个在),1[+∞上单调减少函数

数项级数的概念与基本性质

8.1数项级数的概念与基本性质 教学目的 理解级数的概念和基本性质 教学重点 级数的基本性质,收敛的必要条件,几何级数 教学难点 有穷项相加与无穷项相加的差异 教学过程 1.导入 以前我们学习的加法是将有限个数相加,这种加法易于计算但无法满足应用的需要.在许多技术问题中常要求我们将无穷多个数相加,这种加法叫做无穷级数.无穷级数是表示函数、研究函数性质以及进行数值计算的一种工具.无穷级数分为常数项级数和函数项级数,常数项级数是函数项级数的特殊情况,是函数项级数的基础. 2.讲授新课 2.1常数项级数的概念 定义8.1 设给定数列}{n a ,我们把形如 ∑∞ == ++++1 21n n n a a a a (8.1.1) 的式子称为一个无穷级数,简称级数.其中第n 项n a 称为级数 ∑∞ =1 n n a 的通项(或一般项). 如果级数中的每一项都是常数,我们称此级数为数项级数. 例如, 等差数列各项的和 +-+++++++])1([)2()(1111d n a d a d a a 称为算术级数. 等比数列各项的和 +++++-1 12 111n q a q a q a a 称为等比级数,也称为几何级数. 级数 1 1n n ∞ =∑ =111123n +++++ 称为调和级数. 级数(8.1.1)的前n 项和为: 121 n n k k k S a a a a ===+++∑ ,

称n S 为级数 ∑∞ =1 n n a 的前n 项部分和,简称部分和. 2.2常数项级数收敛与发散 定义8.2 若级数(8.1.1)的部分和数列}{n S 的极限存在, 即 S S n n =∞ →lim (常数) 则称极限S 为无穷级数 ∑∞ =1n n a 的和.记作 ++++==∑∞ =n n n a a a a S 211 此时称级数 ∑∞ =1 n n a 收敛;如果数列}{n S 没有极限,则称级数 ∑∞ =1 n n a 发散,这时级数没有和. 显然,当级数收敛时,其部分和n S 是级数和S 的近似值,它们之间的差 ++=-=++21n n n n a a S S r 叫做级数的余项.用近似值n S 代替S 所产生的误差是这个余项的绝对值,即误差为||n r . 例1 讨论几何级数 +++++=∑∞ =-n n n aq aq aq a aq 21 1 的敛散性,其中0≠a ,q 是公比. 结论:几何级数 ∑∞ =-1 1 n n aq ,当1||

考研级数典型例题完美版讲析

常 数项级数 内容要点 一, 概念与性质 (一)概念由数列ΛΛ,,,,21n u u u 构成的式子 称为无穷级数,简称为级数.n u 称为级数的一般项,∑==n i i n u s 1称为 级数的部分和. 如果s s n n =∞ →lim ,则称级数∑∞ =1n n u 收敛,s 称为该级数的和.此时记 =∑∞ =1 n n u s .否则称级数发散. (二)性质 1,若∑∞=1n n u 收敛,则.11 ∑∑∞ =∞ ==n n n n u k ku 2,若∑∞ =1 n n u ,∑∞ =1 n n v 收敛,则().1 1 1 ∑∑∑∞ =∞ =∞ =±=±n n n n n n n v u v u 3,级数增减或改变有限项,不改变其敛散性. 4,若级数收敛,则任意加括号后所成的级数仍收敛. 5(收敛的必要条件),若∑∞ =1n n u 收敛,则.0lim =∞ →n n u 注意:若.0lim ≠∞ →n n u 则 ∑∞ =1 n n u 必发散.而若∑∞ =1 n n u 发散,则不一定 .0lim ≠∞ →n n u (三)两个常用级数 1,等比级数

2,-p 级数 二,正项级数敛散性判别法 (一) 比较判别法 设∑∑? =∞ =1 1 ,n n n n v u 均为正项级数,且),2,1(Λ=≤n v u n n ,则 ∑∞=1n n v 收敛?∑∞ =1n n u 收敛; ∑∞ =1 n n u 发散?∑∞ =1 n n v 发散 (二) 极限判别法 如果)0(lim +∞≤<=∞ →l l nu n n ,则∑∞ =1n n u 发散; 如果对,1>p )0(lim +∞<≤=∞ →l l u n n p n ,则∑∞ =1 n n u 则收敛. (三) 比值判别法 设∑∞ =1n n u 为正项级数,若 二, 交错级数收敛性判别法 莱布尼兹判别法:设())0(111>-∑∞ =-n n n n u u 为交错级数,如果满足: 1,),2,1(1Λ=≥+n u u n n 2,0lim =∞ →n n u 则此交错级数收敛. 三, 任意项级数与绝对收敛 (一) 绝对收敛如果∑∞ =1n n u 收敛,则称∑∞ =1 n n u 绝对收敛. (二) 条件收敛如果∑∞ =1 n n u 收敛,但∑∞=1 n n u 发散,则称∑∞ =1 n n u 条件收

7.1 常数项级数的概念和性质

1.写出下列级数的一般项: ⑴ 1357 2468 ++++ ; 【解】分析级数各项的表达规律: 分子为奇数数列21n -,分母为偶数数列2n , 于是得级数的一般项为21 2n n u n -= ,1,2,3,....n =。 ⑵ 1111112349827 ++++++ ; 【解法一】分析级数各项的表达规律: 分子不变恒为1, 分母的变化中,奇数项为2的乘幂,幂指数为项数+1的一半,即12 2 n +,偶数项为3 的乘幂,幂指数为项数的一半,即2 3n , 于是有12 22, 21 3, 2n n n n k u n k +?=-?=??=? ,k J ∈,1,2,3,....n =。 也可为1 221(1)1(1)2322 n n n n n u +--+-=?+?,1,2,3,....n =。 【解法二】分析级数各项的表达规律: 分子不变恒为1,但分母的变化按奇数项和偶数项有不同的变化规律,可以视为两个 级数的和,也可以视为级数的一个项由两个分数的和构成, 若将级数的一个项看成由两个分数的和构成,则有 111 23 u = +, 21149u =+221123=+, 311827u =+ 3311 23 =+, ...... 于是得11 23 n n n u = +,1,2,3,....n =。 ⑶3456 22345 -+-+- 。 【解】分析数列各项的表达规律:

各项顺次正负相间,有符号函数,注意到第一项是正的,应为1 (1)n +-, 从第二项起,各项分式都是分子比分母大1,而分母恰为序数n 于是得1 1 (1) n n n u n ++=-,2,3,....n =, 检验当1n =时,11111(1)21 u ++=-=,说明第一项也符合上面一般项的规律, 从而得 11(1)n n n u n ++=-,1,2,3,....n =。 2.根据级数收敛与发散的定义判断下列级数的敛散性: ⑴ 1 1 (21)(21)n n n ∞ =-+∑; 【解】级数前n 项和为 11(21)(21)n n i S i i ==-+∑1111()221 21n n i i ==--+∑1111 ()22121n n i i ==--+∑ 11[(1)()(1152)]22113113n n =-+-+-+-+ 11 (1)221 n =-+, 由于lim n n S →∞11lim (1)221n n →∞=-+12 =,知级数收敛,收敛于1 2。 ⑵ 1 1 1n n n ∞ =++∑ ; 【解】级数前n 项和为 1 1 1n n i S i i ==++∑ 2211(1)()n i i i i i =+-=+-∑1 (1)n i i i ==+-∑ (1)()(123)2n n =-+-+++- 11n =+-, 由于lim n n S →∞ lim(11)n n →∞ =+-=∞,知级数发散。 ⑶ 1 1 ln n n n ∞ =+∑; 【解】级数前n 项和为 11ln n n i i S i =+=∑1 [ln(1)ln ]n i i i ==+-∑ ln 2ln 2ln3ln (ln1)()[ln(1)]n n =-+-+++- ln(1)ln1n =+-ln(1)n =+,

数项级数经典例题大全 (1)

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

数项级数经典例题大全

第十二章 数项级数 1 讨论几何级数 ∑∞ =0 n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞ →+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(121 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 52 , 5 252352? >?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{ n S }发散.利用不等式 n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S , ) (∞→n . ) 注: 此例为 →n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 .

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞=1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

(完整版)级数的概念与性质

第十一章无穷级数 教学内容目录: §1—§8 本章主要内容: 常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数,调和级数,P级数,正项级数的比较审敛法和比值审敛法,交错级数,莱布尼兹定理,绝对收敛和条件收敛。 幂级数:幂级数概念,阿贝尔(Abel)定理,幂级数的收敛半径与收敛区间,幂级数的四则运算,和的连续性、逐项积分与逐项微分。泰勒级数,函数展开为幂级数的唯一性,函数(、 e x cos sin ln(1+x)、(1+x)m等)的幂级数展开式,幂级数在近 、x x 、 似计算中的应用举例,“欧拉(Euler)公式。 函数项级数:函数项级数的一般概念,收效域及和函数。 教学目的与要求: 1、理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。 2、掌握几何级数和P—级数的收敛性。 3、掌握正项级数的比较审敛法,掌握正项级数的比值审敛法。 4、理解交错级数的审敛法(莱布尼兹定理)。 5、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。 6、了解函数项级数的收敛域及和函数的概念。 7、掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。 8、了解幂级数在其收敛区间内的一些基本性质。 9、了解函数展开为泰勒级数的充分必要条件。 10、掌握应用e x,sinx,cox,en(1+x)和(1+x)u的马克劳林(Maclaurin)展开式将一些简单的的函数间接展开成幂级数的方法。 11、了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirchet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将定义在(-π,π)上的函数展开为正弦或余弦级数。

正项级数的根式判别法和比式判别法

重庆三峡学院毕业设计(论文) 题目:对正项级数敛散性判别法应用性的探讨 目录 摘要 ............................................................................................................................................................... I Abstract: ..................................................................................................................................................... I I 1 引言 . (3) 2正项级数相关概念 (3) 2.1 定义 (3) 2.2 正项级数敛散性判别的充要条件 (3) 2.3 三个重要比较级数 (4) 2.3.1 几何级数 (4) 2.3.2 调和级数 (5) 2.3.3 P-级数 (5) 3 正项级数敛散性判别法 (6) 3.1 判别发散的简单方法 (6) 3.2 比较判别法 (7) 3.2.1 定理及其推论 (7) 3.2.2 活用比较判别法 (9) 3.2.3 归纳总结 (11) 3.3 柯西判别法与达朗贝尔判别法 (12) 3.3.1 柯西判别法 (12) 3.3.2 达朗贝尔判别法 (13) 3.3.3 比值判别法和根值判别法失效的情况 (15) 3.4 拉贝判别法 (17)

3.5 积分判别法 (19) 3.6 两种新方法 (20) 3.7 判别正项级数敛散性方法的总结 (23) 4 在判别级数敛散性中的作用 (23) 4.1 证明负项级数的敛散性 (23) 4.2 证明变号级数绝对收敛 (24) 4.3 证明函数级数收敛 (25) 5 结束语 (26) 致谢 (27) 参考文献: (27)

定积分典型例题20例答案知识讲解

定积分典型例题20 例答案

定积分典型例题20例答案 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111 n n n =?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞L =34 =?. 例2 0?=_________. 解法1 由定积分的几何意义知,0?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0?= 2 π. 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t ππ -≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0()()x f x xf t dt =?,求 ()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即 0()()x f x x f t dt =?,则可得 ()f x '=0 ()()x f t dt xf x +?.

相关主题
文本预览
相关文档 最新文档