当前位置:文档之家› psim仿真项目buck电路

psim仿真项目buck电路

psim仿真项目buck电路
psim仿真项目buck电路

作业2:

(1)完成下面题2.9中的4个问题(注:假设所有器件为理想器件,注意peak ripple不是峰-峰值(peak-peak ripple),正负对称时,peak ripple是peak-peak ripple 的一半,不对称时,以正/负peak ripple的最大者为准。

解答:

1:电路仿真结构图如图所示:

i形为:

在占空比为0.5时候,稳定之后输出电流波

t

i波形如图:当占空比为0.75时候,电流

t

i波形如图:当占空比为0.9时候,电流

t

分析:晶闸管为半控型器件,只有当加在控制级K 上的电压超过其导通电压时才能电流流通。但是其电流有一定的上升过程,启动完之后才能够达到稳定状态。可以看出,电流波形和输入的方波占空比一致。

2:分析L2和C2之间的稳定电压电流:

由Buck 电路可知,电容两端的电压V V V L -=g 2 同时,由电感充放电能量守恒可知:off 2on 2t t -+=L L V V

即:

off on g t t )V V V =-( 解之可得:g off

on on

t t t V V +=

取占空比:q=

off

on on

t t t +

则电容2C 输出电压为g q V V =

电感的输出电压g 2q 1V V L )(-=

直流平均后电感的输出电流为R

I L g 2qV =

3:在直流电源侧的输入滤波器电感电流不能突变,电容电压不能突变,因此存在相应的纹

波。

其中,在开关管导通关断的不稳定时刻,电感电流和电容电压存在纹波。 正常导通时。电容电流111i i i -=L C ,此电压导致其输出电容存在漏电压

则)(on 111t -dt i 1dt )i i (1R

V C C V L L C ??=-=

? 电容电压的峰值为:2

1

C V ?

而在开关管关断的时候,电感电流出现纹波,其中,在电源电压,L1和C1 的回路中,电感的纹波电压和电容的纹波电压一致。 则:off

L C L t i

L L V V ?==?=

?dt di 2L 11 解得:L

V C L 2t i off

?=

? 4:由题意可知:

输入电压为Vg=48V ,输出电压为V=36V 时,q=3/4=0.75 因为c %21V V C =?=48*0.02=0.96

所以其电容电压峰峰值为1.92V 且输入电压的纹波值A L m 20i =?

所以电感电流的峰峰值为40mA

将以T=0.01ms ,q=0.075,A L 5.4i 1=上参数带入3的表达式中

mA 402t i off

=?=

?L V C L V R V

C C V L L C 92.1t -dt i 1dt )i i (1on 111==-=???)(

可以解得:

C1=5.86u ,L1=60u 系统仿真图如下:

电压波形如下:

由图可见,电感电压的纹波峰峰值为1.90V 电感电流波形如下:

此时期峰峰值约为36mA

(2)考虑电容器C1和C2的ESR 时(其它器件为理想器件,忽略两个电容纹波之间的相互影响),重新完成上述4个问题。

注意:在问题(d)中,最小负载电流设为0.6A ,输出电压峰值纹波设为1%(注意这里不是峰-峰值),请计算电感和电容参数,其中,电容器选择实际电容,并以列表形式给出电容参数指标、型号、厂家及大概单价。

解答:

1:由于电容器的ESR 仅仅影响电容本身的纹波,相当于本身的电容串联直流漏电阻,所以,对于电感电流等无影响: 等小电容如图: 此时t i 波形如图:

2)3)解答如前不变。不过电容电压相当于加在电容和漏电阻之间 4:当最小负载电流设为0.6A ,输出电压峰值纹波设为1%,

A 2.16.0*2i 2i om in c ===?

此时电容C 2的纹波电压V V V C 72.0%2*36%2*1===?

Ω==??=

-6.02.1/72.0i c

2P

OP C V R 其中,τωδ==C R 0tan

)耐压能力为(选取的铝电解电容,V C R 500.1tan 0==ωδ,其中,ω=120HZ

则uF f R 221)**2*6.0/(1.0)/(1.0C20===πω 器件选取:

选取的是公司的系列铝电解电容。

此时:该电容的系列参数如下图:

价格参考:

针对于C1,其中A C 66/36i ==? 输出的纹波为:48*2%*2=1.92V

所以C1的直流漏电阻为A V R P OP C 32.0i /c 1=??=- 同样选取承压能力为50V 的铝电解电容

其中)耐压能力为(选取的铝电解电容,V C R 500.1tan 0==ωδ

解得C1=414uF.

此处电容可以选择为

即为:公司的电容

参数如下:

价格一览表:

(3)用仿真验证和比较上述设计结果,并进行相应的分析。(仿真软件可以采用psim或iSimPE)

选取相应参数之后,系统的仿真框图如下:

1:电容C1的纹波电压为1.9v

2:电容C2的纹波电压为:0.5V

3:输入滤波器电感L1的纹波电流为:56mA

分析:以上的纹波峰值和预定的要求一致,因此,仿真结果正确,期间选择无误。

multisim buck电路仿真

第一章概述 1、1 直流―直流变换的分类 直流—直流变换器(DC-DC)就是一种将直流基础电源转变为其她电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换就是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1、2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商、2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

Buck电路的设计与仿真

uck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为 20V ,输出电压5V ,要求纹波电压为输出 电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的 电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 这个值是电感电流连续与否的临界值,L>L c 则电感电流连续,实际电感值 可选为1.1~1.2倍的临界电感,可选择为4 10?H ; D.根据纹波的要求和如下公式计算电容值 C=^^T s2 J =4.17 10 牛 8L^U 。 8 沃 4.5 沃 10 X0.0055 1 0000 (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 . (1—DJR T (1 —0.25)汇10,. 1 L c (1 _DJR T 2 s (1-0.25)1° 亠 2 10000 = 3.75 10* H 5 (1-0.25) 0.75 10, H 50000 这个值是电感电流连续与否的临界值, L>Lc 则电感电流连续,实际电感值

L c T s 2

可选为1.2倍的临界电感,可选择为0.9 10" H ; D.根据纹波的要求和如下公式计算电容值 分析:在其他条件不变的情况下,若开关频率提高 n 倍,则电感值减小为 1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论 2、Buck 电路仿真: 利用sim power systems 中的模块建立所设计降压变换器的仿真电路。输 入电压为20V 的直流电压源,开关管选 MOSFET 模块(参数默认),用Pulse Gen erator 模块产生脉冲驱动开关管 建模: 分别做两种开关频率下的仿真 工作频率为10kHz 时 U o (1-D c ) 8L U o T s 2 5 (1-0.25) 1 8 0.9 10J 0.005 5 500002 = 0.833 10*F matlab20120510 ?

基于PI控制方式的9A开关电源Psim仿真研究

基于PI控制方式的9A开关电源Psim仿真研究 学院:电光学院 专业:电气工程及其自动化 班级: 姓名: 学号:

一、引言 Buck变换器最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电流-电压双环设计控制环路。开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。这次的课程设计,根据不同的负载电流、控制方式、仿真软件,每个人可以从中学到很多。 二、实验目的 (1)了解Buck变换器基本结构及工作原理; (2) 掌握电路器件选择和参数的计算; (3)学会使用psim仿真软件对所设计的开环降压电路进行仿真; (4)学会使用psim仿真软件对控制环节的仿真技术; (5)学会分析系统的静态稳压精度和动态响应速度。 三、技术指标 ):10V 输入直流电压(V IN

输出电压V :5V O :9A 输出电流I N :50mV 输出电压纹波V rr 基准电压V :1.5V ref :100KHZ 开关频率f s 四、主电路的功率设计

(1)滤波电容参数计算 输出纹波电压只与电容C 的大小有关及Rc 有关: N rr L rr C I V i V R 2.0=?= (1) 电解电容生产厂商很少给出ESR ,而且ESR 随着电容的容量和耐压变化很大,但是C 与Rc 的乘积趋于常数,约为F Ω*80~50μ。本例中取为F Ω*75μ。由式(1)可得Rc=27.78m Ω,C=2707μF 。 (2)滤波电感参数计算 当开关管导通与截止时变换器的基尔霍夫电压方程分别如式(2)、(3)所示: ON L ON L O IN T i L V V V V ?=--- (2) OFF L D L O T i L V V V ?=++ (3)

Buck-boost变换器建模及仿真

Buck-boost 变换器建模及仿真 1、Buck-boost 变换器平均开关模型 利用平均开关网络法推导buck —boost 变换器的平均开关模型,Buck-boost 变换器电路图如图1所示,这里开关管的导通电阻为 ,二极管的前向导通压降为0.8v 。 g V )(t v 图1 Buck-boost 变换器电路 图中,虚线框内为开关网络,它是一个二端口网络,共有 、 、 和 四个变量,选定其中两个变量作为输入变量,则余下两个变量可以由输入 变量表示出来。在此,我们选择 和 作为输入变量。接下来我们要求出 这四个变量的在一个周期内的平均值,首先根据图1画出它们在一个周期内的波形图,如图2所示。 ) (1t v s dT s T (1i s dT s )(1t i )(2t i )(1t v on R )(2t v )(1t i )(2t v

图2 开关网络电压电流的曲线图 根据图2,写出)(1t i 、)(2t i 、)(1t v 、)(2t v 在一个周期内平均值: (1) (2) (3) (4) 由式(3)与(4)得 (5) 将公式(1)与(5)代入(3)中得 (6)将公式(6)中两边的)(1t v 合并得到下面式子: (7) 由(1)与(2)得 (8) ])([) () (')()()(211D T T on T V t v t d t d t i t d R t v s s s +><+><=><= ><)()()(')(12 (2v D (2t i s s s T T t i t d t i ><=><)()()(1s s T T t i t d t i ><=><)()(')(2))()((')()()(11s s s T C D g on T T t V V V t d R t i t d t v ><-++><=><-><-=><-=><+><)()()(121)2111)()()((')()(D T T on T T V t v t v t d R t i t v s s s s +><+><+>=<><

题目Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2410000 15005.0105.48)25.01(5?????-?-=F 41017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4109.0-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2450000 15005.0109.08)25.01(5?????-?-=F 410833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ):

multisimbuck电路仿真设计

第一章概述 1.1 直流―直流变换的分类 直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1.2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

Buck电路设计与MATLAB仿真

Buck电路设计与仿真 姓名:朱龙胜 班级:电气1102 学号:11291065 日期:2014年5月10日 指导老师:郭希铮 北京交通大学

计算机仿真技术作业四 题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-== 1.占空比: 负载电流: 纹波电压: 电流连续条件: 得到下列计算结果 3、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=0.25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A .建立模型: 建立仿真模型如下如所示 :

B. 记录数据: 仿真算法选择ode23tb,最大步长为0.1s ,占空比D=0.25进行仿真,记录数据如下表所 C .仿真过程: 当f s =10KHz,L=0.375mH C=500μF, 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.736V ,稳态直流电压理论值5V 计算稳态直流纹波电压的理论值 2(1D)0.025V 8s o o T V V CL -?==,通过图中得到直流纹波电压为0.0267V 当fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态时, 由(1)o S L V D T I L -?= ,得电感电流波动理论值是1A ,由图像得到电感电流波动值是 1A ,与理论计算相符合

基于PID控制方式9A开关电源Psim仿真研究

基于PID控制方式9A开关电源Psim仿真 研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级:13电卓 姓名:唐修亮 学号:13020425

绪论 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以高效率、小体积、重量轻、安全可靠等特点,以用来作为电脑、家电、通信设备等现代化用电设备的电源,为世界电子工业产品的小型化、轻型化、集成化作出了很大的贡献,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。例如,已知主电路的时间常数较大、响应速度相对缓慢,如果控制的响应速度也缓慢,使得整个系统对外界变量的响应变得很迟缓;相反如果加快控制

器的响应速度,则又会使系统出现振荡。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PI控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性。PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本文中介绍基于PID控制器的Buck电路设计。 一.设计要求及设计背景 1.设计要求 依据技术指标设计主功率电路,采用参数扫描法,对所设计的主功率电路进行仿真; 掌握小信号建模的方法,建立Buck变换器原始回路增益函数; 采用Matlab绘制控制对象的Bode图; 根据控制对象的Bode图,分析所需设计的补偿网络特性进行补偿网络设计。 采用所选择的仿真软件进行系统仿真,要求有突加、突卸80%负载和满载时的负载特性,分析系统的静态稳压精度和动态响应速度。 2.设计背景 Buck变换器最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck族,其优点有输出电流纹波小,结构简单,变比可调,实现降压的

BUCK电路闭环控制系统的MATLAB仿真

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降 VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

buck电路设计

Buck变换器设计——作业 一.Buck主电路设计 1.占空比D计算 2.电感L计算 3.电容C计算 4.开关元件Q的选取 二. Buck变换器开环分析 三. Buck闭环控制设计 1.闭环控制原理 2.补偿环节Gc(s)的设计——K因子法 3.PSIM仿真 4. 补偿环节Gc(s)的修正——应用sisotool 5.修正后的PSIM仿真 四.标称值电路PSIM仿真 五.设计体会 Buck变换器性能指标: 输入电压:标准直流电压48V,变化范围:43V~53V

输出电压:直流电压24V ,5A 输出电压纹波:100mv 电流纹波:0.25A 开关频率:fs=250kHz 相位裕度:60 幅值裕度:10dB 一. Buck 主电路设计: 1.占空比D 计算 根据Buck 变换器输入输出电压之间的关系求出占空比D 的变化范围。 .50V 48V 24U U D .4530V 53V 24U U D 0.558 V 43V 24U U D innom o nom max in o min min in o max ========= 2.电感L 计算 uH 105f i 2)D U -(U i 2)T U -(U L s L min o inmax L on(min) o inmax =?=?= 3.电容C 计算 uF 25.1250000 *1.0*825 .0vf 8i C s L ==??= 电容耐压值:由于最大输出电压为24.1V ,则电容耐压值应大于24.1V 。 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故电容选取120uf/50V 电容。 4.开关元件Q 的选取

BUCK电路的Saber仿真

功率变换器计算机仿真与设计题目BUCK变换器电路设计 学生姓名 学号 学院 专业电气工程及自动化 班级 指导教师 2013年 10月 20日

一、设计要求 1.1 设计指标: 设计一个BUCK直流变换器,主电路拓扑如图1.1(参数需重新设置),使得其满足以下性能要求: 高压侧蓄电池输入电压V in:30-60V(额定电压48V) 低压侧直流母线输出电压V out:24V 输出电压纹波V out(p-p):25mV 输出电流I out:2A 开关频率f s:200kHz 电感电流临界连续时I G:0.1A 12 图1.1

二、开环参数计算及仿真 2.1 主电路参数计算: (1)高压侧输入电压V in 变化范围为30-60V ,低压侧输出电压V out 为24V ,则占空比: 8.030 24 min max === in out V V D 4.06024 max min === in out V V D 5.048 24 === innom out nom V V D (2)由于输出电流I out 为2A ,故负载电阻:12out out V R I = =Ω (3)根据电感电流临界连续时I G :0.1A ,可由下式计算得滤波电感感值: H T I U L U T I L OFF o o CCM o μμ3605)4.01(2 .024 2max min )min(=?-?--==?=?? (4)根据输出电压纹波V out (p-p )为25mV ,可由下式计算得滤波电容容值: uF f V I C I T C idt C V p p out ripple o p p out T 510 200102582 .082211133)(0) (2=????==?==---? 取F C f μ10=,其中开关频率f 为200KHZ 。 在实际器件中,电容存在寄生电阻,因此实际器件仿真时,电容的选取如下: Ω ====???=??=?-m 125ESR ,600C ,u 520C 25,10652.0min max pp 6 uF F mV V C ESR I V 取而 2.2 开关管及二极管应力计算: (1)开关管的选取 功率管承受的最大电压为60V ,流过开关管电流最大值为2A ,开关管电压电流降额系数均为0.5,则开关管电压要大于或等于120V ,电流最大值要大于4A 。粗略以最大占空比计算电流的有效值为3.2A ,则最大功率为384W ,取400W 。根据仿真,可选irf460作为开关管。 (2)二极管的选取

基于PI控制方式的5A开关电源的PSIM仿真

基于PI控制方式的5A开关电源PSIM仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级: 一、绪论 随着电子技术的不断发展对电源的要求也不断的提高,开环的电源应该说早就不能满足要求,无论是在输出参数的精度还是抗干扰能力方面都比不上闭环控制系统。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入

电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。本文将通过PSIM用实例来研究PI控制器的调节作用。 二、BUCK总电路设计 Buck变换器最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1技术指标 输入直流电压(VIN):10V 输出电压(VO):5V; 输出电流(IN):5A; 输出电压纹波(Vrr):50mV; 基准电压(Vref):1.5V; 开关频率(fs):100kHz。 2.2主电路参数计算 Buck变换器主电路如图(1)所示,其中Rc为电容的等效电阻。 图(1)

(1)滤波电容参数计算 输出纹波电压只与电容C 的大小有关及Rc 有关: N rr L rr C I V i V R 2.0=?= (1) 将mv V rr 50=,A I N 5=带入得Ω=05.0c R ,电解电容生产厂商很少给出ESR ,而且ESR 随着电容的容量和耐压变化很大,但是C 与Rc 的乘积趋于常数,约为F Ω*80~50μ。本例中取为 F Ω*75μ则:C=1500μF 。 (2)滤波电感参数计算 当开关管导通与截止时变换器的基尔霍夫电压方程分别如式(2)、(3)所示: ON L ON L O IN T i L V V V V ?=--- (2) OFF L D L O T i L V V V ?=++ (3) 假设二极管的通态压降V V D 5.0=,电感中的电阻压降V V L 5.0=,开关管的导通压降V V ON 5.0=。 又因为 s ON OFF f T T 1 = + (4) 所以由式(2)、(3)、(4)联立可得us T ON 6=,并将此值回代式(2),可得L=24uH (此处取30uH )。 (3)负载电阻计算 Ω=== 155A V I V R N O L 2.3用Psim 软件参数扫描法计算

基于BUCK电路的电源设计

现代电源技术 基于BUCK电路的电源设计

学院:专业:姓名:班级:学号:指导教师:日期:

目录 摘要 (4) 一、设计意义及目的 (5) 二、Buck电路基本原理和设计指标 (5) 2.1 Buck电路基本原理 (5) 2.2 Buck电路设计指标 (7) 三、参数计算及交流小信号等效模型建立 (7) 3.1 电路参数计算 (7) 3.2 交流小信号等效模型建立 (11) 四、控制器设计 (12) 五、Matlab电路仿真 (18) 5.1 开环系统仿真 (18) 5.2 闭环系统仿真 (19) 六、设计总结 (22)

摘要 Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计 Buck电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。 因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck电路基本原理和设计指标 2.1 Buck电路基本原理 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

基于PI控制方式的5A开关电源的PSIM仿真

基于PI控制方式的5A开关电源的PSIM仿真 一、绪论 随着电子技术的不断发展对电源的要求也不断的提高,开环的电源应该说早就不能满足要求,无论是在输出参数的精度还是抗干扰能力方面都比不上闭环控制系统。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。本文将通过PSIM用实例来研究PI控制器的调节作用。 二、BUCK总电路设计 Buck变换器最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1技术指标 输入直流电压(VIN):12V 输出电压(VO):5V; 输出电流(IN):5A; 输出电压纹波(Vrr):50mV; 基准电压(Vref):1.5V; 开关频率(fs):100kHz。 2.2主电路参数计算 Buck变换器主电路如图(1)所示,其中Rc为电容的等效电阻ESR。

图(1) (1)滤波电容参数计算 输出纹波电压只与电容C 的大小有关及Rc 有关: N rr L rr C I V i V R 2.0=?= (1) 将mv V rr 50=,A I N 5=带入得Ω=05.0c R ,电解电容生产厂商很少给出ESR ,而且ESR 随着电容的容量和耐压变化很大,但是C 与Rc 的乘积趋于常数,约为F Ω*80~50μ。本例中取为 F Ω*75μ则:C=1500μF 。 (2)滤波电感参数计算 当开关管导通与截止时变换器的基尔霍夫电压方程分别如式(2)、(3)所示: ON L ON L O IN T i L V V V V ?=--- (2) OFF L D L O T i L V V V ?=++ (3) 假设二极管的通态压降V V D 5.0=,电感中的电阻压降V V L 5.0=,开关管的导通压降V V O N 5.0=。 又因为

题目-Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1 210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4 105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-= 2008)1(s c T U L D U C 2 410000 15005.0105.48)25.01(5?????-?-=F 4 1017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1 210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4 109.0-?; D.根据纹波的要求和如下公式计算电容值

=?-= 2008)1(s c T U L D U C 2 450000 15005.0109.08)25.01(5?????-?-=F 4 10833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ): 直流电压整体波形如下所示:

BUCK电路学习笔记

Buck电路学习笔记 Buck电路基本框图: 图1.1 Buck电路的控制方式: (1):脉冲调制型:保持开关周期T不变,调节开关导通时刻t on ,(PWM: Pulse Width Modulation)最常用,最容易实现 (2):频率调制(调频型):保持开关导通时间t on 不变,改变开关周期T. (3):混合调制:同时改变t on 和T,使得占空比t on /T发生改变。 Buck电路基本工作方式 MOS管Q和直流输入电压Vdc串联,通过Q的硬开通和硬关断,在VD处形成方波电压。采用恒频控制方式,占空比可调,Q导通时间为T ON 。 A:Q导通时,VD点电压也应为直流输入电压Vdc(设Q导通,压降为0),电流流经串接电感L,流出输出端。此时电感储能,并向电容C充电。等效模型如下图: 图1.2 B:Q关断时,电感L产生反电动势,使得VD点电压,迅速下降到0,便变为负值直至二极管D(因其续流作用而被称为“续流二极管”)被导通,并钳位于-0.8V。通过二极管续流,释放能量,电容C向负载供电。等效模型如下图:

图1.3 Buck电路波形分析: 图1.4 Buck电路工作波形图

图1.4(a)为MOSFET 的PWM 驱动波形PWM ,占空比可调。 当Q 导通时,VD 点电压也应为直流输入电压Vdc (设Q 导通,压降为0),当Q 关断时,电感L 产生反电动势,使得VD 点电压,迅速下降到0,便变为负值直至二极管D 被导通,并钳位于-0.8V 。此时假设二极管的导通压降为0V ,则VD 的波形如图(b )所示。 当Q 导通时,VD 点电压直流输入电压Vdc ,由于VO 电压低于Vdc ,电感L 承受的电压为(Vdc-VO ),因为Vdc,VO 电压均为恒定值,所以电感两端的电压保持恒定,因此流经电感的电流线性上升其斜率为=??t /I L Vo /)(Vdc -,L 为电感量,此时电感内部的电流变化如图1.4(e )所示的上升斜坡,而MOSFET 内部的电流如图1.4(c )所示。 当Q 关断时,VD 点电压,迅速下降到0V (假设二极管的导通压降为0V ),而电感的电流不能突变,电感产生反电动势以维持原来建立的电流,若未接续流二极管D ,则VD 点电压会变得很负以保持电感上的电流方向不变,但是此时续流二极管导通,使得电感前端的电压比地电位低于一个二极管的导通压降。 此时电感上的极性反相,使得流经续流二极管D 和电感L 的电流线性下降,直到MOSFET 关断结束时,回到电流初始值Ia 。因为VD 点电压被钳位于1V (二极管的导通压降近似为1V ),VO 电压均为恒定值不变,所以电感L 承受的电压为(VO+1)V ,续流二极管D 和电感L 的电流下降斜率为 L t /1Vo /I )(+=??L Vo /)1(+ , 续流二极管的电流变化如图1.4(d ),电感的电流如图1.4(e ) 。 根据基尔霍夫电流电流定律KCL 可知:电感的电流等于MOSFET 的电流,续流二极管D 的电流之和,即IL=IQ+ID 。根据图1.4(c )、(d )、(e )便可以看出。 Buck 电路的三种工作模式: (1) 连续工作模式 (2) 临界工作模式 (3) 不连续工作模式 判别条件为: 电流连续的条件为: 1m 1 e e αρρ->- 其中/M m E E =, /T ρτ=, 11/()()t T t T αρττ == BUCK 电路PSIM 开环仿真: (1) PWM 波形的产生方式:

Buck电路闭环控制器设计仿真设计

Buck 电路闭环控制器设计 15121501 曾洋斌 作业要求: 1、 建立Buck 电路的状态平均模型,设计系统闭环控制器; 2、 分析稳态误差产生原因,并提出改进措施,并进行仿真; 3、完成作业报告。 4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。 一、Buck 电路的状态平均模型 根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示: S V o V 图1:Buck 电路 根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量 设状态方程各项如下: [()()]T L o i t v t =x ()s u v t = ()VD y i t = 则有状态方程如下: x =Ax +Bu T y =C x

(1)列写[0,1S d T ]时间的状态方程 如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数 矩阵如下所示: 11011L C RC ?? - ? = ? ?- ???A ,11[0]T L =B ,1[00]T =C S V o V 图2:开关VT 导通状态 (2)列写[1S d T ,S T ]时间的状态方程 如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数 矩阵如下所示: 21011L C RC ??- ? = ? ?- ???A ,2[00]T =B ,2[10]T =C S V o V 图3:开关VT 关断状态 因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段分别有如下两种状态方程:

BUCK电路PID控制器设计仿真

BUCK 电路PID 控制器设计及仿真 本文在BUCK 电路传递函数的基础上对BUCK 电路的开环特性进行了分析,并利用MATLAB 的SISOTOOL 工具箱设计了PID 控制器,然后用以运放为核心搭建了PID 控制器硬件电路,最后在PSIM 上对BUCK 电路进行闭环仿真。 1. 设计指标 输入直流电压(Vin):28V 输出电压(Vo):15V 基准电压(Vref):5V 开关频率(fs):100kHz 三角载波峰峰值:Vm=4V 图1为Buck 变换器主电路,元件参数如图所示: 500uF 50uH 3 28v 图1 buck 变换器主电路 2. PID 控制器设计 2 .1原始系统分析 BUCK 变换器构成的负反馈控制系统如图3.1所示: + - ) (s G c ) (s G m ) (s G vd ) (s H )(s V ref )(s B ) (s E ) (s V c ) (s d ) (s V o 反馈信号 参考信号 误差信号图2 BUCK 变换器闭环系统 其中为占空比至输出电压的传递函数, 为PWM 脉宽调制器的传递函数, 表示反馈分压网络的传递函数, 是误差信号 至控制量

的传递函数,为补偿网络的传递函数。 本系统中,PWM 调制器的传递函数为: ?1 ?4 m c m d(s) 1G (s)== =v (s)V (1 ) 式中, 为PWM 调制器中锯齿波的幅值。 反馈分压网络的传递函数为: 占空比至输出电压的传递函数为: 其中 ,,,,。 将参数代入式(3)可得, 对于BUCK 变换器系统,其回路增益函数 为 式中, 为未加补偿网络 时的回路增益函数,称为原始回路增益函数,将式子 (1)、(2)、(4)可得本系统中原始回路增益函数 根据式(7)可做出系统原始回路增益函数波特图如图3所示:

psim仿真项目buck电路

作业2: (1)完成下面题2.9中的4个问题(注:假设所有器件为理想器件,注意peak ripple不是峰-峰值(peak-peak ripple),正负对称时,peak ripple是peak-peak ripple 的一半,不对称时,以正/负peak ripple的最大者为准。 解答: 1:电路仿真结构图如图所示: i形为: 在占空比为0.5时候,稳定之后输出电流波 t

i波形如图:当占空比为0.75时候,电流 t i波形如图:当占空比为0.9时候,电流 t

分析:晶闸管为半控型器件,只有当加在控制级K 上的电压超过其导通电压时才能电流流通。但是其电流有一定的上升过程,启动完之后才能够达到稳定状态。可以看出,电流波形和输入的方波占空比一致。 2:分析L2和C2之间的稳定电压电流: 由Buck 电路可知,电容两端的电压V V V L -=g 2 同时,由电感充放电能量守恒可知:off 2on 2t t -+=L L V V 即: off on g t t )V V V =-( 解之可得:g off on on t t t V V += 取占空比:q= off on on t t t + 则电容2C 输出电压为g q V V = 电感的输出电压g 2q 1V V L )(-= 直流平均后电感的输出电流为R I L g 2qV = 3:在直流电源侧的输入滤波器电感电流不能突变,电容电压不能突变,因此存在相应的纹 波。 其中,在开关管导通关断的不稳定时刻,电感电流和电容电压存在纹波。 正常导通时。电容电流111i i i -=L C ,此电压导致其输出电容存在漏电压 则)(on 111t -dt i 1dt )i i (1R V C C V L L C ??=-= ? 电容电压的峰值为:2 1 C V ? 而在开关管关断的时候,电感电流出现纹波,其中,在电源电压,L1和C1 的回路中,电感的纹波电压和电容的纹波电压一致。 则:off L C L t i L L V V ?==?= ?dt di 2L 11 解得:L V C L 2t i off ?= ? 4:由题意可知: 输入电压为Vg=48V ,输出电压为V=36V 时,q=3/4=0.75 因为c %21V V C =?=48*0.02=0.96 所以其电容电压峰峰值为1.92V 且输入电压的纹波值A L m 20i =?

相关主题
文本预览