当前位置:文档之家› 变频器在砖厂窑炉风机改造中应用

变频器在砖厂窑炉风机改造中应用

变频器在砖厂窑炉风机改造中应用
变频器在砖厂窑炉风机改造中应用

变频器在砖厂窑炉风机改造中应用

[导读]摘要:本文对抚矿华强砖厂窑炉温度控制精度低、电能浪费严重现象进行分析,并针对这一问题对其窑炉风机进行变频技术改造。改造后,大大提高产品合格率,降低该设备电能消耗量,经济效益显著。关键词:风机变频合格率节能经济效益

摘要:本文对抚矿华强砖厂窑炉温度控制精度低、电能浪费严重现象进行分析,并针对这一问题对其窑炉风机进行变频技术改造。改造后,大大提高产品合格率,降低该设备电能消耗量,经济效益显著。

关键词:风机变频合格率节能经济效益

0 引言

抚矿集团华强页岩烧结砖厂由窑炉系统(焙烧窑、干燥窑),窑车回转系统,原料、成型系统,通风系统组成。经过一年试运行,发现存在下列问题:①生产的空心砖成品合格率低。②电能消耗量大。对此进行分析,发现其窑炉温度控制精度低是影响其废品率高的重要原因之一。通过进一步分析,了解到窑炉温控精度低的原因是窑炉风机风量调节方式满足不了窑炉温度控制要求,并且消耗大量电能。为了解决上述存在问题,决定对窑炉风机系统进行技术改造。

1 华强砖厂通风系统风机运行现状

砖厂共两条窑炉生产线。每条生产线通风系统有一台排烟风机,一台送热风机,3台窑门风机,3台直径φ1200㎜插板阀,41台直径φ400㎜蝶阀及其配套管线组成。炉内温度控制由两部分组成:①窑炉测温元件及显示仪表;②窑炉风机极其配套管线阀门。炉内温度由测温元件反馈到中控室进行监视,其温度调节采用手动调节管道阀门开度大小来调整窑内风量大小。窑炉运行时,送热风机、排烟风机、窑门3台风机额定电压恒速运行。当中控室操作人员发现显示器上的炉内温度偏高时,即到窑炉现场操作通风管线上的插板阀及蝶阀,减少阀门开度,或到现场关闭一台窑门风机,降低窑内通风量,从而降低窑内温度。相反,则增大插板阀及蝶阀开度或多开一台窑门风机,从而增加窑内通风量,提高窑内温度。

2 风机流量调节分析

2.1 风机节流调节分析砖厂风机风量控制采用调整阀门开度来调整风量

值是典型风机节流控制,其原理为通风机设备中装有闸门条件下,改变闸门开启程度,从而改变风源特性或等效网阻力,从而改变工况。其特点为当风量超过实际需要将风道中阀门关闭适当位置,风量减少,此时①静压增高②管网阻力增大③功率消耗增加。通过分析,发现上述风机调节方式存在下列缺点:①温度控制操作不方便,温度调节精度低。由中控室人员到现场操作通风管线上的阀门,调节阀门开度,需要多次调整,操作极不方便。并且阀门精度不易控制,造成温度控制不准确,影响出砖质量。②中控人员现场工作量大,安全隐患增多。插板阀在窑炉顶部,碟阀在窑炉的两侧。阀门里流动的是高温气体。正常运行需多次调节阀门开度,造成现场作业量大,同时高温也容易出现烫伤、碰伤事故。③阀门的数量多,故障率高,维修量大。④风门节流调节,使管道振动,产生噪音。⑤电能损耗大。

2.2 变换转速调节流量分析其原理为根据公式n2=n1QB/QA ,改变风机转速至N2,获得需要风量QB。其特点为:①当风机转速下降时,流量下降,风压下降,风机阻力减少,克服阻力做功随之降低。②由公式N/N1=(n/n1)3可知:

功率与转速立方成正比,当转速n降低,所需功率大幅度降低,从而节省电能。经过两种流量调节对比分析,决定采用风机变转速调节替代节流调节控制。在比较分析定子调速,变极调速,滑差调速,转子串电阻调速,串极调速,变频调速的特点,了解到变频调速具有可实现无级变速,调速范围宽,控制精度高,易操作等优点,优异的性能远高于其他调速方式,因此采用变频调速进行风机改造。变频调速的原理:①变频:通过变频器进行频率改变,即利用电力半导体器件开关作用,将工频电源变换成另一种频率电源。主要通过交——直——交方式把工频电源变成直流电源,利用逆变器再把直流电源转换成频率、电压均可控制的交流电源。②变频调速原理:异步电动机的转速n为:n=60f/p(1-s)式中,p:磁极对数,s:电机转差率,f:频率,单位为Hz;n:电机转速,单位为r/min。通过改变频率f值,从而改变转速值n大小。

3 送热、排烟风机变频改造设计

3.1 变频器的选择:

3.1.1 变频器种类选择首先考虑变频器与电机容量匹配,其次考虑风机过载能力要求比较低,低速运行时,负载较轻,且这类负载对转速精度没什么要求,决定采用普通功能型变频器(艾默生)

3.1.2 变频器容量选择已知排烟风机、送热风机电机功率都为30KW,电流为63A,电压为380V。根据公式:

式中K:电流波形修正系数(1.05—1.1)

PM:电机输出功率,n:电机效率(通常约0.85);:电机功率因数(通常约0.75);IM:电机额定电流(A);UM为电动机电压(V);PCN为变频器的额定容量(KVA);ICN为变频器额定电流(A)。

PCN=1.05×30/0.75×0.85=49.41KW ICN=1.05×63=66.15A

根据标称功率选择,对于二次方转矩负载,一般可以直接按照标称功率作为最终选择依据,并且不必放大。排烟风机、送热风机(30KW)一般情况下为低速运转,经济考虑采用型号为艾默生型功率30KW变频器。

3.2 空开选择根据要求,额定电压≥负荷电压,额定电流≥负载电流。选择额定电压500V,电流为100A的ABB型自动开关。

4 改造后运行效果分析

通过一段时间运行,发现用变频器调节取代调整阀门调节控制窑炉内风量大小,效果显著:①易调降噪,费低率升。②风机节能效果明显。

4.1 易调降噪,费低率升改造后,排烟风机、送热风机变频器由中控集中控制,既方便控制又易于调整,减轻了工人劳动强度,也降低了发生安全事故概率,同时取消阀门控制降低了阀门控制产生的噪音,降低了阀门故障率,也减少了阀门维护费用。满足使用要求,保证出砖合格率,提高了经济效益。

4.2 节能效果明显。

4.2.1 窑炉排烟、送热风机改造前电耗情况:电源电压,380V,电流,63A,功率,30KW×4根据公式:,1千瓦×1小时=1度。一天24小时额定运行,日耗电量为2880度。

4.2.2 窑炉排烟、送热风机改造后电耗情况:改造后排烟风机电机(一天)运行数据如下所示:

8:00,27.81A;9:00,27.44A;10:00,27.03A;11:00,26.67A;

12:00,26.96A;13:00,25.89A;14:00,25.60A;15:00,27.85A;

16:00,25.47A;17:00,24.84A;18:00,24.79A;19:00,24.85A;

20:00,24.62A;21:00,24.76A;22:00,24.70A;23:00,24.65A;

24:00,24.43A;1:00,24.72A;2:00,24.46A;3:00,24.90A;

4:00,24.29A;5:00,24.72A;6:00,24.70A;7:00,24.57A

送热风机电机(一天)运行数据如下表所示

8:00,31.23A;9:00,31.20A;10:00,31.16A;11:00,31.28A;

12:00,32.34A;13:00,35.71A;14:00,35.69A;15:00,35.71A;

16:00,34.71A;17:00,30.87A;18:00,26.65A;19:00,27.17A;

20:00,28.63A;21:00,27.65A;22:00,29.89A;23:00,29.85A;

24:00,29.83A;1:00,27.99A;2:00,27.47A; 3:00,27.41A;

4:00,27.17A; 5:00,26.05A; 6:00,30.33A; 7:00,31.48A

电源电压,380V,功率,排烟风机(30KW)*2,功率因数,0.85。排烟风机,日耗功率P=1.732×0.85×380×

(27.81+27.44+27.03+27.85+26.77+26.96+25.89+25.6

+25.47+24.84+24.79+24.85+24.62+24.76+24.65+24.43

+24.72+24.46+24.9+24.42+24.32+24.7+24.57+24.7)/24=14.26KW

送热风机,

日耗功率P=1.732×0.85×380×(31.22+31.2+31.16+31.28

+31.34+35.71+35.69+35.71+34.71+30.87+26.65+27.17+28.63

+27.65+29.89+29.85+29.83+27.99+27.47+27.41+27.17+26.05

+30.33+ )/24=16.96KW

四台风机每日共耗电=(14.26×24×2)+(16.96×24×2)=1498.88度

变频改造后风机日耗电量平均节省1381.12.度,。每年(按工作9个月计算)可节省电费186451.2元(按平均每度电费0.5元计算),效果显著。

5 结束语

这次变频技术改造获得很大的成功,因此,我们决定对全厂风机进行技术改造。提高控制精度,节能降耗,使砖厂在市场竞争中处于有利位置。

风机变频电控改造方案(通用方案)

河南地方煤炭集团季布煤业有限公司 主 通 风 机 变 频 改 造 技 术 方 案

季布煤业主通风机变频改造技术方案 一、季布煤业公司风机现状: 季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。风叶角度正向。现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。 二、存在在主要问题: 1、冲击电流大 通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。 2、电能的严重浪费 主通风机一直处在较轻负载下运行。在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。因此造成能源浪费,增加生产成本。所以就造成了电能的无端浪费!有悖于国家的节能减排政策。 3、启动困难,机械损伤严重 主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。

4、自动化程度低 主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。 三、通风机变频改造技术特点: 1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。 2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。 3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。 4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。并配备以太网模块为以后实现全矿井自动化作准备。实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。 5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.

引风机变频分析

引风机电机改变频调速的分析 (平电公司引风机电机改变频调速的可行性) 一、前言 我公司引风机电机的调速问题,已经提了多年,一直未能得到解决。2000年9月#1机组检修期间曾经作过很多工作,目的是恢复随机安装的变速开关运行,实现引风机电机的高/低速切换,但未能成功。主要原因有两个,一是变速开关设备的可靠性不能保证;另一是此种开关操作方式对其他设备的影响。从现在的情况看,即使开关设备能够恢复正常操作,运行中高/低速切换,对锅炉稳定运行来说也有一定风险,所以变速开关恢复正常运行的问题最终放弃。 引风机电机改变频调速,前几年也曾进行过技术咨询,主要是变频技术满足不了我公司电压高、功率大的要求,而且改造费用非常高。但近几年大容量、高压变频器发展很快,目前国内300MW及以下发电机组进行风机变频改造的电厂已不少于5家(如山东德州电厂、河南三门峡电厂、辽宁青河电厂等)。虽然600MW发电机组风机改变频目前国内尚无一例,但进行此类变频改造,技术上已有一定的可行性。下面将有关引风机电机的调速方式及改变频调速的利弊作简要分析。 二、风机电机调速的方法及其区别 调速方法:对一般的风机电机(如#1、#2机组的引风机电机)来说,实现调速的方法有三种,一是恢复当前的变速开关;二是每台电机电源增加两台真空开关及相应的电缆,通过开关的相互切换方式,实现电机的变级调速,这两种方法原理相同,只不过是后者用两台真空开关代替前者一台变速开关,按现在的机组运行调节要求,这两种变速方式都存在严重不足,其能够实现高/低变速(496 rpm或594 rpm),但不能实现真正意义上的调速。因为这两种变速的原理是改变电机定子绕组接线的极对数,只能实现高/低两种速度的切换,过程中无法实现转速的线性调节,这就是电机典型的变极调速。两种方法操作的过程是:停电—高/低速开关切换—送电。变速切换时,风机电机会出现短时停电,相当于风机停开各一次,切换的过程对风机、电机以及电源母线都会有冲击。第三种方法是变频调速,即在电机电源侧增加一套变频调节装置,通过改变电机电源的频率,从而达到调速的目的,对我公司引风机电机来说,调速的范围可以达到0—600rpm。 变极调速、变频调速的区别:因为电机的同步转速与电压频率及电机定子绕组级对数的关系为:n=60f/p 其中n-电机的同步转速,f-电源频率,p-电机的极对数。所以两种调速的区别很大,也很明显。 1、变极调速:变极调速是通过绕组接法的改变来改变电机的极对数p以达到变 速的目的,因为电机的极对数不是任意可调,所以这种方式变速是跳跃式,达不到连续性调速的目的。我公司#1、#2机安装的变速开关改变的是电机的极对数p ,高/低速时对应的电机极对数是5/6极,所以电机高/低速的同步转速分别是600/500rpm,实际转速是594/496 rpm

变频器在风机风量调节中的应用

变频器在风机风量调节中的应用 环保设备网整理 工厂生产中运送粉状物料主要有三种方法:传送带、提升机、气力吸运系统。由于气力吸运系统运送物料速度快、流量大,所以一般工厂都采用此方法。高压风机是气力吸运系统必需的动力设备。根据工艺要求,风机风量控制应随物料流量的变化而相应变化,以保证物料不堵不掉,维持生产的正常运转。目前工厂中普遍采用恒速控制风量,即高压风机的速度不变,改变风门调节风量。该方法能耗大。如果采用变频器,改为调速控制,调节高压风机的速度以改变风量,将减少能耗,可提高经济效益。 1、变频器调速工作原理 变频器是可以改变频率和电压的电源。变频器采用交2直2交变换原理,将电网三相交流电经过三相桥式整流成脉动直流;再通过电解电容和电感滤波成平滑直流;最后通过逆变器,逆变成电压和频率可调的三相交流电。 电机转速随频率变化而变化,因此改变电源频率就能改变电动机转速。在变频器、电动机、风机构成的传动系统中,通过改变电源频率来改变电动机的转速,进而调节风量,实现风机的变频调速控制。 2、调速控制风量的节能原理 与风门控制风量方式相比,采用调速控制风量有着明显的节能效果。通过图1的风机特性曲线可以说明其节能原理。图中,曲线1为风机在恒速n1下的风压2风量(H-Q)特性;曲线2为管网风阻特性(风门开度全开)。设工作点为A,输出风量Q1为100%,此时风机轴功率N1同Q1与H1的乘积即面积AH1OQ1成正比。根据工艺要求,风量从Q1降至Q2有两种控制方法。 (1)风门控制。风机转速不变,调节风门(开度减小),即增加管网阻力,使管网阻力特性变到曲线3,系统工作点由A移到B。由图1可见,此时风压反而增加,轴功率N2与面积BH2OQ2成正比,大小与N1差不多。 (2)调速控制。风机转速由n1降到n2,根据风机参数的比例定律,画出转速n2下的风压2风量(H2Q)特性,如曲线4;工作点由原来的A点移到C点。可见在相同风量Q2的情况下,风压H3大幅度降低,面积CH3OQ2也显著减少;节省的功率损耗△N同Q2与△H的乘积面积成正比,因而节能效果十分明显。 3、由流体力学可知:风量与转速的一次方成正比;风压与转速的平方成正比;轴功率与转速的三次方成正比。当风量减少,风机转速下降时,其功率降低很多。例如,风量下降到80%,转速也下降到80%,轴功率将下降到额定功率的51%;如果风量下降到50%,功率将下降到额定功率的12.5%。考虑到附加控制装置效率的影响,这个节电数是很可观的。 3、变频调速控制的优点 (1)精确的速度控制。变频器输出频率的精确度和分辨率都达到0.01Hz。也就是说,1对磁极的电动机,转速可以以每分钟不到1转的速率调节。因此,在工厂中可以根据物料流量的变化,精确地控制风机风量,既保证物料不堵不掉,又保证可靠的运行在最低转速,达到尽可能大的节能效果。 (2)软起动。变频器输出频率可以连续地从0到50Hz之间变化,变化速率可以根据工艺要求设定,因此高压风机可以实现软起动。通常高压风机容量都较大(45kW以上),直接起动时冲击电流很大(5~7倍额定电流值),造成对电网的干扰,同时对电网容量的要求也相应增加;即使安装附加的起动装置,冲击电流仍然相当大。而软起动是平稳的,没有冲击电流,从根本上解决了大容量电动机的起动问题。 (3)完善的保护功能。变频器的保护功能很强,在运行过程中能随时监测到各种故障,显示

变频改造方案

LG-10.5/8变频改造方案 空压机的加卸载是空压机运行工况的一种重要性能,加载时间和卸载时间是空压机运行的重要参数。变频改造后缩短了系统的加卸载时间,从而节约电能。

计算: 贵公司现有的空压机的规格是:功率为55KW、排气压力为0.80Mpa使用时间为19207小时,加载时间为2169小时,加载率约为11.2%。共计使用800天,螺杆机平均每天运行24小时,生产上不管用气多少,从上班到下班一直如此,气压打满后机组会卸载运行,但卸载运行时机组会有40%的空载损耗,因此一台55KW的普通空压机会浪费40%的电能。那么一台55KW的普通空压机会因此浪费电。也就是说:变频空压机不存在卸载,因此也不存在空载浪费。而变频空压机卸载载时,转速降低,功率下调到最小,消耗电能极少。 A.用不完省电: 88.8%卸载时间*(损耗55 *40%空载损耗)≈19.5KW/时 (一般情况下空压机的实际用气量会小于机组的额定产量,有的是因为购买时考虑的余量,有的是因为局部时间只用一部分的气,有的是因为生产上淡旺季的问题等等,这样的状况属于“用不完”。)

B.低压力省电: “高压低用”这也很浪费,就像“用不完”一样。普通螺杆机始终6-8公斤频繁加卸载工作,实际也就只用了7公斤,那么额外的2公斤频繁爬升会让机组多消耗14%(每爬升l公斤多耗7%的电流)。按频繁爬升时间累计是30%,这样一台55KW的普通空压机会因30%的频繁加载多浪费电。同样如果是变频空压机它始终保持7公斤不变的供气,那么也就不存在这1公斤的爬升损耗了。 11.2%加载时间*(因1公斤爬升55KW * 7%)≈0.42KW/小时 图:变频技术与非变频技术的压力控制对比 1.变频器本身的能耗:55KW/小时*3%≈1.65KW/小时 2.压缩机节约为:19.5KW/小时+0.42 KW/小时-1.65KW/小时= 18.2KW/小时 3.按压缩机一年每日运行24小时,电费1元/度计算,总共1台压缩机每年可 节约的费用约为: 18.2KW/小时*24h*30天*12月*1元/KW*1台 =157248元(平均13104.00/月)

风机变频改造功能设计说明书

引风机变频改造功能设计说明书 国电湖南宝庆煤电有限公司#1、2机组引风机变频技改工程所采用的变频器为西门子(上海)电气传动设备有限公司提供的空冷型完美无谐波变频器,6KV AC,3相,50HZ,AC输入,0-6KVAC输出。变压器采用7000KVA空冷干式30脉冲隔离变压器。该变频器的控制方式采用多极PWM叠加技术,结构采用多个变频单元串联叠加输出的方式。整套变频装置由旁通柜、变压器柜、功率单元柜和控制柜四部分组成,可以在机组正常运行中实现变频回路和工频回路的自动切换或手动切换。 引风机高压变频改造采用“一拖一自动旁路”方式,如下图所示。变频器一次回路由真空断路器QF1、QF2、QF3组成。变频回路由QF2、QF3两台真空断路器控制, 工频回路由真空断路器QF1组成。真空开关均采用铠装移开式开关设备。 变频装置与电动机的连接方式见下图: 6kV电源经真空断路器QF2到高压变频装置,变频装置输出经真空断路器QF3送至引风机电机变频运行;6kV电源还可经真空断路器QF1直接起动引风机工频运行。QF1与QF3电气硬接线闭锁,保证远方就地操作均不能两台开关同时合闸。 1、引风机电源开关QF逻辑 1.1引风机电源开关QF合闸允许条件 1)任一台冷却风机运行

2)任一台引风机电机油站油泵运行 3)引风机电机油站供油压力正常(大于0.2MPa) 4)引风机轴承温度正常<90℃ 5)引风机电机前、后轴承温度<70℃ 6)引风机电机三相线圈温度<125℃ 7)风机调节导叶关状态 8)引风机入口烟气挡板1、2关闭 9)引风机出口电动门开状态 10)任一台空预器投入运行 11)引风机无电气故障 12)脱硫系统启动允许 13)建立烟风通道 14)无跳闸条件 15)变频器进线开关QF2在分闸位置 16)工频旁路开关QF1在分闸位置 1.2引风机电源开关QF保护跳闸条件 1)引风机A轴承温度>110℃,延时5s 2)引风机A电机前轴承温度或后轴承温度>80℃ 3)引风机A电机三相线圈温度>130℃ 4)引风机A轴承X向振动过大7.1mm/s且Y向振动报警4.8mm/s加品质 判断(延时3s)

变频器在风机上的应用课件

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车 的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多 单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上 是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面 的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频 调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生 产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围 宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机 调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方 法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加 管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风 机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

行车变频改造方案(DOC)

淮北市热电有限公司 #1、#2行车变频改造方案 编制:史拥军 2013年3月8日

淮北市热电有限公司 #1行车变频器与PLC控制改造方案 1 引言 我公司#1行车是5T桥式抓斗行车,由操作台、运行机构和桥架组成的。运行机构是由三个基本独立的拖动系统组成: 1、大车拖动系统。拖动整台桥式抓斗顺着车间做“横向”运动(以操作者的 坐向为准),大车的行走由2 台11kW绕线电机牵引。 2、小车拖动系统。拖动抓斗顺着桥架作“纵向”运动。小车的行走由1台3.7kW 的绕线电机牵引。 3、抓斗吊拖动系统。拖动抓斗作吊起、放下的上下运动及抓斗的放开、闭合 运动。抓斗的升降绳和开闭绳各由1套卷扬机构操纵,卷扬机构的驱动电机为2台30kW绕线电机。 抓斗的所有电机都采用转子串电阻的方法启动和调速。在抓斗的使用过程中存在以下问题: (1)由于采用转子串电阻的方法调速,机械振动大,行车不稳定,定位困难,抓斗摆动严重,容易造成机械设备的损坏。转速随负荷变化,调速效果差,所串电阻因长期发热而使电能消耗较大,效率较低。 (2)抓斗的电机采用绕线电机,经常发生碳刷磨损严重、电机及转子绕线过热,造成维护量大。另外,操作员在抓斗定位时,经常打反车,使电机产生过载现象,影响电机的使用寿命。 (3)由于抓取搬运工作的距离较近,电机处于频繁启动及变速状态,控制电机的时间继电器和交流接触器处于频繁动作状态,电气元件容易损坏。

(4)在抓取原煤后提升时,难以保证升降绳与开闭绳均匀受力,严重影响钢丝绳的使用寿命。 交流变频器调速已广泛应用到许多领域,而PLC可以实现输入、输出信号的数字化,利用编程能实现多种功能,由二者配合构成的数字控制系统,可大大改善原有的控制系统的功能,也可以解决桥式抓斗故障率高的问题。 2#1行车变频加PLC控制改造预期评估: (1)采用变频器及PLC对#1行车改造。控制系统由于省去了切换转子电阻的交流接触器、串联电阻等电气元件,电气控制线路大为简 化。行车启动、制动、加速、减速等过程更加平稳快速,减少了负 载波动,安全性大幅提高。 (2)采用PLC代替原来复杂的接触器、继电器控制系统,电路实现了无触点化,故障率大大降低。 (3)采用变频调速,机械特性硬,负载变化时各档速度基本不变。轻载时也不会因操作不当而出现失控现象。变频器还可根据现场情况, 很方便地调整各档速度和加减速时间,使吊车操作更加灵活迅速。 采用变频调速同时也实现了电机的软起动,避免了机械受大力矩 冲击的损伤和破坏,减少了机械维护及检修费用,提高了设备的 运行效率。 (4)采用变频调速后,电机可以在基本停住的情况下进行抱闸,闸皮的磨损情况将大为改善。 (5)由于用鼠笼电机取代了绕线电机,消除了电刷和滑环经常出的故障。 (6)节能效果好。绕线电机在低速运行时,转子回路的外接电阻消耗大

23冷却塔风机变频改造方案

冷却塔风机变频改造方案 一、变频器的工作原理和节能分析 1.1 风机的特性 风机是传送气体的机械设备,是把电动机的轴功率转变为流体的一种机械。风机电机输出的轴功率为: 图1中风机的压力与风量的关系曲线及扭矩与电机速度的关系曲线,充分说明了调节阀调节风量法与变频器控制的调节风量法的本质区别与节能效果。 (1) 电动机恒速运转,由调节阀控制风量

图1 风机的运行曲线 如图1所示,调节阀门的开启度,R会变化。关紧阀门,管道阻力就增大。 管道阻力由R1变到R2,风机的工作点由A点移到B点。 在风量从Q1减少到Q4的同时,风压却从H1上升到H5,此时电机轴的功率从P1变化到P2。 (2) 变频器调节电机的速度来控制风量 当风量由Q1变化到Q4时,便出现图上虚线所示的特性。达到Q4、H4所需的电机轴功率为P3,显然P2大于P3,其差值P2-P3就是电机调速控制所节约的功率。 二、冷却塔系统变频改造过程 2.1 冷冻机组冷却循环水系统介绍: 冷冻机组的冷却循环水系统如图2所示。冷冻机组的冷却循环水系统主要由冷冻机组、冷却水泵、冷却塔组成。冷却水经冷却水泵加压后,送入冷冻机组的冷凝器,届时,由冷却水吸收制冷剂蒸气的热量,使制冷剂冷却、冷凝。冷却水带走制冷剂热

量后,被送入冷却塔,经布水器,通过冷却塔风机降温,降温后的冷却水通过出水管,流入冷却水泵,经加压后再送入冷冻机组的冷凝器。 图2 冷冻机组冷却循环水系统图 2.2 冷却塔变频节能改造原理 图3 冷却塔变频改造示意图 三、变频器选择

由于风机负载为平方转矩类负载,因此变频器应选择V/F控制型通用变频器,日锋变频器为优化电压空间矢量型变频器,使用寿命高于同类产品,接近于零的故障率,性能价格比非常好,为变频器市场上最优越产品之一。 四、总结 冷却塔风机加装变频后具有以下优点: ·操作方便,安装简单; ·能进行无级调速,调速范围宽,精度高,适应性强。 ·节能效果非常明显; ·由于采用了变频控制,随着转速的下降,风压、风量也随之下降,使得冷却水的散失也下降,节约了水量。 ·由于用水量下降,水的硬度指标上升减慢,使得水处理的用药量减少; ·由于转速下降,减少了减速箱的磨损,延长了减速箱的寿命; 总之,冷却塔变频器控制系统的使用,使得厂房调温系统可靠性提高,安全性好,具有明显的节电效果。 冷却塔是冷冻机组的冷却水最主要的热交换设备之一,它主要靠冷却塔风机对冷却水降温,风机过去是靠交流接触器直接启动控制,风机的转速是恒定的,不能调速,因此,风机的风量也是恒定的,不能调节。为了使冷冻机组进口冷却水温度保持在某个温度段之间,我们在冷却水泵的出口,即冷冻机组的冷却水进口管道上安装一个温度传感器,采集冷却水温度,通过给出一路模拟信号给变频器,经变频器自身的PID进行调节如图3所示,变频器给出适当的电压和频率给冷却塔电机调节冷却塔风机转速

引风机电机变频改造项目设计方案

内蒙古丰泰发电 引风机电机变频改造项目设计方案 北京天福力高科技发展中心 2007年3月

目录 1. 概述 (1) 2. 系统改造方案 (1) 2.1. 主回路方案 (1) 2.2. 变频器运行方案 (2) 2.2.1. 变频器正常工况 (2) 2.2.2. 变频器异常工况 (2) 2.2.3. 变频器基本性能简介 (3) 2.2.4. 变频器控制接口(可按用户要求扩展) (5) 2.2.5. 变频器结构 (5) 2.2.6. 变频器的保护 (6) 3. 施工方案 (6) 3.1. 变频器的安放 (6) 3.2. 变频器进线方式 (11) 3.3. 暖通设计方案 (11) 3.4. 变频器内部安装接线及端子排出线图 (12) 3.4.1. 变频器内部的电气接线 (12) 3.5. 变频器进机组DCS信号(供参考) (15) 3.6. 变频器输入输出接口说明 (16) 3.6.1. 高压接口 (16) 3.6.2. 低压控制接口 (16) 3.7. 电源要求、接地要求 (17) 3.7.1. 电源要求 (17) 3.7.2. 接地要求 (17) 3.8. 变频控制方案 (17) 3.9. 施工方案计划 (18) 3.10. 施工材料表 (19)

1.概述 利用变频器驱动异步电机所构成的调速系统,对于节能越来越发挥着巨大的作用,利用变频器实现调速运行,是变频器应用的最重要的一个领域,尤其是风机、水泵等机械运行的节能效果最为明显。由于变频器可以方便的实现软起动,因而可以有效地减少电动机启停时对电网的冲击,改善电源容量裕度。 2.系统改造方案 对于内蒙古丰泰发电有限公司引风机电机变频装置,北京天福力高科技中心根据招标书要求提供西门子罗宾康品牌完美无谐波系列(Perfect_Harmony)高压变频器。该系列变频采用若干个低压PWM变频功率单元串联的方式实现直接高压输出。 该变频器具有对电网谐波污染极小,输入功率因数高,输出波形质量好,不存在谐波引起的电机附加发热、 转矩脉动、噪音、dv/dt及共模电压等问题 的特性,不必加输出滤波器,就可以使用 普通的异步电机,包括国产电机。 2.1.主回路方案 如图一:K1、K2、K3组成旁路刀闸 柜;K2与K3互锁,K2闭合,K3断开, 电机变频运行;K2断开,K3闭合,电机

变频器安装方案说明

温州市综合材料生态处置中心 焚烧、固化及附属设施设备安装及调试项目变频器施工方案 编制: 审核: 批准:

上海灿州环境工程有限公司、中易建设有限公司(联合体) 二0一五年10月 目录 1、适用范围 2、施工准备 3、安装操作流程 4、安装人员 5、风险分析及预防措施

说明:因变频器是柜体式(配电柜)安装,所以先安装柜体根据成套配电柜及动力开关柜安装施工工艺标准 (HFWX.QB/1-6-009-2004)施工。 1.适用范围: 温州市综合材料生态处置中心焚烧及附属设施设备安装及调试工程电气安装成套配电柜,动力开关柜安装及二次回路接线。 2、施工准备 2.1设备及材料要求 2.1.1设备及材料均要符合国家或部颁发现行行 业技术标准,符合设计要求并有出厂合格证。设备应有铭牌并注明厂家名称,附件备件齐全。 2.1.2安装使用的材料 2.1.2.1型钢应无明显锈蚀,并有材质证明,二次接线导线应有 “长城”标志合格证。 2.1.2.2镀锌螺丝、螺母垫圈、弹簧垫。 2.1.2.3其他材料:防锈漆,尼龙卡贷,绝缘胶垫,电焊条,氧

气,乙炔气,均符合质量要求。 2.2主要机具 2.2.1吊装搬运机具,电瓶车,倒链,麻绳索具等。 2.2.2安装工具:台钻,手电钻,电锤,砂轮,电焊机,气焊工具电工刀,锉刀,套筒扳手等。 2.2.3测试检验工具:水准仪,兆欧表,万用表,水平尺,测试笔,钢直尺,钢圈尺,线锤等。 2.3施工材料准备工期:半天 3、安装操作流程 3.1安装流程 设备开箱检查——设备搬运——基础槽钢制作安装——原接触器开关柜体的拆除搬运——调频器柜体安装及开关柜体安装——调频器的安装——控制调频器接触器、开关的安装——二次回路接线——送电调试变频器——动力电缆施放对接——试验调整——送电联动试车——联动试车成功交付运行 3.2设备开箱检查 3.2.1安装单位,供货单位或建设单位共同进行,并做好检查记录。 3.2.2按照设备清单,施工图纸及设备技术资料核对设备本体及附件,备件的规格型号应符合设计图纸要求。附件备件齐全,产品合格,证件,技术资料说明书齐全。

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

引风机高压变频器改造研究

引风机高压变频器改造研究 发表时间:2014-12-02T14:31:05.810Z 来源:《价值工程》2014年第10月中旬供稿作者:刘斌[导读] 为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。 刘斌LIU Bin (河北灵达环保能源有限责任公司,石家庄051430)(Hebei Lingda Environment-friendly Energy Co.,Ltd.,Shijiazhuang 051430,China)摘要:为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。介绍了高压变频改造的必要性和实施方案,阐述了高压变频改造后的效果,对类似情况下的高压变频器具有指导意义。 Abstract: In order to reduce malfunctions and maintenance time and prolong the service life of boiler induced draft fan motor, HebeiLingda Environment-friendly Power Plant reforms the high-voltage frequency converter of boiler induced draft fan. This paper introducesthe necessity and implementation programmes of high-voltage frequency conversion, and describes the effect of high-voltage frequencyconversion reform, which is of guiding significance for high-voltage frequency converters in similar situations. 关键词院高压变频器;引风机;改造方案 Key words: high-voltage frequency converter;induced draft fan;improvement plan 中图分类号院TN77 文献标识码院A 文章编号院1006-4311(2014)29-0053-02 1 设备概况 目前我公司引风机电机规格为250KW 10000VYKK-450-2 型.变频器采用DFCVERT-MV 高压大功率变频器,自投运以来出现运行不稳定,故障率较高的状况,故障类型主要分为控制系统故障和硬件系统故障两类,控制系统方面主要有“单元系统通讯故障”,硬件方面主要有“单元缺相故障,旁通运行”、“单元直流过压”、“单元直流欠压”“单元系统通讯故障”由于是单机运行风险比较大,因此对变频器运行的可靠性要求非常高,在此基础上进行改造。 2 主控系统改造 2.1 改造目的 现有功率单元控制板故障率较高,经常出现单元直流过压问题就是控制板设置的保护定值漂移所致,究其原因是因为板件设置的电位器工作不稳定,且没有功率单元测温功能,当冷却风扇停运后跳高压开关,稳定性较差。 2.2 改造方案 2.2.1 更换硬件:主控板、光纤。 2.2.2 升级软件:PLC 软件、触摸屏、功率单元控制程序、296 升级到7058 配套软件,功率单元控制板和触摸屏修改软件程序。 2.2.3 实施方案 现有主控系统设备,包括主板及端子板、光通子板及母板、光纤拆除。 于升级现有功率单元控制板程序为122 控制板。盂将原连接功率单元和光通子板的光纤,由一对一改接同级三单元串联后连接主控板方式。榆根据硬件的变更,连接相应的二次连接线。虞对PLC 软件、触摸屏、功率单元控制程序进行升级,并将主板程序由296 升级到7058 配套软件。 2.3 改造前后效果对比 2.3.1 技术参数对比,如表1。 2.3.2逻辑功能对比,如表2。

施工电梯专机变频器改造方案详述

图1、工频电控柜1 图1为现场常用工频施工梯电控柜布置图,到达现场需根据极限开关和端子排确定主接触器、正转接触器、反转接触器、抱闸接触器;通过极限开关,由RST 端子直接接线过来的为主接触器;上、下端有并线,且接线由端子到电机的为正反转接触器;规格较小的,接线由端子到电机尾部抱闸的为抱闸接触器。 也有类似于图2的布置方式,处理方式相同。

抱闸接触器 反转接触器 主接触器 变压器 正转接触器 图2、工频电控柜2 如果现场采用的是升降机变频一体机进行改造的话,可以去除原来的电控柜,将极限开关到原电控柜的电源RST进线接到一体机的 RST进线上,将原电控柜UVW到电机的出线接到一体机的UVW 出线

上,按照一体机接线说明,将操作台和电阻箱的线接到一体机上,根据说明书设置参数,运行,改造完成。 如果是专机进行改造,需要对原电控柜进行少许电路改动,若原电控柜没有主接触器,则需和现场沟通好,需添加主接触器,不然机器存在安全隐患,不安全。 图3、工频改造前电气原理图

图4,、变频专机改造后原理图 根据原理图可知改造时,需将主接触器到正反转接触器(KMU、KMD)上的线去除,将主接触器的线接到变频器专机的RST上,然后去除正反转接触器(KMU、KMD)上到电机的出线,电机的线接到变频器UVW上,接电阻箱线,需在正反转接触器(KMU、KMD)上选一副触点(如1、2),接到控制板上的上升下降端子(x1,x2),抱闸接触器控制线圈中接入正反转接触器辅助常开触点的部分需短接,串入控制板上抱闸继电器,或者将抱闸继电器与正反转接触器辅助触点并连,同时将抱闸接触器主触点上的其他控制点短接,如图 图5、实际现场工频电气图

锅炉房鼓引风机变频改造技术方案

锅炉房鼓引风机变频改造技术方案 一:施工依据 1.1 依据华东石油局安排,为华东石油局锅炉房鼓引风机变频改造。 1.2 本工程施工执行《电气装置安装工程电缆线路施工及验收规范(GB50168-92 )》 二:工程简介及主要工作量 2.1 本工程位于华东石油局试采大队腰滩大站站内。 2.2.新增上位机显示控制系统一套及两台锅炉鼓引风变频控制柜。 配电控制柜的功能:为整台锅炉设备提供电源,实现引风机变频闭环 控制、鼓风机变频闭环控制。 三、改造要求: 引风机根据炉膛负压值,闭环控制引风机变频器转速,鼓风机根据锅炉含氧量值,闭环控制鼓风机变频器转速,保证安全生产,炉排电机采用电磁调速。 四、改造方案 该项目有两个控制回路,人机界面采用国内流行的组态王系统,实现友好的人机操作界面。锅炉控制台控制系统内使用美国OPTO22 控制器,现场增加负压检测传感器、氧化锆检测仪表,液位传感器, 将炉膛负压控制相对稳定,同时将所控制含氧量数值控制在一定范 围,直观显示,具体改造方案如下: 1、增加上位机操作系统一套,内含锅炉OPTO22 控制系统,包括 工控机、显示器、界面组态系统。 2、增加锅炉控制操作台两台,内含变频器,电器元件,显示仪表, 手/ 自动操作切换旋钮等。 3、现场增加安装部分智能变送器(测炉膛负压,测含氧量值)。 4、现场增加蒸汽流量计,通过RS485 通讯连接到上位机,实时 显示蒸汽流量、蒸汽压力、蒸汽温度(现场如有,此处

可省略现场传感器部分) 5、完善锅炉的连锁保护系统。 五、系统组成: 1 、现场变送器 2、信号管,信号传输电缆 3、上位机显示操作 系统 4、OPTO2 2 控制系统 5、智能后备手操器, 6、现场执行 设备(变频器) 7、独立的接地系统。图(略) 四、控制方案原理 1、对于给定炉膛负压的情况下,对于一定的鼓风风量,需要调 节引风 机转速,使锅炉运行在最佳状态。见图二 反馈 图二:炉膛负压调节框图 2、对于给定风道含氧量值的情况下,对于一定的引风风量,需 要调节鼓风机转速,使锅炉运行在最佳状态。见图三 反馈 鼓风机变频器 图三:风道含氧量调节框图 给定负 压值 引风机变频器 给定含氧量值

公司煤气系统变频器改造方案

公司煤气系统变频器改造方案

南川大兴煤化工业有限公司 煤气系统变频器改造方案

重庆杰控电气自动化控制有限公司 关于南川大兴煤化工业有限公司 煤气系统变频器改造方案 一、大兴煤化现状 原煤气输送系统采用155KW罗茨风机向煤气储存罐送气,由于风机采用50HZ,380V全速运行,不能根据实际出气量来决定风机运行转速,同时为了避免负压情况的发生造成事故,还要把煤气罐中的煤气回送到炼炉中,这样造成能源(煤气、电力)大量的损耗。 二、解决方案 本着节约能源的目的,受博赛集团公司委托,经我公司人员的现场考察,经过对南川大兴煤化工业有限公司的超过37KW的电机功率场合(氨水泵、冷却塔的循环泵、压缩机、脱硫塔的贫液泵、加压站、一次供水、污水站、锅炉、气站、破碎机)进行了初步查看,决定最先对煤气输送系统155KW罗茨风机进行变频改造。

原工作电机实测电流110A-120A。如果经过变频控制风机转速的方式,既可实现对输送煤气的自动控制,避免负压情况的发生,并同时能达到显著的节能效果。从工艺最理想情况是保证炼焦炉出口压力在80-90PA之间,以保证整个送气系统工作在一个理想的状态。 三、实现措施 我公司技术人员经过对威钢焦化厂和重钢焦化厂煤气输送系统考察,我们建议采用变频器控制风机转速来实现对送气的自动控制,以保证整个送气系统工作在一个理想状态。这是一种很成熟的控制方式,已在现有焦化厂成功运行(如威钢)。 1、保持原有配电盘及控制系统; 2、从三台焦炉出口采样压力,根据出口压力来实现风机转 速自动控制。 (1)当三台焦炉出口压力过高时,取压力高的来决定应增加风机转速,保证生产的煤气正常输送。 (2)当三台焦炉出口压力过低时,取压力低的来决定应降低风机转速,减少煤气输送,维持出口压力。 (3)当三台焦炉出口压力适当,应保持当前风机转速,使输出压力保持恒定。 3、根据焦炉出口压力,首先变频器启动一台风机,检测出口压力是否在规定工作范围内,若能满足要求,则仅一台风机工作;若不能满足要求,则把当前风机从变频工作方式切换到工频工作

一次风机变频改造及节能分析

一次风机变频改造及节能分析 摘要:介绍了某电厂一次风机的变频改造方案,给出了一套可靠的控制策略。比较了一次风机变频控制和工频控制的节能效果,阐述了变频控制技术在电厂节能降耗的效果,对降低厂用电率,提高机组运行效率有很大的意义。 关键词:一次风机;变频改造;控制策略;节能 Abstract: A certain power plant is introduced of the primary air fan frequency converter design, and design a reliable control strategy for the primary air energy-saving effect of adopting transducer fore-and-aft is compared, which has practical meaning on reducing power plant curl consumption and increasing unit running efficiency. Key words: induced draft fan; frequency converter reconstruction; control strategy; energy-saving 1引言 在火力发电厂中,一次风机是最主要的耗电设备之一,这些设备都是长期连续运行并常常处于变负荷运行状态,其节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已经被推到了能源战略的首位。 2设备概述 华电集团某电厂一期工程采用2×330MW国产亚临界、燃煤空冷抽汽凝汽式供热机组,锅炉、汽轮机均采用上海电气集团公司设备。其中锅炉型号SG-1170/,为亚临界参数汽包炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。每台锅炉配四台钢球磨煤机,一次风机为静叶可调轴流风机。 3 一次风机变频改造方案 % 主要设计原则 目前,交流调速取代其它调速及计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流调速技术是节能、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速、启动和制动性能、高效率、高功率因素和节电效果、广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。

变频器在通风机中的应用

摘要 对于井下矿山系统而言,通风机作为重要的安全设备,起着安全保障的作用。随着生产对风机调速性能要求的不断提高,传统风机主要采用三相交流电固定转速,从启动到正常运转后一直是保持一个转速,不能根据不同需求而改变转速,既浪费了电能,又由于启动电流过大、启动不平滑容易造成电气、机械故障。 本文以一个使用变频器控制车间铁龙回风斜井185KW的通风机的应用案例,以此风机的节能来展开讲述。根据不同时段和需求要求的不同风量,在不使用变频器控制的情况下,风机只能以最大转速运行。结合变频器来控制风机的转速,实现平滑调速,达到节能的效果。 关键词:风机变频器调速节能

前言 在矿山、冶金、石油等工业生产中,使用着大量的风机,这些机械设备一般都用交流电动机驱动,且功率都比较大,消耗的电能非常可观。仔细观察这些设备的运行状况,可以发现它们大多都不是常年工作在额定功率之上,而是经常只有50—70%,甚至更低的输出量。传统的依靠挡板、阀门或空放回流调节方法致使电动机长期处于低效率、低功率因数状态运行,白白损失掉大量的电能,越是大功率的风机,情况越是严重。 随着我国经济的高速发展,微电子技术,计算机技术,自动化控制技术都得到了迅速发展,交流变频调速技术也已经进入了一个崭新的时代,其应用越来越光。而风机作为矿山企业必不可少的设备与企业的生产效率紧密相关,随着能源的日益紧缺,企业中的设备节能问题就显得尤为重要,采用变频器来控制风机负载,不仅能够实现平滑调速,而且大大节省能耗。

一、改造前风机存在的问题 1、电能的严重浪费。改造之前铁龙回风斜井通风机以额定功率185KW运行,因此造成能源浪费,增加了生产成本。 2、启动电流大,机械容易损伤。风机采用直接启动,启动时间长,启动电流大,对电机的绝缘有着较大的威胁,曾经造成过经常跳闸、交流接触器被烧坏等电气故障。而电动机在启动过程中所产生的单轴转矩现象使风机产生较大的机械振动应力,严重影响到电动机、风机及其它机械的使用寿命。 3、自动化程度低。风机依靠人工调节挡板,更不具备风量的自动实时调节功能,自动化程度低。在故障状态下,如风流短路,将对正常生产造成严重影响。为了设备的安全生产和降低生产成本,提升整体的自动化水平,对风机进行变频调速改造具有非常重要的意义。 二、变频器概述 变频调速是目前国际上最先进的调速技术,变频调速器是一种变频变压的调速,也可称〝交-直-交〞变频器。由于变频器的主回路采用了大功率的晶体管模块,控制回路采用了大规模的集成电路,再加上多种保护功能和自诊断显示功能。因此,具有很高的可靠性,而且维修方便。另外变频器内置有丰富的软件功能,外设有多个控制端子和外部计算机通讯接口,很轻易实现自动控制和过程控制。此外,由于变频器采用了先进的变频变压的控制方法,因此可以很好的实现软启动、软停止和无极变速。变频器对电机速度的控制正确,启动力矩大、电流小,而且功率因数很高,在很好满足工厂现场要求的同时,改善了供电电网,大大缓解了工厂电源容量紧张,而且节约了大量的电能。

相关主题
文本预览
相关文档 最新文档