当前位置:文档之家› 天然水的化学特征

天然水的化学特征

天然水的化学特征
天然水的化学特征

天然水的化学特征

一、雨水

雨、雪、雹等统称为降水,比较纯净,但随地区和大气环境影响,会溶存吸收杂质和气体。在接近海洋和内陆盐湖地方的降水中会溶解一些氯化钠盐分,离海岸距离近的雨水中Cl-含量高。一般雨水的总含盐量不超过50mg/L,结垢物质(钙、镁〕更微。在250C, 1大气压下,由于空气中COZ的溶人可使雨水pH值达5.6,这一因素是自然的,并非化学污染,温度、气压澎响但多不大,pH<5. 6时才称为酸雨。

二、河水

河水中含有的悬浮物和溶解盐类随流经地区的气候、地质条件、补给水的影响而变化。沿途有工矿企业排水时将污染水质。我国河水的含盐量可在13 -9185mg/L之间变化,而1000mg/L 以上者为少。河水的水化学特征是Ca z+ > Na+ > Mg2+ ; HCO3->SO2-4>Cl-

一般河水呈现微酸性。在洪峰期间悬浮物含量增加,含盐量减少;枯水期则相反。细菌、藻类及有机物在河水中含量也较高。

我国河流的水化学特征有明显的地带性:重碳酸盐类分布最广,占全国面积的680o I氯化物盐类占25.4%o,硫酸盐类分布最少占6.6%并大部分分布在西部内陆地区。东南沿海河流含盐量最少为36. 4mg/L,在塔里木河米兰附近测得含盐量达32 732mg/L(接近海水含盐度),两者相差近1000倍。我国河水中硬度类别分布情况。

三、湖水

湖泊是提供工业和饮用的主要水源,并具有改善区域生态环境等多种功能。湖水的化学成分决定于流人水源及补给湖泊的地下水流的成分,并与在湖内进行生物作用和湖泊集水面的自然地理条件有关。是否有水流从湖泊流出,对湖水化学成分形成过程有特殊意义。不排水湖泊湖水耗损于蒸发,因而进人湖内的盐类不断聚积,其浓度继续升高,结果湖泊变成咸水湖。

排水湖的含盐量通常不超过200 - 300mg/L,咸水湖中的离子总数可达5. 82g/L。湖泊的深度、面积、容量对水质有明显影响。我国东北地区(松嫩平原的东北部)气候干旱,地形低洼,湖泊密集,周围盐碱土分布其盐分多属苏打盐土,地表水和地下水的含盐量较高,水中主要成分是重碳酸钠,含盐量2700mg/L左右,为淡水湖、咸水湖和卤水盐湖三种类型。

根据调查资料,大约有近20%的湖泊水质较好(11一m类),有80%以上的湖泊受到污染(N-劣V类),这表明当前我国湖泊水质污染问题十分严峻。

四、水库水

水库水中溶解盐类主要取决于补给水库的地表水和地下水的化学成分;水库调节情况;

降水量和蒸发量;库盘土层含盐量; 库水中的生物作用和生物化学作用;有无外来污染水源(工业废水、生活污水)。在决定水库化学情况时,主要决定水库流人量和流出量(水库调节情况)。从给水卫生要求方面,应注意库址选择与库底卫生清理并对水库周围建卫生防护带。

五、地下水

地下水是工矿企业、城镇供水的主要水源之一。地下水也是矿物资源,如当氯化钠大于50mg/I.、碘大于20mg/L时,就有作为原料利用的价值。地下水起源于大气降水和地表水渗透;土层中水汽的凝结;初生水和共生水。有的认为地下深处的地下水是岩浆中分离出的气体凝结所形成的。

土层中水汽的凝结有其实际意义,在降水非常少的沙漠平原里,这种水可作为饮用水的重要来源某些地区地下水温度较高,婴下热能”能源。通过地层的渗滤作用,地下水比较清澄,细菌、微生物也不易存在,但溶解的矿物质较多,其成分与地层性质、补给水水源水质有关。当地下水受河流补给,而河流受到海水倒灌时,地下水中氯离子含量相应上升。矿床、煤层、油田范围内以及矿坑中抽取的地下水质量较差。地下水含有放射性物质氛,一定范围内具有医疗作用。地下水按矿化度划分为四类:①淡水,矿化度小于lg/L;②微咸水,矿化度1一3g/L;③半咸水,矿化度3-5g/L;④咸水,矿化度大于5g/L。

地下淡水分布区的面积约810.65万km',占全国总面积的85-39%o。微咸水分布区,主要分布在我国的河北、山东、江苏、宁夏回族自治区、新疆维吾尔自治区、内蒙古自治区、甘肃、山西、陕西和吉林的部分地区,地下微咸水分布区的面积约53.92万km',占全国总面积有的5.68%o。

半咸水、咸水分布区,主要分布在新疆维吾尔自治区的许多地区、宁夏回族自治区、内蒙古自治区、青海、甘肃的部分地区,以及天津、河北、山东、辽宁、上海、江苏、广东的部分滨海地区;地下半咸水、咸水分布区面积约84.73万km',占全国总面积的8.93%.

六、海水

海水的盐分是由河流汇集,携带集聚而成的。海水的平均含盐量为35g/kg (35.7g/L),海水平均密度为1.03g/cm3,海水的盐分浓度受蒸发和降水影响而有差异,河流人口处海水的盐分有降低。海水的冰点也随盐分变化,当海水的盐分在24. 7%时,点是一1. 3320C,海水中总的有机物含量约2mg/L,由于海洋中的溶解与沉淀平衡,使海洋中的各种离子比例成分相对恒定因此pH值在8-8.3之间,海水一般具有碱性,海水中约有70多种元素,但主要的是10余种,见表1-23.

由于生物的吸收,钙在表层可能会相对地减少。二氧化硅也是由于这种方式从表面的海水中除去,所以海水中SiO2的含量随探度而有规则地增加。COZ是控制海洋中CaCO3溶解度的重要因素,它也取决于生物活动的性质和数量。

海水的化学特征为Na>Mg>Ca, Cl>S04>CO3.

海水的含氯度是指lkg海水中所含氯离子的总质量。

海水的含盐度是指lkg海水中所溶解的固体物总量,两者常用单位是g/kg%。

盐度35%。指1kg海水中溶解的固体物是35g,含盐度%。= 1.806 6含氯度%。

含盐量为35000mg/L的海水称为标准海水,这是因为世界上绝大多数的海水具有上述的含盐量,其中的离子组成比例全世界也十分相近,但是实际总TDS变化范围很宽,波罗的海的海水含盐量为7000mg/L,红海和波斯湾的海水含盐量为45000mg/L。由于土壤影响和内陆水的渗入,近海岸井水的含盐量及组成变化极大。标准海水组成见表1-24 海水利用的范围主要有以下几方面。

(1)海水代替淡水直接作为工业用水。工业冷却水占工业用水量的80%左右。海水利用,主要是代替淡水作为工业冷却水,利用海水有如下的优越性。

1)水源稳定。海水自净能力强,水质比较稳定,采用量不受限制。

2)水温适宜。工业生产利用海水冷却,带走生产过程中多余的热量。海水,尤其是深层海水的温度较低,且水温较稳定,如大连海域全年海水温度在。0-25℃之间。

3)动力消耗低。一般多采取近海取水,不需远距离输送。

4)设备投资少,占地面积小。与淡水循环冷却相比,可省去回水设备、冷水塔等装备。

(2)用海水作树脂再生还原剂和溶剂。在钠离子交换过程中,当软水的硬度超过规定标准时,即表明交换树脂已失去交换能力,需用食盐溶液对交换树脂进行再生还原,使其恢复交换能力。在工业企业的低压锅炉软水处理工艺中,传统的方法是采用自来水配制5%-g%

浓度的食盐溶液,对树脂进行再生还原。为了节水,沿海城市采用海水作为还原剂取得了成熟的经验。

水环境化学名词解释

名词解释 总硬度Ht:在一般天然水中,主要是Ca2+和Mg2+,其它离子含量很少,通常以水中Ca2+和Mg2+的总含量称为水的总硬度Ht 碳酸盐硬度(Hc):由于水中含有Ca(HCO3)2和Mg(HCO3)2而形成的硬度,经煮沸后可把硬度去掉,这种硬度称为碳酸盐硬度,亦称暂时硬度。 非碳酸盐硬度(Hn):由于水中含有CaSO4(CaCl2)和MgSO4(MgCl2 )等盐类物质而形成的硬度,经煮沸后也不能去除,这种硬度称为非碳酸盐硬度,亦称永久硬度。 当量粒子:对于还原性物质,一个当量粒子是指与1个氢原子具有相同的还原能力的粒子 毫克当量:对于还原性物质,与1mg(1mmol)氢的还原能力相等的物质叫做1毫克当量。含水率定义:树脂含水率一般以每克湿树脂(在水中充分膨胀)所含水分的百分比表示(约50%),并且相应地反映了树脂网架中的孔隙率 溶胀性定义:树脂体积变化的现象称为溶胀 全交换容量:一定量树脂所具有的活性基团或可交换离子的总数量。 工作交换容量:在给定工作条件下实际可利用的交换能力。 完交换容量:完全交换容量也称最大容量、理论容量,是干燥恒重的单位质量H型或Cl 型树脂中可交换离子(离子基团)的总数量。 固定床:离子交换树脂(或磺化煤)装填在离子交换器内。在操作过程中,树脂不往外输送,所以称之为固定床 复床指阳、阴离子交换器串联使用,达到水的除盐的目的。 半透膜:只允许溶质或溶剂透过的膜称为半透膜。 半透膜属于选择透过性膜。 选择透过性膜:如生物膜、细胞膜,扩散方式包括自由扩散、协助扩散、主动运输。 渗析 如果用膜把一个容器分隔成两部分,在膜的一侧放入溶液,在膜的另一侧放入纯水,则把小分子溶质透过膜向纯水侧的迁移过程称为渗析(溶质透过膜的现象)。 渗透 如果仅纯水侧的纯水透过膜向溶液侧迁移,而溶质不透过,这一过程称为渗透(溶剂透过膜的现象)。 水面的综合散热系数:在单位时间内、水面温度变化1oC时,水体通过单位表面散失的热量变化量,单位:W/(m2?oC) 湿空气:干空气和水蒸气所组成的混合空气。 饱和空气:当空气在某一定温度下,吸湿能力达到最大值时,空气中的水蒸气处于饱和状态,称为饱和空气。水蒸气的分压称为饱和蒸汽压力。 绝对湿度:每m3湿空气中所含水蒸气的质量称为空气的绝对湿度。 相对湿度:空气的绝对湿度和同温度下饱和空气的绝对湿度之比,成为湿空气的相对湿度。相对湿度是表示空气接近饱和的程度。相对湿度小的空气吸收水分能力强。 湿空气的密度:每m3湿空气中所含干空气的质量和水蒸气的质量之和。 湿空气的焓(i):表示1kg干空气和含湿量x公斤水蒸气的含热量之和。

初中化学《水的性质》教学设计(推荐文档)

3.1 水 第2课时水的性质 教学目标: 1.知识与技能 (1)知道水是一种重要的分散剂 (2)初步认识悬浊液、乳浊液、溶液的概念,辨析它们的区别 (3) 掌握二氧化碳、生石灰、硫酸铜和水的反应以及水合现象,懂得结晶水合物 2.过程与方法 (1)观察、收集生活中的实例,交流各种分散体系。 (2)通过实验,记录、观察二氧化碳、生石灰、硫酸铜反应,学习水的化学性质。 3.情感态度与价值观 (1)体验各种分散体系对人类生活生命的重要意义 (2)培养仔细观察的科学实验态度 重点和难点: 教学重点:二氧化碳、生石灰、硫酸铜和水的反应 教学难点:区别溶液、悬浊液、乳浊液 教学用品: 药品:植物油、汽水、食盐、蒸馏水、泥土、生石灰、石蕊、硫酸铜 仪器:烧杯、试管、玻璃棒、药匙、镊子、吸管 教学过程: [展示]烧杯中有浮动的冰,鱼照样能自由的生存。这是为什么? 今天我们就来学习“水”,解释这一现象。 [提问]物质的物理性质包括哪几方面? [提问]水是我们最熟悉的物质,就你知道的,观察到的水具有哪些物理性质? [板书] 3.1水 三、水的性质 1.水的物理性质:无色、无味、液体。在标准状态下,沸点100℃,凝固点0℃。 [提问]看书p70表,比较一下水的密度,说说水在什么温度时密度最大? [板书]4℃时,水的密度最大。 [讲述]由于,4℃时,水的密度最大,0℃时密度却变小,这种现象称为反膨胀,这种性质跟分子的缔合有关。 正由于水具有的这种反常膨胀的奇特性质,使冰能浮在水面上,在寒冷的冬天,水生生物在河流和湖泊中的以生存。 (解释课开始时的现象) 2.水的特性: 1)缔合性 [设问]为什么在工厂里、我们生活中,通常我们用冷水来降低物质的温度,又用温水去预热物质,起到节约能源的作用呢? [讲述]由于水就有吸收大量热量的功能 [讲述]水还有极高的溶解和分散其他物质的能力。 [演示]饮料、注射用药水 [板书] 2)分散性

水环境化学复习题

水环境化学复习题 7. 腐殖质分为哪些种类,通过哪些途径对水质产生影响? 8. 简述生物富集的概念和影响因素,并说明生物富集的生态环境意义。9. 说明辛醇/水分配系数的概念和作用。 10. 亨利常数的表达方式有哪些?怎样计算亨利常数?11. 葡萄糖的氧化反应式为:C6H12O6 + 6O2 =6CO2 + H2O 计算100 mg/L的葡萄糖完全氧化的理论耗氧量。 12. 某废水的BOD5为250 mg/L,其最终BOD为380 mg/L,试求其降解速率常数。 13 .某河段流量为Q = 2 160 000 m3/d, 流速为46 km/d,T=13.5℃,耗氧系数k1=1.14 d-1,复氧系数k2=1.85d-1,起始断面排污口排放的废水量为8×104 m3/d,废水含BOD5为500 mg/L, DO为0,上游河水BOD5为0,DO为8.95 mg/L。求排污口下游10 km处河水的BOD5和氧亏值以及极限溶解氧出现的距离。 14 .某芳烃类有机污染物的分子量为192,在水中的溶解度为0.05 mg/L,试估算其辛醇/水分配系数(kow)及在鱼体中的生物富集系数(logBCF)。 15 .某种鱼对水中的持久性污染物X的吸收速率常数ka为14.5h-1,鱼体消除X的速率常数ke为2.5×10-3h-1;若X在鱼体中的起始浓度为0,在水中的浓度保持不变,且实验期间鱼体体重保持不变。计算X在鱼体内的富集系数及其浓度达到稳态浓度95%时所需要的时间。

16 .已知二氯乙烷(CH2ClCH2Cl)在25℃时的饱和蒸汽压为82 mmHg,在水中的溶解度为8700 mg/L,计算在该温度下四氯化碳从6.5 cm厚水层中挥发的半衰期。十、水中的重金属 1. 天然水体中的重金属大约有几种存在形态? 2. 影响水中重金属存在形态的因素有哪些? 3. 影响水中重金属毒性的因素有哪些?它们都如何影响重金属的毒性? 4. 何谓金属元素在水环境中的迁移?有哪些迁移基本类型? 5. 元素在地表环境中迁移的特点有哪些? 6. 影响元素在地表环境中迁移的因素是什么? 7. 有哪些因素可以影响沉积物中的重金属向上覆水中释放? 8. 沉积物中的金属有哪些存在形态?9. 如何评价沉积物中重金属的生物有效性?十一、配位解离平衡 1、决定络合物稳定性的因素在哪几方面? 2、水环境中常见无机配位体和有机配位体有哪些? 3、水环境中的金属离子与配位体络合的一般规律如何? 4、Cl-对金属离子的络合作用有何特点? 5、OH-对金属离子的络合作用有何特点? 6、腐植质对对重金属离子迁移转化有何影响? 7、举例说明EDTA在水产养殖上的应用?十二、溶解与沉淀 1.天然水体中的溶解和沉淀平衡的复杂性表现在哪里? 2.难溶金属氢氧化物的溶解度与pH的关系如何? 3.解释图12—2中的3条直线与一条曲线各表示什么意思? 4.如何绘制氢氧化亚铁与碳酸亚铁溶解度与pH的关系图?

水的基本物理化学性质(冰水汽)解答

水的基本物理化学性质 一. 水的物理性质(形态、冰点、沸点): 常温下(0~100℃),水可以出现固、液、气三相变化,利用水的相热转换能量是很方便的。 纯净的水是无色、无味、无臭的透明液体。水在1个大气压时(105Pa),温度 1)在0℃以下为固体,0℃为水的冰点。 2)从0℃-100℃之间为液体(通常情况下水呈液态)。 3)100℃以上为气体(气态水),100℃为水的沸点。 4)水是无色、无臭、无味液体,在浅薄时是清澈透明,深厚时呈蓝绿色。 5)在1atm时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。 6)水在0℃的凝固热为5.99 kJ/mole(或80 cal/g)。 7)水在100℃的汽化热为40.6 kJ/mole(或540 cal/g)。 8)由於水分子间具有氢键,故沸点高、莫耳汽化热大,蒸气压小。 9)沸点: (1)沸点:液体的饱和蒸气压等於液面上大气压之温度,此时液体各点均呈剧烈汽 化现象,且液气相可共存若液面上为1 atm(76 mmHg)时,则该沸点称为「正常沸点」,水的正常沸点为100℃。 (2)若液面的气压加大,则液体需更高的蒸气压才可沸腾;而更高的温度使得更高 的蒸气压,故液体的沸点会上升。液面上蒸气压愈大,液体的沸点会愈高。 (3)反之,若液面上气压变小,则液面的沸点将会下降。 10)水在4℃(精确值为3.98℃)时的体积最小、密度最大,D = 1g/mL。 11)三相点:指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度 和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现。 12)临界点(critical point):物理学中因为能量的不同而会有相的改变(例如:冰 →水→水蒸气),相的改变代表界的不同,故当一事物到达相变前一刻时我们称它临 界了,而临界时的值则称为临界点。之温度为临界温度,压力为临界压力。 13)临界温度:加压力使气体液化之最高温度称为临界温度。如水之临界温度为374℃, 若温度高於374℃,则不可能加压使水蒸气液化。 14)临界压力:在临界温度时,加压力使气体液化的最小压力称之。临界压力等於该液 体在临界温度之饱和蒸气压。 二. 水的比热: 把单位质量的水升高1℃所吸收的热量,叫做水的比热容,简称比热,水的比热为4.18xKJ/Kg.K。 在所有的液体中,水的比热容最大。因此水可作为优质的热交换介质,用于冷却、储热、传热等方面。 三. 水的汽化热: 在一定温度下单位质量的水完全变成同温度的气态水(水蒸气)所需的热量,叫做水的汽化热。 水从液态转变为气态的过程叫做汽化,水表面的汽化现象叫做蒸发,蒸发在任何温度下都能进行。 水的汽化热为2257KJ/Kg。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从1℃加热到100℃所需要的热量。

水环境化学

水环境化学
Page 1 of 14
第十二章 水环境中的溶解与沉淀
教学一般要求 掌握:难溶氢氧化物溶解性与pH的关系。难溶硫化物、难溶碳酸盐的溶解性与pH及CT的关系。 初步掌握:开放体系与封闭体系中碳酸钙的溶解平衡,水稳定性的概念与调整。 了解:Fe(OH)2与FeCO3溶解平衡图。Fe(OH)2与FeCO3的分级沉淀和稳定性区域图的认识。 初步了解:Fe(OH)2与FeCO3稳定区域图的绘制。FeS、Fe(OH)2与FeCO3的分级沉淀。
第一节 天然水中各类固体的溶解平衡 一、常见固体的溶解性
(一) 天然水中溶解沉淀平衡的复杂性
溶解―沉淀平衡是固一液两相间的平衡,反应发生在两相的界面上。天然水是个组成复杂的体系, 增加了溶解―沉淀平衡的复杂性。难溶电解质的溶解规律可以用溶度积原理描述,天然水中的溶解 平衡有以下特点: 1,反应的滞后性。即平衡状态不是迅速达到,往往要滞后一段时间。因此,在天然水中常常会 发现沉淀物的过饱和状态。例如大洋表层水中的CaCO3一般都有一定的过饱和程度。升高温度,有结 晶核及生物作用,均可加速反应的进行。 2,最先生成的沉淀不一定是最稳定的形态,而是反应速度快的形态。这种形态经过一定时间的作 用,可以转化为更稳定的形态。例如,硅酸盐在沉淀析出时首先析出的是蛋白石,而不是更稳定的 石英。 3,吸附沉淀作用和共沉淀作用的存在,这使沉淀反应生成的固相组成复杂,使远未达到溶度积的成 分也可沉淀析出。 天然水在地球化学循环过程中不断侵蚀陆地,使其风化产物转入水体,最后进入海洋。其中80%左 右是悬浮物质,20%左右是溶解物质。在条件变化时,溶解的物质可以发生沉淀,悬浮物质也可溶 解。地面水中的主要离子成份就是径流在汇集过程中对岩石、土壤淋溶而形成的。这些成分主要来 自沉积岩。下面就天然水中较常见的沉淀物作简单介绍。
(二)硝酸盐、氯化物和硫酸盐
在常见化合物中,硝酸盐几乎全部是易溶的,氯化物和硫酸盐绝大多数也是易溶的。较常见的难溶 化合物有氯化银、氯化铅、硫酸铅、硫酸钡等。它们的溶度积常数见表12-1。另外,硫酸钙在水中 的溶解度也比较小(1.9g/L)。铅虽然是比较常见的污染重金属,但它在海水中,大部分被转移到
http://210.30.64.60/etc/jpk/huaxue/kejian/dishierz.htm
2010-03-11

地下水水化学特征分析方法研究

资源环境 节能减灾 与s/cm ,它不仅反映了水中例子强度,还可以指示总 例子组成以及溶解态的无机物组成。2.1.3水中溶解氧 地下水水体中元素在三相中转化,同水中的氧化还原反映强度有很大关系,水中溶解氧的浓度直接反映生态环境的 节能技术改造节能汇总表 4结论 项目改造前公司2009年2座混合式一段煤气发生炉耗煤53900t/a (热值7200kcal/kg 的高热值块煤,折标煤55441tce/a ),5座链排式燃煤喷雾干燥塔粉煤67231.8t/a (热值5780kcal/kg ,折标煤55514.3tce/a ),合计烧成热耗110955.3tce/a (相当于5000kcal/kg 的原煤155336t/a ),产品烧成单耗为4.5287kgce/m 2;水消耗量为88.7949万m 3/a ,电消耗量4988.81万kwh/a 。 煤气炉改造后烧成单耗下降为3.53985kgce/m 2,公司用5000kcal/kg 的原煤121419.865t/a ,煤气炉改造节煤折标煤 24226.825tce/a (相当于5000kcal/kg 的原煤33916.135t/a ),改造后用电4397.3156万kwh/a ,项目改造节电591.4944万kwh/a,项目改造节能折标煤26297tce/a 。 煤气发生炉气化后的炉渣基本不含可溶性的有害物,对环境不会造成危害,可以用于铺路、制砖。 由以上所述,本项目改造完成后,公司可年节约原煤折标煤24226.825tce/a ;建成后的环保效益显著,从源头上削减烟尘和SO 2等污染物,明显改善周边的环境。参考文献: [1]高力明.陶瓷工业的燃烧技术进步与节能减排[J ].中国陶瓷 工业,2008,15(4)∶1-6. [2]杨洪儒,苏桂军,曾明峰.我国建筑卫生陶瓷工业能耗现状及 节能潜力研究[J ].陶瓷,2005,11:9-20. [3]骆晓玲,徐坤山.煤气发生炉工作原理的研究[J ].煤炭工程, 2009,8:98-100 [4]顾群音.煤气发生炉气化过程分析与提高煤气品质的技术 措施[J ].上海理工大学学报,2006.1:99-102.

水的化学性质

水的化学性质 化学式:H?O 结构式:H—O—H(两氢氧键间夹角104.5°)。 相对分子质量:18.016 化学实验:水的电解。方程式:2H?O=通电=2H?↑+O ?↑(分解反应) 分子构成:氢原子、氧原子。 水具有以下化学性质: 1.稳定性:在2000℃以上才开始分解。 水的电离:纯水中存在下列电离平衡:H?O==可逆 ==H?+OH?或H?O+H?O=可逆=H?O?+OH?。注:“H?O?”为水合氢离子,为了简便,常常简写成H?,更准确的说法为H9O4?,纯水中氢离子物质的量浓度为 10??mol/L。 2.水的氧化性:水跟较活泼金属或碳反应时,表现氧化性,氢被还原成氢气。 2Na+2H?O=2NaOH+H?↑ Mg+2H?O=Mg(OH)?↓+H?↑ 3Fe+4H?O(水蒸气)=Fe?O?+4H?(加热)C+H?O=CO+H?(高温)

3.水的电解: 水在直流电作用下,分解生成氢气和氧气,工业上用此法制 纯氢和纯氧2H?O=2H?↑+O?↑。 4.水化反应: 水可跟活泼金属的碱性氧化物、大多数酸性氧化物以及某些不饱和烃发生水化反应。 Na?O+H?O=2NaOH CaO+H?O=Ca(OH)? SO?+H?O=H?SO? P?O?+3H?O=2H?PO? CH?=CH?+H?O←→C?H?OH 5.水解反应 盐的水解氮化物水解: Mg?N?+6H?O(加热)=3Mg(OH)?↓+2NH?↑ NaAlO?+HCI+H?O=Al(OH)?↓+NaCI(NaCI 少量) 碳化钙水解:CaC?(电石)+2H?O(饱和氯化钠)=Ca(OH)?+C?H?↑ 卤代烃水解:C?H?Br+H?O(加热下的氢氧化钠溶液)←→C?H?OH+HBr 醇钠水解:

于桥水库水环境化学本底特征分析

研究区域概况 于桥水库地处燕山山脉边缘地带的州河盆地,位于天津北部蓟县城东4公里处,是一座以防洪、城市供水、农业灌溉为主兼顾发电的多功能水库,总面积135平方公里,正常蓄水时平均水深4.3米,表面高程21.6米,蓄水面积86.8平方公里,蓄水量为3.85亿立方米,总库容15.59亿立方米,其来水主要由本流域地表径流汇水和引滦输水两部分组成(马丽丽etal.2009),自1983年引滦通水至今作为天津市的饮用水水源地已经服务了31年,服务总人口达627.17万人,占天津市饮用水源地供水量的70%左右(刘婧2010)。 材料和方法 1 现场采样 由于水库面积较大,为确保采集样点在空间分布上的代表性,对水库表面的采样点位进行了均一化布点,分别选取了:库心东、库中心、库心南、库心北、库心西及峰山南6个常规监测点位,在2010年至2012年的三年时间内,间隔14天采集一次样品。 2 实验室分析 实验室分析指标包括总氮、总磷以及正磷酸,所涉及项目有项目监测及分析方法分别按照《水和废水监测分析方法》(魏复盛etal.20021和地表水环境质量标准(gb3838-2002)中规定的地表水环境质量标准基本项目分析方法进行。 3 数据处理 采用spss软件对实验室分析结构进行统计分析,绘制监测数据的时间变化曲线。 结果和讨论 1 ph值变化分析 于桥水库整体属于弱碱性水体,常年ph值在8.5左右,这同水库周边土壤中盐基离子组成密切相关。在时间上,水库酸碱性呈现出明显的季节性变化趋势,近3年的监测数据显示,水库在上一年11月份至下一年度的12月份维持在相对较低水平,并在汛期来临之前达到最峰值,而后逐渐下降直至来年1月。水库这样的变化趋势主要是收到上游及周边来水及库中浮游生物作用的影响,由于汛期大量养分的汇入,加之事宜的光热条件,致使水体中藻类及其他浮游生物的大量繁殖,消耗大量的二氧化碳而促使水中的碳酸不断分解,造成了ph值不断增加,而冬季ph的峰值则主要受到上游来水影响,这一点通过同一时期果河桥监测断面ph背景予以佐证。 2 于桥水库总磷变化分析 近几年,于桥水库总磷呈现出逐渐上升趋势,2011年,2012年2年全年平均浓度达到0.04mg/l,这一数值已经超过了联合国经济合作与发展组织对于湖泊富营养化的预警限制(0.035mg/l)。在季节变化,水库总磷浓度变化明显,冬季普遍较低,春季缓慢上升,夏季达到峰值(2012年达到了0.06mg/l),进入秋季总磷浓度则逐渐降低。tp总的变化趋势是夏季>秋季>春季>冬季。这样的变化趋势主要是由于,主要由于汛期外部汇水影响,暴雨过程中,大量泥沙及可溶性养分随地表径流沿坑塘沟渠汇入水库,这是汛期水库总磷上升根本原因。 3 正磷酸盐变化分析 近三年,在1-2月份果河桥来水磷酸盐浓度在0.25mg/l左右,因此在这一期间,水库正磷酸盐维持在较高的水平;而后由于来水正磷酸盐浓度降低,加之温度上升后造成的藻类繁殖,消耗了水体中正磷酸盐,因此在这一时期正磷酸盐呈现降低的趋势;4-5月份水库磷酸盐浓度达到又一峰值,这主要是由于随着藻类新陈代谢速度加快,不仅藻类生长迅速,而且死亡,分解速度也快,加之外部来水在这一时期磷酸盐浓度有所增加,共同导致了这一时期磷酸盐浓度的上升;进入汛期至入秋期间,由于低tp浓度的引滦水不断输入及水库向天津的输水而发生的库水交换,以及藻类生长速度的明显减缓和藻类种属生长的季节交替等原因,

浅述地下水水化学特征分析方法研究

浅述地下水水化学特征分析方法研究 发表时间:2012-12-20T09:33:38.530Z 来源:《建筑学研究前沿》2012年9月供稿作者:丁时晨[导读] 地下水是地质环境构成要素中最为活跃、动态变化最为剧烈的要素之一。丁时晨江苏地矿局第五地质大队 221004 摘要:地下水是地质环境构成要素中最为活跃、动态变化最为剧烈的要素之一,最重要的方式就是对地下水物理特性及水化学特征进行分析,地下水化学特征分析常用描述方法有矿化度、化学组分、同位素分析、污染源分析、氨氮含量、重金属含量等,为资源保护和生态文明提供决策支持。 关键词:水文地质;地下水; 水化学性质;水化学特征;特征分析近年来,研究地下水水化学特征以及进行地下水水质评价已经成为水文地质界比较热得话题,国内外众多学者都采用不同的方法对不同地区进行水质评价和水化学特征研究,促进了地下水科学的极大发展。地下水化学特征受补给来源,地球化学,排水系统,表层厚度,大气和土壤以及人类活动的共同影响,表现出时间和空间异质性特征。地下水在岩石圈运移过程中不断的与岩石发生化学反应,并与大气圈和生物圈进行长期的水循环过程,同时也进行着化学成分转化,随着人类活动在地球表面系统圈进一步深度的发展,人为因素也对地下水产生重要的影响。地下水水化学特征一般从水文地质和化学特征两个方面进行说明,水文地质调查一般从现场勘查可以对地质状况有个比较清晰地认识,对于地下水水化学特征则需要现场检测和实验分析过程进行了解。 1 地下水的化学性质 矿化度:存在于地下水中的离子、分子及化合物的总含量称为地下水的矿化度。矿化度是反映地下水化学成分的主要指标一般情况下,地下水随着矿化度的变化,所占主要离子的种类也相应改变。低矿化度的淡水常以HCO3-为主要成分,中矿化度的盐质水常以SO42-为主要成分,高矿化度的咸水和卤水则常常是以Cl-为主要成分。酸碱度水的酸碱度常以PH值表示,是水中氢离子浓度的负对数值,当PH=7时,说明水为中性;当PH<7时,说明水呈酸性,当PH>7时,说明水呈碱性。硬度水中Ca2+和Mg2+的含量多少用“硬度”概念表示。水中所含Ca2+和Mg2+的数量称为水的总硬度。 2 地下水水化学分析指标 2.1 地下水水化学特征现场观测 地下水物理性质与所含化学成分密切联系,在一定程度上反映地下水的化学成分与形成环境。因此,在进行地下水化学成分研究时,首先要研究地下水的物理性质。 2.1.1 温度监测 自然界许多化学变化都是在一定温度下才能发生的,温度对水体中的化学元素的浓度和存在状态都有一定的影响,甚至表层地下水对气候的干湿冷暖都有响应。地下水温度对气温的响应一般都存在一个滞后期且变化幅度可能会是微弱的。 2.1.2 电导率监测 电导率是地下水传送电流的能力,它和电阻值相对应,测量单位为,它不仅反映了水中例子强度,还可以指示总例子组成以及溶解态的无机物组成。 2.1.3 水中溶解氧 地下水水体中元素在三相中转化,同水中的氧化还原反映强度有很大关系,水中溶解氧的浓度直接反映生态环境的状况。 2.1.4 PH值监测 地下水的PH值(即酸碱度)主要取决于地下水中的H+浓度,是制约元素迁移和沉淀的主要条件。水中的PH值能够直接影响迁移强度大的元素。 2.2 地下水水化学特征实验分析 2.2.1 矿化度 水中化学组分含量的总和称为总矿化度。地下水在运移过程中通过淀滤,蒸发和沉积作用,使得地下水矿化度发生变化。天然水按矿化度的分类,矿化度在0.000—1.000g/L之间的为淡水;矿化度在1.000—3.000g/L之间的为微咸水;矿化度在3.000—10.000g/L之间的为咸水;矿化度在10.000—100.000g/L之间的为盐水;矿化度在>100.000g/L之间的为卤水;按照各个划分标准可以对研究区地下水性质进行划分。 2.2.2 化学成分分析 化学成分主要是研究地下水多汗阴阳离子浓度,主要的例子监测室以K+,Na+,Ca2+,Mg2+为主;阴离子主要以Cl-,SO42-,PO43-,NO3-,HCO3-为主。阴离子和阳离子一起不仅可以反映水体的化学组成,还可以进一步揭示不同端元对研究水体的影响。(Stallard,1983)利用Piper三线图的方法可以得出水化学类型。此种方法可以看出地下水与岩石耦合发生反应得岩石类型。主要影响地下水的矿物主要是方解石,白云石,石膏等,天然情况下阳离子Ca2+,Mg2+和阴离子HCO3-和SO42-空地下空间变化来源于水岩作用中对岩石溶解,据此可以推算出相关的溶解率等指标。其中还要有降水对其离子变化的贡献。人类生产生活对地下水Ca2+,Mg2+,HCO3-和SO42-扰动也比较大。 K+,Na+和NO3-,SO42-,Cl-离子主要来源于除降水之外还要受到花费,人畜粪便,生活废水等。 Cl-被认为是具有惰性的离子,它既不容易吸附在黏土上,也不容易产生氯化物沉淀,除非其浓度超过200g/L。单纯雨水中Cl-来自海洋,随距海洋距离越远其浓度呈指数级衰减,运移过程中受到大陆上空尘埃和气体(天然的和工农业生产)影响会改变雨水中Cl-浓度。Cl-在地下运移中不会在透水层停留就不会明显产生Cl-。 2.2.3 同位素在水化学特征分析中应用 人气降水卞要来源于海水蒸发形成的蒸汽团,故人气降水的同位素组成特征取决于海水的同位素组成及海水蒸发冷凝中同位素的分馏作用,它决定了人气降水形成初期氢氧同位素组成特征,即人气降水的 D和 18O成线性关系。大气降水形成后,其氢氧同位素组成特征在其空间运移上还会随着温度和空间变化产生新的效应,即温度效应、纬度效应、高程效应和降水量效应。1991年原地矿部水文地质工程地质研究所得出西南地区降水线方 D=7.87 18O+11.09。

水环境化学

第三章水环境化学 水是世界上分布最广的资源之一,也是人类与生物体赖以生存和发展必不可少的物质,但世界上可供人类利用的水资源很少,仅占地球水资源的0.64%。 水环境化学:是研究化学物质在天然水体中的存在形态、反应机制、迁移转化、归趋的规律与化学行为及其对生态环境的影响。它是环境化学的重要组成部分,这些研究将为水污染控制和水资源的保护提供科学的依据。 第一节 水的分布、基本特征及污染物存在形态 一、水的特征与分布 天然水中一般含有可溶性物质和悬浮物质(包括悬浮物、颗粒物、水生生物 等)。可溶性物质的组成十分复杂,主要是岩石在风化过程中,经水溶解迁移 的地壳矿物质。天然水中常见的八大离子占天然水中离子总量的95%-99%. 总含盐量:TDS=[Ca2+ + Mg2+ + K+ + Na+ ] + [Cl- + SO42- + HCO3- + NO3-] (2)水中的金属离子 水中金属离子的表示式常写成Mn+,其水合离子的分子式一般写作M(H2O)xn+。金属离子在水中可以以多种形态存在,一般为Fe(OH)2+,Fe2(OH)24+和Fe3+等形态存在。水溶液中金属离子的表示式常写成Mn+,预示着是简单的水合金属阳离子M(H2O)xn+。它可通过化学反应达到最稳定的状态,酸-碱、沉淀、配合及氧化-还原等反应是它们在水中达到最稳定状态的过程。各种形态的浓度可以通过平衡常数加以计算,见书P148页。 (3)气体在水中的溶解性 气体溶解在水中,对于生物种类的生存是非常重要的。一般来说大气中的气体分子与溶液中同种气体分子存在一种平衡,浓度关系服从Henny定律。 X(g)X(aq) (4)水生生物 水生生物可直接影响许多物质的浓度,其作用有代谢、摄取、存储和释放等。 自养生物:利用太阳能量和化学能量,把简单、无生命的无机一无机元素引进至复杂的生命分子中组成生命体,如藻类。 异养生物:利用自养生物产生的有机物作为能源及合成自身生命的原始物质。 藻类生成和分解是水体中进行光合作用(P)和呼吸作用(R)的一典型过程,可

内蒙古河套平原现代湖泊的水化学特征及成因类型

内蒙古河套平原现代湖泊的 水化学特征及成因类型 收稿日期:20160914;修订日期:20161119; 编辑:王敏基金项目:中国地质调查局 特殊地质地貌区填图试点 项目(D D 20160060 )作者简介:李成路(1992 ),男,山东济宁人,硕士研究生,主要从事第四纪环境及覆盖区填图等方面的研究;E m a i l :l c l h l b @126.c o m 李成路1,张绪教1,叶培盛2,傅连珍1,叶梦旎1 (1.中国地质大学地球科学与资源学院,北京 100083;2.中国地质科学院地质力学研究所,北京 100081 )摘要:在1?5万区域地质调查的基础上,于山前 黄河 沙漠沿线采集湖水二地下水样品16组,分析其水化学特征,并结合遥感解译和钻探等技术方法划分了河套平原现代湖泊的成因类型三研究表明该区湖泊多数为淡水 微咸水湖,水化学类型呈N a (M g )(C a )H C O 3(C l )型;少数为咸水湖,水化学类型呈N a (M g )(K )C l (S O 4)型,湖水T D S 变化较大,介于0.857~7.36g /L ,主要接受引黄灌溉补给和山前地下水侧向补给三湖泊的成因类型可分为河流成因的牛轭湖二基底为全新世黄河古河道冲积砂层的风蚀湖及基底为全新世风积沙层的风蚀湖;其中以Ⅱ型占主导地位三 关键词:现代湖泊;成因类型;水化学;河套平原中图分类号:P 592 文献标识码:B 引文格式:李成路,张绪教,叶培盛,等.内蒙古河套平原现代湖泊的水化学特征及成因类型[J ]. 山东国土资源,2016,32(12):3036.L IC h e n g l u ,Z HA N G X u j i a o ,Y EP e i s h e n g ,e t c .H y d r o c h e m i c a lC h a r a c t e r i t i c sa n dG e n e t i c T y p e s o fM o d e r nL a k e s i nH e t a oP l a i n [J ].S h a n d o n g L a n da n dR e s o u r c e s ,2016,32(12):3036.0 引言 湖泊具有调节河川径流二发展灌溉二提供工业和饮用水源的功能,在国民经济的发展中发挥着重要作用三同时,湖泊本身对全球变化响应敏感,能真实地记录湖区较长地质历史时期内各种环境变化的信 息[12 ]三河套平原常年干旱少雨,但是区内湖泊星罗 棋布,形成湖泊 沙丘 湿地相间分布的地貌景观三平原内湖泊湿地总面积为3.57万h m 2, 湖泊面积100~500h m 2的湖泊共10个;500~1500h m 2的 湖泊2个;大于1500h m 2的湖泊1个[36] 三仅该文研究区就有大小湖泊60余个,水域面积超过1067 h m 2三因此, 对湖泊的调查研究成为该区区域地质调查中不可缺少的一环三 湖水通过入渗补给地下水,影响地下水流场,改变地下水水化学特征三另一方面,地下水通过排泄补给湖水,导致湖水化学特征的变化[ 78] 三湖泊的化学组成在运移和形成过程中受到区域气候环境和地 质状况的强烈影响三因此,不同区域气候环境和地 质状况,湖泊的水化学特性具有明显的差异[ 910] 三研究区域内湖泊的水化学特征及湖泊的形成机制,对于查清区域地下水动态二正确评价区域水资源具有重要意义三 近年来关于河套平原湖泊水化学特征二湖水补给来源和湖水面积的动态变化等科学问题逐渐成为学者研究的热点三对于湖泊的补给来源,有观点认为补给主要来自黄河灌渠,也有观点认为现存的湖泊是河套古湖水系的残留,更有学者提出河套平原携带砷的地表水和浅层地下水可能来地下承压含水 岩系[11] 三目前,有关内蒙古河套平原水资源环境方 面的研究主要集中在地下水砷的研究上,如砷的分布规律以及高砷水中稀土元素含量及分异特征三在地下水分布以及区域气候环境演变方面也有涉 及[ 1214 ]三而对于区内湖泊的调查资料则比较欠缺,尤其是缺少对湖泊成因类型的分类梳理三 该文针对以上研究的不足,在区域地质填图的 四 03四第32卷第12期 山东国土资源 2016年12月

第九章 各类天然水体的水化学概况

第九章各类天然水体的水化学概况 天然水在自然界中的分布和循环,构成地球的水圈,水圈为地球表面和接近地球表面的各类水的总称。天然水的总水量近14亿km3, 地球表面积的三分之二被其所覆盖。天然水在流动与循环过程中接受了周围环境的各种杂质,形成不同水系。按天然水形成、形态与性质的特点,可划分为河水、湖(库)水、地下水、大气降水(雨水、雾、雪、霜、雹等)及海水五大类。各类天然水均具有各自的特点,即使同类水体,其水质状况也不尽相同。这是由于水体所处的环境条件,如气象、气候、地理、地质、人类生产与生活用水和排废、各种生物的生命代谢活动等均会影响水质。本章将简要叙述各种类型天然水体的水化学概况及相关概念。 第二节河水 一、河流水化学基本特点 河流是大气降水径流和出露地面的地下水径流在地表线性凹地汇集而成的水体,河流是自然界水分循环的组成部分及水量平衡的组成要素。其具有集水流域面积广、敞开、流动等特点。河流水质与土壤、岩石、植被、气候及河水的补充水源等状况有关,和人类活动有关,特别是与水中生物生命代谢活动直接相关。河流是水圈中最为活跃的部分,由于其流动所涉及的面积较为广阔,流动过程中接触的环境较复杂,且多样性,故河水化学组成具多样性和易变性的特点,不同地区河流与同一河流的不同季节、不同河段,其河水化学成分都可能有较大差异。通常河流的水化学有以下基本特点: 1、溶解有丰富的气体 因河水处于运动状态,与空气接触充分,溶有空气中的各种气体,溶解氧气和氮气较丰富,含量近为饱和。未污染河流中生物不多,溶解氧等气体的含量主要受温度和气压影响。 夏季大型水库溢洪放水时,放出大量温度低且为溶解气体所饱和了的库水,这些水在大坝以下河道中如温度迅速上升,可能造成水中溶解气体过饱和。 2、河水化学组成与含盐量 (1)主要离子世界各地河水所含主要离子种类相同,阳离子为:Ca2+、Mg2+、Na+、、K+,阴离子为:HCO3- CO32-、SO42-、Cl-,即通常所说八大离子。世界河水平均化学组成、我国及世界部分河流主要离子含量和分别列于表9-3、9-4与9-5。多数河流主要离子中以HCO3-和Ca2+含量最高,水质属碳酸盐类钙组。在含盐量较高河水中,水质类型可能与前者不同,存有硫酸盐类或氯化物类钠组类型水质。较多河水中主要离子含量大小基本具有以下顺序:阳离子:[Ca2+]>[Na++K-]> [Mg2+],阴离子:[HCO3-+CO32-]> [SO42-]> [Cl-] 东南沿海各河流,水质类型主要以重碳酸盐类钙组或钠组为主,但是主要离子比例关系

水环境化学

水环境化学 1、水中八大离子:K +、Na +、Ca 2+、Mg 2+、HCO 3-、NO 3-、Cl -和SO 42-为常见八种离子 2、溶解气体与Henry 定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G 与气体的溶解度的比表现为常数关系,称为Henry 定律,该常数称为Henry 定律常数K H 。 [G(aq)] = K H PG K H -气体在一定温度下的亨利定理常数 (mol/L.Pa) PG - 各种气体的分压 (Pa) 3、水体中可能存在的碳酸组分 CO 2、CO 32-、HCO 3-、H 2CO 3 ( H 2CO 3*) 4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH -)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。 5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+ 6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐 )(2)金属水合氧化物(铝、铁、锰、硅等金属 )(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等) 影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH 。 7、水环境中胶体颗粒物的吸附作用有 表面吸附 、化学吸附、离子交换吸附 和 专属吸附。 8、天然水的PE 随水中溶解氧的减少而 降低 ,因而表层水呈 氧化性 环境。 9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L -型、F -型和H -型。 10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。 11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性 。 pe 影响因素:1)天然水的pE 随水中溶解氧的减少而降低;2)天然水的pE 随其pH 减少而增大。 12、什么是电子活度pE ,以及pE 和pH 的区别。 答:定义电极上电子有效浓度为电子活度,记作E ,其负对数记作pE 。电子活度越大或pE 越小,电子供出电子的倾向越大。在电化学研究中,通常用电极电位表示电极供出或接受电子的倾向,当给出电子活度E 和电子活度的负对数pE 明确的热力学意义之后,就可以

天然水的化学特征

天然水的化学特征 一、雨水 雨、雪、雹等统称为降水,比较纯净,但随地区和大气环境影响,会溶存吸收杂质和气体。在接近海洋和内陆盐湖地方的降水中会溶解一些氯化钠盐分,离海岸距离近的雨水中Cl-含量高。一般雨水的总含盐量不超过50mg/L,结垢物质(钙、镁〕更微。在250C, 1大气压下,由于空气中COZ的溶人可使雨水pH值达5.6,这一因素是自然的,并非化学污染,温度、气压澎响但多不大,pH<5. 6时才称为酸雨。 二、河水 河水中含有的悬浮物和溶解盐类随流经地区的气候、地质条件、补给水的影响而变化。沿途有工矿企业排水时将污染水质。我国河水的含盐量可在13 -9185mg/L之间变化,而1000mg/L 以上者为少。河水的水化学特征是Ca z+ > Na+ > Mg2+ ; HCO3->SO2-4>Cl- 一般河水呈现微酸性。在洪峰期间悬浮物含量增加,含盐量减少;枯水期则相反。细菌、藻类及有机物在河水中含量也较高。 我国河流的水化学特征有明显的地带性:重碳酸盐类分布最广,占全国面积的680o I氯化物盐类占25.4%o,硫酸盐类分布最少占6.6%并大部分分布在西部内陆地区。东南沿海河流含盐量最少为36. 4mg/L,在塔里木河米兰附近测得含盐量达32 732mg/L(接近海水含盐度),两者相差近1000倍。我国河水中硬度类别分布情况。 三、湖水 湖泊是提供工业和饮用的主要水源,并具有改善区域生态环境等多种功能。湖水的化学成分决定于流人水源及补给湖泊的地下水流的成分,并与在湖内进行生物作用和湖泊集水面的自然地理条件有关。是否有水流从湖泊流出,对湖水化学成分形成过程有特殊意义。不排水湖泊湖水耗损于蒸发,因而进人湖内的盐类不断聚积,其浓度继续升高,结果湖泊变成咸水湖。 排水湖的含盐量通常不超过200 - 300mg/L,咸水湖中的离子总数可达5. 82g/L。湖泊的深度、面积、容量对水质有明显影响。我国东北地区(松嫩平原的东北部)气候干旱,地形低洼,湖泊密集,周围盐碱土分布其盐分多属苏打盐土,地表水和地下水的含盐量较高,水中主要成分是重碳酸钠,含盐量2700mg/L左右,为淡水湖、咸水湖和卤水盐湖三种类型。

3.1.2天然水的基本特征(1)

第三章:水环境化学——天然水的性质 第三章:水环境化学——天然水的基本特征以及污染物存在形态 一、水和水分子结构的特异性 二、天然水的基本特征 1、天然水的组成(离子、溶解气体、水生生物) 2、天然水的化学特征 3、天然水的性质 (1)碳酸盐系统 (2)酸度和碱度 (3)天然水的缓冲能力 ● 缓冲溶液能够抵御外界的影响,使其组分保持一定的稳定性,pH 缓冲溶液能够在一定程度上保持pH 不变化。 ● 天然水体的pH 值一般在6-9之间,而且对于某一水体,其pH 几乎保持不变,这表明天然水体具有一定的缓冲能力,是一个缓冲体系。 ● 一般认为各种碳酸盐化合物是控制水体pH 值的主要因素,并使水体具有缓冲作用。但最近研究表明,水体与周围环境之间发生的多种物理、化学和生物化学反应,对水体的pH 值也有着重要作用。 ● 但无论如何,碳酸化合物仍是水体缓冲作用的重要因素。因而,人们时常根据它的存在情况来估算水体的缓冲能力。 对于碳酸水体系,当pH<8.3时,可以只考虑一级碳酸平衡,故其pH 值可由下式确定: ][] [lg 3*321--=HCO CO H pK pH 如果向水体投入△B 量的碱性废水时,相应由△B 量H 2CO 3*转化为HCO 3-,水体pH 升 高为pH ',则: B HCO B CO H pK pH ?+?--=-][][lg 3*321' 水体中pH 变化为△pH=pH '-pH ,即:

][][lg ][][lg 3*323*32--+?+?--=?HCO CO H B HCO B CO H pH 由于通常情况下,在天然水体中,pH=7左右,对碱度贡献的主要物质就是[HCO 3-],因此经常情况下,可以把[HCO 3-]作为碱度。若把[HCO 3-]作为水的碱度,[H 2CO 3*]作为水中游离碳酸[CO 2],就可推出: △B=[碱度][10△pH -1]/(1+K 1×10pH+△pH ) △pH 即为相应改变的pH 值。 ● 在投入酸量△A 时,只要把△pH 作为负值,△A=-△B,也可以进行类似计算。 举例:在一个pH 为6.5、碱度为1.6mmol/L 的水体中,用NaOH 进行碱化,需多少碱能使pH 上升至8.0? 解:△pH=8-6.5=1.5, pH=6.5, 碱度=1.6mmol/L 所以△B=[碱度][10△pH -1]/(1+K 1×10pH+△pH ) =1.6×(101.5-1)/(1+10-6.35×106.5+1.5) =1.6×(101.5-1)/45.668 =1.08 mmol/L (4)天然水的酸碱平衡 ● 许多化学和生物反应都属于酸碱化学的范畴,以化学、生物化学等学科为基础的环 境化 ● 学也自然要经常需要应用酸碱化学的理论。 ● 酸碱无时无刻都存在于我们的身边,食醋、苏打以及小苏打等都是生活中最常见的 酸和碱,一些学者认为弱碱性的水更有利于人类的健康。 ● 酸碱反应一般能在瞬间完成,pH 值是体系中最为重要的参数,决定着体系内各组 分的 ● 相对浓度。在与沉积物的生成、转化及溶解等过程有关的化学反应中,pH 值往往 能决定转化过程的方向。 ● 天然水体pH 值一般在6~9的范围内,所以在水和废水处理过程中,水体酸碱度的 观测是一个首先必须考虑的指标之一。 ● 在天然水环境中重要的一元酸碱体系有HCN-CN —、NH 4+—NH 3等,二元酸碱体系 有H 2S-HS —S 2—、H 2SO 3—HSO 3——SO 32—、H 2CO 3—HCO 3——CO 32—等,三元酸碱体系有:H 3PO 4—H 2PO 4——HPO 42——PO 43—等。

相关主题
文本预览
相关文档 最新文档