当前位置:文档之家› MTK6252 GPS模块 u-BLOX G6010 原理图

MTK6252 GPS模块 u-BLOX G6010 原理图

超再生接收电路原理

求教!!无线接收电路分析 谁能帮我分析一下这张电路图,是一个超再生接收电路,图是网上的,但没什么具体分析(搜无线发射接收电路,或PT2262/2272电路等可找到)。我想知道这个电路是怎么解调信号的,接收的应该是ASK调制的信号。前面两个三极管的电路分别有什么做用,还有那个LM358(是一个运放的芯片)这样接有什么作用,最后就是从LM358的1号脚输出到2272芯片,这个就不用管它了,就是求前面电路的分析,谢谢 ASK指的是振幅键控方式。这种调制方式是根据信号的不同,调制信号的幅度。 此处的LM358的123脚及外围下称后比较器(同相滞回电压比较器),LM358的567脚及外围下称前放大器。 超再生接收电路原理:它实际上是一个受间歇振荡控制的高频振荡器(自熄振荡器),这个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡又是在高频振荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。 自熄振荡器通俗的说就是有一点震荡,然后马上熄灭,过一会又振荡,这个周期频率一般有上百Khz。这样脆弱的环境容易让其跟着外加同频率信号的幅度一起增大减小,因此灵敏度高。但是调试起来就相当麻烦了,可以试试看。只要工作点找准了,还是好用的。 此电路有很高的增益,在未收到控制信号时,由于受外界及自身,产生一种特有的超噪声,这个噪声的频率范围为0.3~5kHz之间。在无信号时,超噪声电平很高,经滤波放大后输出噪声电压,该电压作为电路一种状态的控制信号。 当有控制信号到来时,电路谐振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受接收信号的振幅控制(是信号的幅度)。接收信号振幅大时,起始电平高,振荡过程建立快,每次振荡间歇时间也短,得到的控制电压也高,后比较器输出1电平;反之,得到的控制电压也低,后比较器输出0电平。这样,在电路的负载上便得

无线遥控开关电路图及原理

. 无线遥控开关电路图及原理 随着社会进步,无线遥控开关被大量的使用,无线遥控开关是采用高科技的射频识别技术设计制作,用无线遥控开关设备控制各类灯饰、家电、门、窗帘等家居用品,是一种新型智能化开关,可对室内灯具、家电等进行无线控制,操作简单方便,性能稳定可靠,受到广大消费者喜爱和追捧,下面就是小编对无线遥控开关原理的具体介绍。 > 随着社会不断发展,科技技术也在不断提升,现在无线遥控开关被大量的使用于我们日常生活中各个角落,例如:家庭、酒店、商场、医院、仓库、办公室等场所用于灯饰照明控制及其它用途电器控制,相信大家对于无线遥控开关并不陌生,但大多数人对于无线遥控开关工作原理都不是很了解,下面小编就对无限遥控开关进行具体介绍,希望对大家有所借鉴作用。 在了解无线遥控开关原理之前,我们先来了解一下无线遥控开关功能,无线遥控开关在设计制作上采用射频识别技术,无方向性,与其它同型号产品间不会造成任何影响和干扰,具有高保密性、性能稳定、功耗低、存储量大、使用方便,可以让灯具同时或个别进行开光,开关和遥控器不必配套购买,用户可自由选配,误码率低,抗干扰能力强。 无线遥控开关安装异常简单方便,不需要接零线,也不需要对灯饰电器进行任何改动,可直接替换原有开关,电网停电后再来电,开关会自动处于关闭状态,避免浪费不必要的电能,可以集中控制全家所有的智能遥控开关。在款式设计上也是多种多样,可供选择面非常广泛,可以将无线遥控开关与传统机械开关进行结合使用,方便简单。 无线遥控开关-原理 无线遥控开关是由发射器和接收器两者组合而成,发射器将控制者的控制按键经过编码,调制到射频信号上进行发射出无线信号,也可以说成是一个编码器。而接收器是将接收到的无线信号进行编码信号再解码,得到与控制按键相对应的信号,然后去控制相应的电路工作了,也被称为解码器。随着科技进步无线遥控开关在工业控制和无线智能家居领域都得到了广泛使用。 无线遥控开关-分类 由于科技进步无线遥控开关种类和功能繁多,按传输控制指令信号的载体分可以分为为:无线电遥控、超声波遥控、红外线遥控,按信号的编码方式不同可以分为:频率编码和脉冲编码,按传输通道数可以分为:多通道遥控和单通道,按同一时间能够传输的指令数目不同可以分为:单路和多路遥控,按指令信号对被控目标的控制技术可以分为:开关型比例型遥控。 无线遥控开关-组成 日常比较常用的无线遥控开关由发射和接收两个部分组成,其无线遥控开关的原理也按照发射和接受来分析。发射部分即遥控器与发射模块,遥控器是作为一个整机来独立使用,对外引出有接线桩头,遥控模块被当作一个元件来使用,接收部分即超外差与超再生接收方式,超再生解调电路它实际上是工作在间歇振荡状态下的再生检波电路。 ;.

北斗、Galileo、GLONASS、GPS定位导航系统对比

北斗、Galileo、GLONASS、GPS定位导航系统对比 世界有四大定位导航系统,分别是中国的北斗卫星定位系统、欧盟的Galieo、俄罗斯的GLONASS、美国人的GPS定位系统。 1.GPS 2.GLONASS全球导航卫星系统 GLONASS的起步晚于GPS9年。从前苏联 1982年10月12日发射第一颗GLONASS卫星开始,到1996年,13年时间内历经周折,虽然遭遇了苏联的解体,由俄罗斯接替部署,但始终没有终止或中断GLONASS卫星的发射。1995年初只有16颗GLONASS卫星在轨工作,1995年进行了三次成功发射,将9颗卫星送入轨道,完成了24颗工作卫星加1颗备用卫星的布局。经过数据加载、调整和检验,已于 1996年1月18日.整个系统正常运行。 1卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨道面间的夹角为120度,轨道倾角 64.8度,轨道的偏心率为o.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高度19100km,绕地运行周期约11小时15分,地迹重复周期8天,轨道同步周期17困。 由于GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所以在高纬度(50度以上)地区的可视性较好。 每颗GLONASS卫星上装有艳原子钟以产生卫星上高稳定时标,并向所有星载设备的处理提供同步信号。星载计算机将从地面控制站接收到的专用信息进行处理,生成导航电文向用户广播。导航电文包括:

①星历参数;②星钟相对于GLONASS时的偏移值;③时间标记; ④GLONA SS历书。 GLONASS卫星向空间发射两种载波信号。L1频率为 1.602— 1.616MHz.L2频率为 1.246— 1.256MHz为民用,L2供军用。 2.地面探制系统 地面控制站组包括一个系统控制中心,一个指令跟踪站,网络分布于俄罗斯境内。 CTS跟踪着GLoNAs5可视卫星,它遥测所有卫星,进行测距数据的采集和处理,并向各卫星发送控制指令和导航信息。 3用户设备 接收GUNASS卫星信号并测量其伪距和速度,同时从卫星信号中选出并处理导航电文。 接收机中的计算机对所有输入数据处理并算出位置坐标的三个分旦、速度矢量的三个分量和时间。利用两个独立的卫星定位系统进行导航和定位测量,可有效地削弱美俄两国对各自定位系统的可能控制,提高定位的可靠性和安全性。 4伐罗斯联邦政府对GLONA5S系统的使用政策 早在1991年俄罗斯首先宣称;GLoNAs5系统可供国防民间使用、不带任何限制,也不计划对用户收费.该系统将在完全布满星座后遵照已公布的性能运行至少15年。民用的标准精度通道(csA)精度数据为:

声音传感器学习

声音传感器的学习 一、产品特点: 1 可以检测周围环境的声音强度,使用注意:此传感器只能识别声音的有无(根据震动原理)不能识别声音的大小或者特定频率的声音 2灵敏度可调(图中蓝色数字电位器调节) 3工作电压3.3V-5V 5输出形式数字开关量输出(0和1高低电平) 6设有固定螺栓孔,方便安装 7小板PCB尺寸:3.2cm * 1.7cm 二、模块接线说明 1 VCC 外接3.3V-5V电压(可以直接与5v单片机和3.3v单片机相连) 2 GND 外接GND 3 OUT 小板开关量输出接口(0和1) 三、使用说明 1声音模块对环境声音强度最敏感,一般用来检测周围环境的声音强度。 2 模块在环境声音强度达不到设定阈值时,OUT输出高电平,当外界环境声音强度超过设定阈值时,模块OUT输出低电平; 3 小板数字量输出OUT可以与单片机直接相连,通过单片机来检测高低电平,由此来检测环境的声音; 4 小板数字量输出OUT可以直接相应驱动继电器模块,由此可以组成一个声控开关;

四、示例代码 /* 读取一个模拟输入引脚,结果从0到255 使用结果集的脉宽调制(PWM)输出引脚。 也打印串行监视器的结果 LED的连接从数字引脚9到地面 */ //这些常量不会改变。它们被用来命名使用的引脚 const int analogInPin = A0; // 模拟输入引脚,该电位器连接到... const int analogOutPin = 9; // 模拟输出引脚,该引脚连接到... int sensorValue = 0; // 从器件读取值 int outputValue = 0; // 值输出到脉宽调制(模拟输出) void setup() { // 初始化串行通信在9600个基点: Serial.begin(9600); } void loop() { //读模拟值: sensorValue = analogRead(analogInPin); //将其映射到模拟输出的范围: outputValue = map(sensorValue, 0, 1023, 0, 255); // 改变模拟值: analogWrite(analogOutPin, outputValue); // 打印结果到串行监视器: Serial.print("sensor = " ); Serial.print(sensorValue); Serial.print("\t output = "); Serial.println(outputValue); //在下一个循环前等待10毫秒,模拟/数字转换器解决 // after the last reading: delay(10); }

北斗gps卫星定位系统定位原理

网址:https://www.doczj.com/doc/7b7091300.html, 北斗gps卫星定位系统定位原理 北斗卫星定位系统哪家好?北斗卫星定位系统的原理是什么?八杰科技为您解答。 定位原理 35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成

网址:https://www.doczj.com/doc/7b7091300.html, 若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。 卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。 每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。 卫星导航原理 踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。 卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。 卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。

315超再生接收电路 理解以及实现

把最近看的一些关于超再生文章总结一下,个人理解,仅能参考。 Q1进行选频放大,滤除无用频率信号;Q2与C4、C6、L2、C7等元件组成超再生高频接收电路,微调L2改变其接收频率,使之严格对准发射频率。当L1收到调制波时,经Q1调谐预放大,再经Q2检波调制信号送入前放大器放大。C9相对于自激频率来讲是个大电容,充电完成后自激熄灭导致放电(R9、C8、C9起自熄作用),之后继续下一个自激过程。ASK信号的检波解码是靠后比较器来完成的,据噪声电压的平均值与电压本身(R11和R12分压2.5V),用比较器比较出1或者0的信号。 超再生电路本质为电容三点式振荡器,电路是典型的共基放大电路,晶体管的B和C之间通 过交流连接L2、C6和C4,以及 C9和BE之间的结电容构成分压反馈,形成电容三点式振荡 器。L4用来隔绝振荡频率与地之间的连通。振荡器工作时,随着振荡幅度增加,晶体管 电流Ice增加,这个Ice流过R9,会使R9两端电压成增长趋势,而C9两端电压已经建立 (静态工作点建立时建立的),无法突变,因此改电流对C9充电,使其两端电压升高,晶 体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐 停止而减小,这使得R9两端电压成减小趋势,C9开始通过R9放电,C9两端电压降低,晶 体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状 态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C9和R9决定,约 为它们乘积的倒数。C9和R9两端的电压为类似类似方波或三角波(这个与原始静态工作点 有关,原始静态工作点高,振荡建立快,C9很快冲点饱和,此时电路为平衡状态,振幅不 便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角 波形),经过后面的电感电容网络滤波后,理论上为直流电压(为什么是理论上,后面讲), 以下简称R9C9为RC,L2C6为LC。此电路为自熄式,间歇频率由自身提供,与振荡频率牵 连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可 以用标准方波,效果更好。 好了,基本电路工作原理清楚了,现在看看电路是怎么接收信号的,先从调幅信号来说。 LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡

北斗卫星导航定位系统简介

北斗卫星导航定位系统,是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后,第三个成熟的卫星导航系统。卫星导航系统是重要的空间基础设施,它综合了传统天文导航定位和地面无线电导航定位的优点,相当于一个设置在太空的无线电导航台,可带来巨大的社会经济效益。在测绘、电信、水利、公路交通、铁路运输、渔业生产、勘探、森林防火和国家安全等诸多领域会逐步发挥重要作用。 世界上第一个全球卫星导航系统是美国从1973年开始实施的GPS系统,军民两用。但长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号――也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个“大概”。为打破美国的垄断,俄罗斯耗资30多亿美元建起了自己的全球卫星导航系统GLONASS。2002年,欧盟启动了伽利略(Galileo)全球卫星导航定位系统计划,将在2008年投入运营,预计投资36亿欧元。2003年,我国与欧盟签署了有关伽利略计划的合作协定,目前双方合作项目已有14个。我国自上世纪80年代引进首台GPS接收机以来,已成为GPS应用大国。作为一个拥有广阔领土和海域的国家,中国有能力也有必要拥有自己的全球定位系统。 北斗卫星导航定位系统的系统构成有:由两颗地球静止卫星(800E和1400E)、一颗在轨备份卫星(110.50E)、中心控制系统、标校系统和各类用户机等部分组成。可向用户提供全天候、二十四小时的即时定位服务,定位精度可达20纳秒的同步精度,水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。其精度与GPS相当。工作频率为2491.75MHz,系统容纳的最大用户数达每小时540000户,短报文通信一次可传送多达120个汉字的信息(GPS不具备此项功能),精密授时的精度达20纳秒。 2007年2月3日,第四颗试验“北斗星”在西昌成功发射。 这一系统目前共有四颗导航定位卫星,其发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日,第三颗是备用卫星。 2007年2月3日,北斗导航试验卫星升空。 中国向着努力开发一个堪与美国GPS系统和欧洲伽利略系统(Galileo)媲美的定位系统又迈进了一步。“北斗”导航卫星通过“长征三号甲”运载火箭成功发射,凸显中国政府发展航天工业的决心。此前数周,中国用一种由导弹发射的“动能拦截器”击毁了一颗老化气象卫星,美国对此表示担忧。 北斗卫星导航定位系统——英文名为“Compass”——的计划一直处于保密状态,官方一再拒绝透露意图。不过,最近的卫星发射,似乎是要加强一个相对不很精确的系统,该系统以2000年至2003年发射的三颗北斗卫星为基础。今年初将发射两颗地球静止卫星,使北斗卫星导航系统到2008年能够覆盖中国全境和邻近国家部分区域。北斗卫星导航系统最终将通过由30颗非静止轨道卫星组成的卫星“星座”,扩展到覆盖全球。它将类似于美国的GPS系统(全球定位系统)和欧洲的伽利略卫星网络。 更为精确的定位,对于中国军队来说将是一项重大财富。扩展后的北斗卫星导航系统,将使用与伽利略系统相同的无线电频率,可能也会与GPS系统相同,在战时使敌方更难以干扰网络。 北斗卫星导航系统的开发,可能会对伽利略系统的商业成功构成挑战。虽然中国是伽利略项目的合作方之一,中国政府和企业在相关设施及商业应用研究方面投入了2亿欧元(合2.6亿美元),但中国正成为该 项目的一个潜在竞争者。

超再生原理

超再生接收和ASK发射电路原理 超再生接收是编解码电路最常见的一种形式,成本低廉,灵敏度高,电气性能满足一般的应用环境。除此之外如超外差等也较多见,从根本上说也是一种发展取代的方向。 有一个很重要的概念:超再生接收电路全称“自息/他息灭式再生检波电路”,从这个定义上可以知道1:它归属检波电路的一类;2:它是一个工作在间歇状态的检波电路;3:这个检波电路利用了再生原理。 上图是再生检波的基本图,其中C2起正反馈(再生)作用,R3R2R1共同决定N的工作点。电路调好时,该检波电路有很高的灵敏度指标。但当这个检波电路再生分量过强时就会产生高频振荡。 在60、70年代该电路直接用于民用中波收音,该段加上音频放大复用成“再生来复式收音机”。不敢用于短波,那时的管子fT太低--现在FT大于1G的管子一抓一大把,直接检波效果我看比那些粗制滥造的什么“十波段全球牌收音机”灵敏度指标差不到哪去?(增益值大家可以算出) 那时候,不敢用到短波,因是直接检波,故对几M--几十M的信号而言,性能大打折扣。可以这么理解:干脆把这个电路调到振荡去(增益很高),然后在A点加入个频率低得多的电压,让电路(N)的工作点随该电压的变化简歇振荡工作---这就是超再生电路,这个外加的电压称为熄灭电压。超再生式接收电路在无信号输入时,由于外界或内在的噪音电压的激发,会产生不规则的杂乱振荡,导致输出极大的噪声,这是超再生电路的一个主要特点。其原理如下图所示。

超再生电路按熄灭电压来源的不同,可分为他熄式和自熄式两种,这个外加或自生的电压决定了超再生的熄灭频率。前者采用独立的振荡电路来产生熄灭电压,后者有管子本身兼产生熄灭电压。自熄式电路简单、经济效率也高相对使用得更为广泛。以下也主要介绍这种电路形式。(图2图3图4图6电路参数为对应27MHz,图5对应266MHz频率)。 图2是超再生的祖宗级电路,特点:灵敏度很高,相当于一台有独立本机振荡、一级混频、两级中放的标准超外差接收电路;对晶体管要求不严,允许很低的工作电压(譬如3V)环境仍保持差不多的参数。 60年代的民用收音机多用此电路,估计是那时的管子实在是太昂贵的原因。缺点:带一铁芯变压器(取音频) 图3是演变电路,省了变压器,参数有所降低。 图4电路外围电路最为简单,理论上性能指标也较差,目前成批生产的产品多于它的“加强版”如图5的电路(电路最大的改进在于晶体管的大致工作点由D1R4所构成的“嵌位电路”所决定,从而解决了大批量生产时晶体管参数指标“离散性”所造成的后期工序中的统调问题)。 图6是使用场效应管的电路。成品有很高的性能,超再生所普遍存在的选择性和抗干扰指标差的缺陷,在这种电路里能得到一定的遏制。这类电路目前很罕见。 图2 图3 图4图5

无线电发射与接收电路

无线电发射与接收电路

————————————————————————————————作者:————————————————————————————————日期:

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

声音传感器的原理

声音传感器 1 简介 声音传感器又可称之为声敏传感器,它是一种在气体液体或固体 中传播的机械振动转换成电信号的器件或装置。它采用接触或非接触的方式检测信号。声敏传感器的种类很多,按测量原理可分为压电、电致伸缩效应、电磁感应、静电效应和磁致伸缩等等。本次作业我想就电容式声敏传感器中的一种也就是电容式驻极体话筒做个简单的介绍。 2 组成该传感器是内置一个对声音敏感的电容式驻极体话筒。驻极体 话筒主要由两部分组成——声电转换部分和阻抗部分。声电转换的关键元件是驻极体振动膜。它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。这样,蒸金膜与金属极板之间就形成一个电容。当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。驻极体膜片与金属极板之间的电容量比较小。因而它的输出阻抗值很高,约几十兆欧以上。这样高的阻抗是不能直接与音频放大器相匹配的。所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。场效应管的特点是输入阻抗极高、噪声系数低。普通场效应管有源极(S)、栅极(G)和漏 极(D)三个极。这里使用的是在内部源极和栅极间再复合一只二极管 的专用场效应管。接二极管的目的是在场效应管受强信号冲击时起保护作用。场效应管的栅极接金属极板。这样,驻极体话筒的输出线便有两根。即源极S, —般用蓝色塑线,漏极D,—般用红色塑料线和连接金属外壳的编织屏蔽线。

内肺龙弊壳 (b)电JA 3原理 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V的电压,经过A/D转换被数据采集器接受,并传送给计算机。 4型号及其技术指标 BR-ZSI声音传感器是一款工业标准输出(4?20mA )的积分噪声监测仪,符合GB3785、GB/T17181等噪声监测标准,BR-ZSI 声音传感器针对噪声测试需求而设计,支持现场噪声分贝值实时显示,兼容用户的监控系统,对噪声进行定点全天侯监测,可设置报警极限对环境噪声超标报警,该监测仪精度高、通用性强、性价比高成为其显著的特点。 BR-ZSI声音传感器的技术参数: 测量范围:30?12OdB(A) 频率范围:20Hz?8kHz 频率计权:A (计权) 时间计权:F (快) 输出接口:4~20mA∕RS232灵敏度:

超再生接收电路和无线电发射器工作原理

超再生接收电路和无线电发射器工作原理 超再生无线电遥控电路由无线电发射器和超再生检波式接收器两部分组成。 无线电发射器:它是由一个能产生等幅振荡的高频载频振荡器(一般用30~450MHz)和一个产生低频调制信号的低频振荡器组成的。用来产生载频振东和调制振荡的电路一般有:多揩苦荡器、互补振荡器和石英晶体振荡器等。 由低频振荡器产生的低频调制 波,一般为宽度一定的方波。如果 是多路控制,则可以采用每一路宽 度不同的方波,或是频率不同的方 波去调制高频载波,组成一组组的 己调制波,作为控制信号向空中发 射,组成一组组的己调制波,作为 控制信号向空中发射。如图2所示。 超再生检波接收器:超再生检波电路实际上是一个受间歇振荡控制的高频振荡器,这个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡(又称淬装饰振荡)双是在高频振荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。而间歇(淬熄)振荡的频率是由电路的参数决定的(一般为1百~几百千赫)。这个频率选低了,电路的抗干扰性能较好,但接收灵敏度较低:反之,频率选高了,接收灵敏度较好,但抗干扰性能变差。应根据实际情况二者兼顾。 超再生检波电路有很高的增益,在未收到控制信号时,由于受外界杂散信号的干扰和电路自身的热搔动,产生一种特有的噪声,叫超噪声,这个噪声的频率范围为0.3~5kHz之间,听起来像流水似的“沙沙”声。在无信号时,超噪声电平很高,经滤波放大后输出噪声电压,该电压作为电路一种状态的控制信号,使继电器吸合或断开(由设计的状态而定)。 当有控制信号到来时,电路揩振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受 接收信号的振幅 控制。接收信号振 幅大时,起始电平 高,振荡过程建立 快,每次振荡间歇 时间也短,得到的 控制电压也高;反 之,当接收到的信 号的振幅小时,得 到的控制电压也 低。这样,在电路 的负载上便得到 了与控制信号一 致的低频电压,这 个电压便是电路 状态的另一种控 制电压。 如果是多通道遥控电路,经超再生检波和低频放大后的信号,还需经选频回路选频,然后分别去控制相应的控制回路。 SP多用途无线数据收发模块 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

超再生接收机原理

超再生电路原理和分析 看到大家讨论超再生电路,很多人都不明白其具体工作原理,只知道大概,值此长夜漫漫无心睡眠之际,特骚包一把,写点小小的分析心得,希望对初学者有所帮助。 我们知道普通的再生式电路,是利用正反馈来加强输入信号,而超再生电路确实用输入信号 来影响本地振荡信号,因此得名 拿最经典的超再生电路来说吧,如下图所示: 超再生电路本质上是一个电容三点振荡器,我们先来分析它。电路是典型的共基 电路,晶体管的B和C之间通过交流连接L3和C12,电容C9和BE之间的结电容构成分压反馈,形成三点式。。。振荡器。 L4用来隔绝振荡频率与地之间的连通。振荡器工作时,随着振荡幅度增加,晶体管电流Ice增加,这个Ice流过R12,会使R12两端电压成增长趋势,而C11两端电压已经建立(静态工作点建立时建立的),无法突变,因此改电流对C11充电,使其两端电压升高,晶体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐停止而减小,这使得R12两端电压成减小趋势,C11开始通过R12放

电,C11两端电压降低,晶体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C11和R12决定,约为它们乘积的倒数。C11和R12两端的电压为类似类似方波或三角波(这个与原始静态工作点有关,原始静态工作点高,振荡建立快,C11很快冲点饱和,此时电路为平衡状态,振幅不便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角波形),经过后面的电感电容网络滤波后,理论上为直流电压(为什么是理论上,后面讲),以下简称R12C11为RC,L2C12为LC。此电路为自熄式,间歇频率由自身提供,与振荡频率牵连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可以用标准方波,效果更好。 好了,基本电路工作原理清楚了,现在看看电路是怎么接收信号的,先从调幅信号来说。LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡幅度有加强作用,类似于正反馈,此时电路正式进入超再生状态。通过前面的分析知道,电路振荡建立的速度与工作点有关,而振荡幅度受到改变时工作点也会相应变化,因此外部调幅信号使晶体管工作点随输入信号幅度变化而变化,而工作点的变化,又影响振荡的建立时间。因此就形成了这样的现象,输入信号幅度大,间歇振荡建立快,间歇振荡能达到的最大振幅就大(或者越早达到最大振幅),反之同理。因此高频间歇振荡在每个间隙之间能达到的最大振荡幅度(或持续最大幅度的时间)是随外部输入信号的幅度而变化的,而间歇振荡的包络线就是RC两端的电压,这个电压中包含一个直流分量,这个直流分量就是随外部信号幅度而变化的(类似PWM原理),也就是输入信号的包络线,因此达到解调制的目的,具 体见下图。 第一个波形的熄灭电压是个示意图,第二个波形是高频振荡波形,这是有信号输入的状态,如果没信号,每个间歇内都是一样的,第三个波形是RC两端的波形,里面的平滑波形是经过后面的滤波网络后的波形。可以看到,外部信号的幅度变化时,每个间歇内振荡波形的包络面积会相应改变,此图上的包络线为类似三角波,根据不同的工作点,有些资料上的图画

实验四 声音传感器实验

信息工程学院实验报告 课程名称:传感器原理及应用 实验项目名称:实验四声音传感器实验实验时间:2016.10.21 班级:姓名:学号: 一、实验目的 1. 学习CC2530 单片机GPIO 的使用。 2. 学习声音传感器的使用 二、实验原理 1. CC2530 节点与三轴加速度传感器的硬件接口成绩: 指导老师(签名):

(1). 声音传感器模块(MIC)引脚 GND:外接GND DO:数字量输出接口(0 和1) +5V:外接5V 电源 (2). 传感器模块与CC2530 模块之间的连接 传感器模块CC2530 模块 GND GND DO P1_4 +5V VDD(5V) 2. GPIO (1). 简介 CC2530单片机具有21个数字输入/输出引脚,可以配置为通用数字I/O或外设I/O信号,配置为连接到ADC、定时器或USART外设。这些I/O口的用途可以通过一系列寄存器配置,由用户软件加以实现。 I/O端口具备如下特性: ●21个数字I/O引脚 ●可以配置为通用I/O或外部设备I/O ●输入口具备上拉或下拉能力 ●具有外部中断能力。 这21个I/O引脚都可以用作于外部中断源输入口。因此如果需要外部设备可以产生中断。外部中断功能也可以从睡眠模式唤醒设备。 (2). 寄存器简介 本次实验中主要涉及到GPIO的寄存器如下:

3. MIC 声音传感器 (1). 概述 声音传感器的作用相当于一个话筒(麦克风)。它用来接收声波,显示声音的振动图象。但不能对噪声的强度进行测量。 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V 的电压,经过比较器转换数字信号后,被数据采集器接受,并传送给计算机。 传感器特点: ●具有信号输出指示。 ●输出有效信号为低电平。 ●当有声音时输出低电平,信号灯亮。 应用范围: ●可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的场合。 (2). 使用方法 本实验利用CC2530 的GPIO 读取声音传感器模块的检测结果输出端,当检测到一定的声音时,此输出端为低电平;未检测到一定的声音时,此输出端为高电平。因此在实际应用中可以根据这种情况判断是否有声音在传感器附近产生。 4.程序流程

27MHZ收发电路图与原理

27MHZ无线电遥控器(10m) 2010-11-06 01:52 最终编辑 ygj0612 图2-2是27MHZ发射机电路原理图,发射机的频率由晶振BC来决定。由于晶体振荡器的频率稳定度不会低于1/1000000,这个指标对普通用途的遥控器来说已绰绰有余,所以该电路有较高的稳定度。本电路晶振频率选用27.145MHZ,因为它不用倍频电路,故其图中电源开关即为调制器。发射机的载波频率也为27.145MHZ。

图2-3是接收机电路原理图,VT1与其外围电路为超再生检波器,L1、C2为输入调谐回路,检波后的音频输出经过VT2、VT3两级低频放大后直接驱动继电器。C14、C15为电源滤波电容。 为了方便制作,提高成功率,对元器件的选择要有足够的重视。发射机电路中的元件用如下:高频谐振线圈L1用直径0.5mm漆包线在直5mm的骨架上分两层共绕9圈,在骨架空轴孔内插入直径3mm带螺纹的高频磁芯。VT1为硅NPN高频小功率管,可用9018或C1815等三极管。晶振型号采用JA型泛音晶体,立式、卧式均可,频点为27.145MHZ。天线可用一根0.3~0.4m长的钢丝或导线。电源为一节9伏层叠电池。其余元件如图所示。 接收机电路元件:谐振线圈(电感)L1制作方法同发射机L1,L2为高频阻流线圈,可用色码电感,电感量为22~25uH。VT1用9018三极管,VT2、VT3用9013三极管,?同发射机9018一样,应选?>=200。继电器型号:JRX-13F,电压6V(DC)。其余元件如图所示。 调试较为简单,介绍如下: 1、发射机 发射机焊接后,接好天线,检查无误后接通电源。如果手头有一台频率计,将频率计满量程档位打至大于30MHZ,并把两根测试夹头夹在一起,形成一个感应测试回路环。靠近发射机天线(约10~20cm)这是频率计应有数字跳变,并相对稳定。如果指示数字不是27.145MHZ,可用无感螺丝刀仔细调节电感线圈中的磁芯,直到准确显示在27.14500MHZ频率上。如果无显示,或频率显示的不准确,应检查晶振、电感及有关元件是否损坏或未焊好。 如果没有频率计,可用简易场强计检查发射的载波信号大小。简易场强计的自制电路见图2-4。在使用时,通过调节电容C1使表头指示最大,此时即可认为LC回路的频率已调到等于或接近被测信号频率(27.145MHZ)。调节发射机L1线圈磁芯,当场强计指示为最大时,固定L1

无线收发模块原理-详解

用途DF无线数据收发模块 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。 1.With my own ears I clearly heard the heart beat of the nuclear bomb. 我亲耳清楚地听到原子弹的心脏的跳动。 2.Next year the bearded bear will bear a dear baby in the rear. 明年,长胡子的熊将在后方产一头可爱的小崽. 3. Early I searched through the earth for earth ware so as to research in earthquake. 早先我在泥土中搜寻陶器以研究地震.

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图主要技术指标: 1。通讯方式:调幅AM

2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明)3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V 315MHZ发射模块8元一个433MHZ发射模块8元一个DF数据发射模块的工作频率为315M,采用声表谐振器SAW 稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化

超再生接收电路及无线电发射器工作原理.doc

超再生接收电路和无线电发射器工作原理

超再生接收电路和无线电发射器工作原理 超再生无线电遥控电路由无线电发射器和超再生检波式接收器两部分组成。 无线电发射器:它是由一个能产生等幅振荡的高频载频振荡器(一般用 30~450MHz )和一个产生低频调制信号的低频振荡器组成 的。用来产生载频振东和调制振荡的电路一般有:多揩苦荡器、互补振荡器和石英晶体振荡器等。 由低频振荡器产生的低频调制 波,一般为宽度一定的方波。如果 是多路控制,则可以采用每一路宽 度不同的方波,或是频率不同的方 波去调制高频载波,组成一组组的 己调制波,作为控制信号向空中发 射,组成一组组的己调制波,作为 控制信号向空中发射。如图 2 所示。 超再生检波接收器:超再生检波电路实际上是一个受间歇振荡控制的高频振荡器,这 个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡(又称淬装饰振荡)双是在高频振 荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。而间歇(淬熄)振荡的频率是由电路的参数决定的(一般为 1 百 ~ 几百千赫)。这个频率选低了,电路的抗干扰性能较好,但接收灵敏度较低:反之,频率选高了,接收灵敏度较好, 但抗干扰性能变差。应根据实际情况二者兼顾。 超再生检波电路有很高的增益,在未收到控制信号时,由于受外界杂散信号的干扰和电路自身的热搔动,产生一种特有的噪 声,叫超噪声,这个噪声的频率范围为0.3~5kHz之间,听起来像流水似的“沙沙”声。在无信号时,超噪声电平很高,经滤 波放大后输出噪声电压,该电压作为电路一种状态的控制信号,使继电器吸合或断开(由设计的状态而定)。 当有控制信号到来时,电路揩振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受 接收信号的振幅 控制。接收信号振 幅大时,起始电平 高,振荡过程建立 快,每次振荡间歇 时间也短,得到的 控制电压也高;反 之,当接收到的信 号的振幅小时,得 到的控制电压也 低。这样,在电路 的负载上便得到 了与控制信号一 致的低频电压,这 个电压便是电路 状态的另一种控 制电压。 如果是多通道遥控电路,经超再生检波和低频放大后的信号,还需经选频回路选频,然后分别去控制相应的控制回路。 SP多用途无线数据收发模块

相关主题
文本预览
相关文档 最新文档