当前位置:文档之家› 占空比可调方波发生器

占空比可调方波发生器

占空比可调方波发生器
占空比可调方波发生器

占空比可调方波发生器 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

燕山大学

课程设计说明书

题目:低通FIR滤波器设计与应用学院(系):电气工程学院

年级专业: 10级精仪二班

学号:

学生姓名:王舟济

指导教师:孟宗

教师职称:副教授

电气工程学院《课程设计》任务书

院(系):电气工程学院基层教学单位:仪器科学与工程系

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

年月日

目录

摘要................................................................. 第1章绪论..........................................................

设计内容.....................................................

设计基本要求.................................................

第2章总体方案论证与设计..........................................

方案论述.....................................................

方波发生器的硬件组成框图.....................................

第3章方波发生器原理................................................................................................. 方波发生器的原理与功能................................................................................

键盘控制原理....................................................................................................

程序框图............................................................................................................

方波波形显示 (4)

系统硬件设计...........................................................................................

最小单片机系统...............................................

小键盘接口电路...............................................

显示电路..................................................

八段数码管原理.............................................................................................

第5章系统软件设计................................................

主程序......................................................

系统初始化子程序............................................

显示子程序..................................................

键盘扫描程序................................................

定时中断子程序..............................................

汇编总程序.....................................................................................................

第6章系统调试与测试结果分析......................................

硬件调试.....................................................

软件调试.....................................................

结论............................................................参考文献....................................................................................................................... 附录:仿真效果图

摘要

随着大规模集成电路技术和计算机技术的飞速发展,把计算机的运算器和控制器(即CPU)、存储器和多种接口集成在一块芯片上而成的芯片为单片机。单片机问世20年来,发展速度之迅猛,应用范围之广泛是以往任何技术都无法比拟的。单片机作为嵌入式微控制器其应用很普及。近十几年来,单片机在生产过程控制、自动检测、数据采集与处理、科技计算、商业管理和办公室自动化等方面获得了广泛应用。

本设计是一个以单片机为核心的方波发生器,通过对键盘输入电路、波形的输出电路、显示电路的设计已经程序的编程,实现通过键盘改变方波占空比和频率,并显示波形频率的功能。

关键字:单片机、法波发生器、频率、占空比

第一章绪论

单片机集成度高、功能强、可靠性高、体积小、功耗地、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域。

单片机有两种基本结构形式:一种是在通用微型计算机中广泛采用的,将程序存储器和数据存储器合用一个存储器空间的结构,称为普林斯顿结构。另一种是将程序存储器和数据存储器截然分开,分别寻址的结构,一般需要较大的程序存储器,目前的单片机以采用程序存储器和数据存储器截然分开的结构为多。本课题讨论的方波发生器的核心是目前应用极为广泛的 51系列单片机。

设计内容

本课程设计是设计一个方波发生器,用4位数码管显示方波的频率。

1.2设计基本要求

频率可调,用一个变阻器来调整波形的频率,频率调节范围为

20Hz~2000Hz;

占空比可调,采用两个按键来实现增加、减小波形的占空比作用,占空比调节步长为1%,即每按键一次,占空比增加或减少1%。占空比用另外两位数码管显示。

系统上电时频率依变阻器的阻值设定,占空比设定为50%。而我们在此设计的方波发生器与要求要设计的有点区别,所设计的频率调节范围为

1Hz~15000Hz,以调节变阻器的阻值来实现频率的调节相对来说要麻烦些。因此,频率也使用按键来进行调节,不同的频率及占空比可以使用不同的按键来实现,而以键盘扫描来实现各键的不同功能;显示部分可以使用ZLG7290芯片及数码管来实现。由此即可构成一个最小单片机应用系统。

第2 章总体方案论证与设计

在电子技术领域中,实现方波发生器的方法有很多种,可以采用不同的原理及器件构成不同的电路,但可以实现相同的功能。在此次设计中,有些地方

与课题原本的具体要求有点不同。如实现频率调节时,不是按要求利用调整变阻器的阻值来完成的,而是用按键来实现的。

2.1方案论述

基于MCS—51单片机8051芯片所设计的可以实现键位与数字动态显示的一种频率,占空比可调方波发生器。设四位数码管显示频率范围为1HZ-9999HZ,可任意取1HZ、10HZ、100HZ等值,占空比任意取10%,20%,40%,50%,80%等值。通过对键盘上按键的操作完成对所取频率值,占空比的调用,以达到改变当前频率值,占空比的目的,并使用其八段数码管显示。单片机对键位进行扫描,确定键位的输入,根据程序设计要求,数码管显示频率以及占空比改变后当前的数值,方波发生器输出以数码管显示的数值为频率的方波。

基于以上思路,可进行如下功能扩展:由于伟福2000仿真实验箱共有6位数码管,显示频率只用其中4位,可使用余下2位进行占空比显示。设计思路同频率显示,可选定占空比10、20、50等值,通过键盘上的两个按键顺序调换所选取的占空比值,实现占空比的可调控改变。

键盘可采用4*4的键盘,但是只选取选取其中的4个按键,其功能分别为:频率顺向增大、频率逆向减小、占空比顺向增大、占空比逆向减小。按键每按下一次,当前频率或占空比转向下一选定的频率或占空比值。单片机通过输出方波控制一个数码管的显用,该数码管显示当前所调换到的频率及占空比,并把该数值当做方波发生器的输入频率及输入占空比。单片机控制该方波发生器以该数值作为频率和占空比显示方波,从而得到我们想要频率及占空比的方波。最后,可采用示波器观察方波波形。

方波发生器的总体硬件组成框图

简单的流程为:主程序扫描键盘,将设置信息输入,处理后,输出到LED 显示器显示。单片机用到了两个定时器,即定时器0与定时器1,分别进行频率与占空比的定时,两个定时器都是工作在方式1。计算定时器初值的公式如下:

X = 2N - FOSC/12 × T

根据计算定时器初值的公式,计算出定时器0与定时器1所要装入的初值。

频率及占空比的显示电路由74374和74245构成的驱动电路和LED数码显示管组成,利用六个数码管来显示,有四位是用来显示频率的,有两位是显示占空比的。

此电路的键盘由四个功能键(调节频率与占空比的增减)组成,其特殊之处在于利用外部中断实现键盘扫描。功能键有两种种状态,一种为正顺序调换,根据所取值顺向增大的特点,此时为增大调节;另一种为逆顺序调换,同理,此时为减小调节。频率和占空比各有一组增大及减小的功能键。

第3章方波发生器原理

、方波发生器的原理与功能

方波发生器的总体原理方框图如下图所示:

由于系统的要求不高,比较单一,再加上我们是通过定时器来调节频率的,这样仅用键盘、8051芯片及数码显示管便可完成设计,达到所要求实现的功能。

键盘控制原理

通过键盘的控制,可以实现频率和占空比的变化。本设计仅仅选用四个数码管显示频率,并增加了后两个数码管显示占空比的功能。

其中,用NEXT键和LAST键控制频率的变化,每按一下NEXT键频率就按着的顺序正向变化到下一个数值;每按一下LAST键,频率就反向变化到另一个数值。

C键和D键控制占空比的变化:每按一下C键,数码管上的显示数字就按照的顺序正向变化一个数字,每按一下D键,数字就反向变化。

其对应关系如表1所示:

表1频率-占空比-按键对照表

程序框图

初始化后单片机产生初值,将初值以动态扫描的方式显示于八段数码管,同时还对键盘进行实时扫描。在扫描后,单片机读取键值,并将键值通过数码管模块显示出来,方波发生器输出该频率,占空比的方波.

表2频率(HZ)-程序代码对照表

表3 占空比(%)-代码对照表

方波波形显示

图1 频率100HZ,占空比50%

图2 频率100HZ,占空比80%

图3 频率100HZ,占空比20%

第4章系统硬件设计

最小单片机系统

单片机各功能部件的运行都是以时钟频率为基准的,有条不紊地进行工作。因而时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟电路方式有两种:一种是内部时钟方式,一种是外部时钟方式,这里采用的是内部时钟方式,外接晶振。时钟电路由片外晶体、微调电容和单片机的内部电路组成。选取频率为的晶振,微调电容是瓷片电容。

89S52单片机的口作为波形输出口,若接示波器,则可通过示波器来观察波形,是一个矩形波。

此单元电路包括时钟电路、复位电路,具体电路如图所示:

图3-1 单片机最小系统

小键盘接口电路

方案一:独立式键盘

一个具有4个按键的独立式键盘,每一个按键的一端都接地,另一端接MEGA16的I/O口。独立式键盘每一按键都需要一根I/O线,占用MEGA16的硬件资源较多。因此独立式键盘只适合按键较少的场合。键盘是一组按键或开关的集合,键盘接口向计算机提供被按键的代码。特点:使用方便、结构复杂、成本高。

方案二:矩阵式键盘

我们采用4×4矩阵式键盘,键盘的行线X0~X3通过电阻接+5V,当键盘没有键闭合时,所有的行线和列线断开,行线X0~X3均呈高电平,如下图:

图5—2键盘控制LED连接原理图

为了节省I/O口,使我们的设计能够顺利进行,我们选用方案二——矩阵连接式键盘。为了能够较为简单的编程,和节省CPU的资源,我们采用定时扫描,每隔一段时间,CPU对键盘扫描一次,并将键值读入。

扫描法是在判定有键按下后逐列(或行)置低电平,同时读入行(或列)状态,如果行(或列)状态出现非全1状态,这时与状态行,列交叉点的键就是所按下的键。扫描发的特点是逐列(或行)扫描查询。这时,相应的行(或列)应有上拉电阻接高电平。

当键盘上某一键闭合时,该键所对应的行线与列线短路,此时该行线的电平将由被短路的列线电平所决定。如果将行线接至单片机的输入端口,列线接至单片机的输出端口,则在单片机的控制下使列线Y0为低电平,其余三根列线Y1、Y2、Y3均为高电平,然后单片机读输入口状态(即键盘行线状态),若X0、X1、X2、X3均为高电平,则Y0这一列上没有键闭合,如果读出的行线状态不全为高电平,则为低电平的行线和Y0相交的键处于闭合状态。如果Y0这一列没有键闭合,紧接着使列线Y1为低电平,其余列线为高电平,用同样的方法检查Y1这一列有无键闭合,如此类推。

CPU对键盘的扫描可以采取程序控制的随机方式,CPU空闲时才扫描键盘;也可以采取定时控制方式,每隔一段时间,CPU对键盘扫描一次;还可以采用中断方式,当键盘上有键闭合时,向CPU请求中断,CPU响应键盘发出的中断请求,对键盘进行扫描,以识别哪一个键处于闭合状态,并对键输入信息作相应处理。

图3-2 小键盘接口电路

LED显示电路

方案一:静态显示方式

静态显示方式是指当显示器显示某一字符时,七段数码管的每段发光二极管的位选始终被选中。在这种显示方式下,每一个LED数码管显示器都需要一个8位的输出口进行控制。静态显示主要的优点是显示稳定,在发光二极管导通电流一定的情况下显示器的亮度大,系统运行过程中,在需要更新显示内容时,CPU才去执行显示更新子程序,这样既节约了CPU的时间,又提高了CPU的工作效率。其不足之处是占用硬件资源较多,每个LED数码管需要独占8条输出线。随着显示器位数的增加,需要的I/O口线也将增加。

方案二:动态显示方式

所谓动态显示,就是单片机定时地对显示模块件扫描。在这种方法中,显示模块件分时工作,每次只能有一个器件显示。但由于人视觉的暂留现象,所以仍感觉所有的器件都在显示。如许多单片机的开发系统及仿真器上的6位显示模块即采用这类显示方法。此种显示方法的优点是使用硬件少,因而价格低。但它占用机时长,只要单片机不执行显示程序,就立刻停止显示。由此可见,这种显示将使计算机的开销增大。

由于8051单片机本身提供的I/O口有限,因此我们选择方案二——动态扫描方式。扫描方式中在轮流点亮扫描过程中,每位显示器的点亮时间是极为短暂的约1MS,尽管实际上各位显示器并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感。节约了电能,节省了I/O口

八段数码管原理

数码管内部由8个发光发光二极管组成,排成一个8字,可以组成0到9数字以及A-F字符的表示形式。

图5-3.八段数码管引脚图图5-4.八位数码管原理图

表2 显示数字及其所对应的代码

第5章系统的软件设计

软件是该LED显示屏控制系统的重要组成部分,在系统的软件设计中我们也才用了模块化设计,将系统的各部分功能编写成子模块的形式,这样增强了系统软件的可读性和可移植性。

主程序

主程序包括系统初始化及显示程序,是一个死循环系统。其流程图如图所示:

系统初始化子程序

在此程序中,给所有变量赋初值,有键盘扫描口、选择串行口工作方式SCON、状态标志位flag、初始频率与占空比及其定时、定时器0与定时器1的工作方式等。初始化时启动了定时器0与定时器1。

显示子程序

利用分离频率的各位数值,将各位数值分别显示出来。在程序中利用了频率显示的高位灭零的方法以致最高位为0时就不显示,以致显示效果美观化。一共有五位是显示频率的,若频率小于10000时,则万位不显示;若频率小于1000时,则万位与千位都不显示,依次类推。

占空比的显示规律与频率的一样。

显示子程序流程图如图4-2所示:

键盘扫描程序

方法。

节,状态标志flag

(1)频率调节:

i==0此时进行频率的调节。可以进行加1Hz1号键、2号键、3号键、4

作。这里的频率的最大值为15000Hz,当频率增至最大值时,还按增值键,此

图4-2 显示子程序流程图

时频率会自动跳到1Hz开始继续增加。同理,频率的最小值为1Hz,当减频率减至最小值时,再按减频率键,则频率会跳到15000Hz。

(2)占空比调节:

当状态值flag==2时,此时频率保持不变,进行占空比调节。只可进行加1与减1操作,分别由1号键、2号键控制。

要注意的是占空比的初值是50%,我们定义的ZKB为50(百分比的分子部分,为一整数),故调节占空比时,ZKB会进行加1,减1操作。ZKB的最大值为99,当增到最大值时,便会返回到值1,如此循环。

(3)为了减轻单片机的工作量,在软件设计中采取了这样的措施,在修改参数确定后才进行定时器初值TC0、TC1的计算。

键盘中断处理子程序流程图与键处理流程图分别如图4-3、图4-4所示:

ORG 000BH

LJMP TIN0

ORG 0040H

ZHONGDUAN:

DB 100 50 20 10 ZHANKONG:

DB 8,6,5,4,2

MAIN:

MOV TMOD,#02H

SETB EA

SETB ET0

MOV PINLV,#00H

MOV BILI,#02H

LCALL GOON

LJMP MLOOP

ZHUANGRU:

MOV A,PINLV

RU1:

MOV TH0,#06H

MOV TL0,#06H

JISHU:

SETB HL

SETB TR0

SETB

MOV CISHU,#01H

MOV DPTR,#ZHANKONG

MOV A,BILI

MOVC A,@A+DPTR

MOV LOW0,A

MOV B,#10

XCH A,B

SUBB A,B

MOV HIGH0,A

RET

OUTBIT EQU 08002H OUTSEG EQU 08004H

IN EQU 08001H

LEDBUF EQU 60H LEDPINLVMAP:

DB 00H,00H,06H,3FH DB 00H,00H,5BH,3FH DB 00H,00H,6DH,3FH DB 00H,06H,3FH,3FH LEDZHANKONGMAP:

DB 7FH,3FH

DB 7DH,3FH

DB 6DH,3FH

DB 66H,3FH

DB 5BH,3FH

DELAY:

MOV R7, #0 DELAYLOOP:

DJNZ R7, DELAYLOOP

DJNZ R6, DELAYLOOP

RET

DISPLAYLED:

MOV R0, #LEDBUF

MOV R1, #6

MOV R2, #00100000B LOOP:

MOV DPTR, #OUTBIT

MOV A, #0

MOVX @DPTR, A

MOV A, @R0

MOV DPTR, #OUTSEG

MOVX @DPTR, A

MOV DPTR, #OUTBIT

MOV A, R2

MOVX @DPTR, A

MOV R6, #1

CALL DELAY

MOV A, R2

RR A

MOV R2, A

INC R0

DJNZ R1, LOOP

MOV DPTR, #OUTBIT

MOV A, #0

MOVX @DPTR, A

RET

TESTKEY:

MOV DPTR, #OUTBIT

MOV A, #0

MOVX @DPTR, A

MOV DPTR, #IN

MOVX A, @DPTR

CPL A

ANL A, #0FH

RET

KEYTABLE:

DB 16H, 15H, 14H, 0FFH

DB 13H, 12H, 11H, 10H

DB 0DH, 0CH, 0BH, 0AH

DB 0EH, 03H, 06H, 09H

DB 0FH, 02H, 05H, 08H

DB 00H, 01H, 04H, 07H

GETKEY:

MOV DPTR, #OUTBIT

MOV P2, DPH

MOV R0, #LOW(IN)

MOV R1, #00100000B

MOV R2, #6

KLOOP:

MOV A, R1

CPL A

MOVX @DPTR, A

CPL A

RR A

MOV R1, A

MOVX A, @R0

CPL A

ANL A, #0FH

JNZ GOON1

DJNZ R2, KLOOP

MOV R2, #0FFH

SJMP EXIT

GOON1:

MOV R1, A

MOV A, R2

DEC A

RL A

RL A

MOV R2, A ; R2 = (R2-1)*4 MOV A, R1

MOV R1, #4

LOOPC:

RRC A

JC EXIT

INC R2

DJNZ R1, LOOPC

EXIT:

MOV A, R2

MOV DPTR, #KEYTABLE

MOVC A, @A+DPTR

MOV R2, A

模拟电子技术课程设计产生正弦波,方波,三角波,且占空比可调,频率可调,幅度可调

模拟电子技术课程设计任务书 一、设计题目:波形发生器的设计(二) 方波/三角波/正弦波/锯齿波函数发生器 二、设计目的 1、研究正弦波等振荡电路的振荡条件。 2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。 三、设计要求及主要技术指标 设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。 1、方案论证,确定总体电路原理方框图。 2、单元电路设计,元器件选择。 3、仿真调试及测量结果。 主要技术指标 1、正弦波信号源:信号频率范围20Hz~20kHz 连续可调;频率稳定度较高。信号幅度可以 在一定范围内连续可调; 2、各种输出波形幅值均连续可调,方波占空比可调; 3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出 电压的范围。 四、仿真需要的主要电子元器件 1、运算放大电路 2、滑线变阻器 3、电阻器、电容器等 五、设计报告总结(要求自己独立完成,不允许抄袭)。 1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。 2、分析讨论仿真测试中出现的故障及其排除方法。 3、给出完整的电路仿真图。 4、体会与收获。

1.正弦波输出电路 ,方波输出电路

,在正弦波的基础上通过LM339AD比较器稳定输出方波,可通过R15小幅调节占空比,但方波幅值不可调。R15调节范围0/100~~2/100,占空比约为0/100~~50/100之间,通过正弦波发生器中的R13可大幅度调节占空比。

3.三角波和锯齿波发生器 通过LM741CN运放,且由R18和C3组成积分电路,在方波基础上输出三角波,通过调节方波占空比可以产生锯齿波,当方波占空比为50/100时,输出三波。 4.三种波形的综合输出 一.正弦波输出波形

占空比可调的方波函数发生器

西北民族大学电气工程学院课程设计说明书(2011/2012学年第二学期) 课程名称:模电课程设计 题目:正弦波发生器设计 专业班级:10级自动化一班 学生姓名:杨香林 学号:P101813404 指导教师:刘明华 设计成绩: 二〇一二年六月二十三日

目录 1.课程设计的目的 2.课程设计内容 2.1总体概述 2.11 设计任务 2.12 设计要求 2.2系统方案分析 2.3系统设计及仿真 2.4硬件设计 3.课程设计总结 4.参考文献

1、课程设计目的 1.掌握电子系统的一般设计方法。 2.理解迟滞比较器的设计原理,掌握方波函数发生器的设计原理。 3.理解555定时器的工作原理,掌握多谐振荡器的设计原理。 4.熟练运用multisim仿真软件设计和仿真电路。 5.提高综合应用所学知识来指导实践的能力。 2、课程设计总文 2.1总体概述 2.11 设计任务 使用集成运算放大器、稳压二极管、二极管、电阻等器件设计方波函数发生器。 2.12 设计要求 1、根据技术要求和现有开发环境,分析课设题目; 2、设计系统实现方案; 3、要求占空比可调;输出电压:8V<|Vo|<15V;周期:2ms

2.2系统方案分析 迟滞比较器,是将集成运放比较器的输出电压通过反馈网络加到同相端,形成正反 馈,如图2.21(a )所示,待比较电压I 加在反相输入端。在理想情况下,它的比较特性 如图2.11(b )所示。由图可见,它有两个门限电压,分别称为上门限电压OH U 和下门限 电压 OL U ,两者的差值称为门限宽度。 图2.2(a ) 图2.2(b ) 设比较器输出高电平 OH U ,则 OH U 和 ref U 共同加到同相输入端的合成电压为

习题1 绘制典型信号及其频谱图(参考模板)

习题一绘制典型信号及其频谱图 电子工程学院 202班一、单边指数信号 单边指数信号的理论表达式为 对提供的MATLAB程序作了一些说明性的补充,MATLAB程序为

figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F)*57.29577951);xlabel('\omega');ylabel('\phi(\omega)/(°) ');title('相频特性'); 调整,将a分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比,其 他a值的情况类似可推知。 a15 时 域 图 像

幅频特性 幅频特性/d B 相频特性

分析: 由上表中a=1和a=5的单边指数信号的波形图和频谱图的对比可以发现,当a值增大时,信号的时域波形减小得很快,而其幅频特性的尖峰变宽,相频特性的曲线趋向平缓。 二、矩形脉冲信号 矩形脉冲信号的理论表达式为 MATLAB程序为:

clear all; E=1;%矩形脉冲幅度 width=2;%对应了时域表达式中的tao t=-4:0.01:4; w=-5:0.01:5; f=E*rectpuls(t,width); %MATLAB中的矩形脉冲函数,width即是tao,t为时间 F=E*width*sinc(w.*width/2); figure(1); plot(t,f);xlabel('t');ylabel('f(t)');title('信号时域图像'); figure(2); plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');title('幅频特性'); figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');title('相频特性'); 调整,将分别等于1、4等值,观察时域波形和频域波形。由于波形较多,现不失代表性地将a=1和a=4时的各个波形图列表如下进行对比,其他值的情况类似可推知。 14

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

频率可调的方波信号发生器设计

频率可调的方波信号发生器设计 用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz, 频率误差比小于0.5%。要求用增加、减小2 个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2 秒后,给定频率以10 次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机 默认输出频率为5Hz。3.5.1 模块1:系统设计(1)分析任务要求,写出系统整体设计思路任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O 管脚的状态取反。由于频率范围最高为200Hz,即每 个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8 位自动装载的工作模式。涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。问题的难点在按键连续按下超过2S 的计时问题,如何实现计时功能。系统的整体思路:主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后 在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序 负责方波的产生、按键连续按下超过2S 后频率值以10Hz/s 递增(递减)。(2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图采用MCS51 系列单片机At89S51 作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。数码管驱动采用2 个四联共阴极 数码管显示,由于单片机驱动能力有限,采用74HC244 作为数码管的驱动。在74HC244 的7 段码输出线上串联100 欧姆电阻起限流作用。独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500 欧 姆电阻再接到电源上,当输入为低电平时,发光二极管导通发光。

09典型信号的频谱分析

实验九 典型信号的频谱分析 一. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 二. 实验原理 信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。 图1、时域分析与频域分析的关系 信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。时域信号x(t)的傅氏变换为: dt e t x f X ft j ?+∞ ∞--=π2)()( (1) 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部)(f a 和虚部 )(f b 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值)(f A 和相位 )(f ?为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为 功率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图2、信号的频谱表示方法

三. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 四. 实验仪器和设备 1. 计算机1台 2. DRVI快速可重组虚拟仪器平台1套 3. 打印机1台 五. 实验步骤 1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择 “典型信号频谱分析”,建立实验环境。 图5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6017、6018为两个被驱动的信号发生器的名字。 图6 典型信号的频谱分析实验装配图

基于MCS-51单片机的频率可调的方波发生器设计

基于MC51单片机的频率可调的方波信号发生器 用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。要求用“增加”、“减小”2 个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2 秒后,给定频率以10 次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机默认输出频率为5Hz。 1:系统设计 (1)分析任务要求,写出系统整体设计思路 任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O 管脚的状态取反。由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8 位自动装载的工作模式。涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。 问题的难点在按键连续按下超过2S 的计时问题,如何实现计时功能。 系统的整体思路: 主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序负责方波的产生、按键连续按下超过2S 后频率值以10Hz/s 递增(递减)。 (2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图 采用MCS51 系列单片机At89S51 作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。数码管驱动采用2 个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244 作为数码管的驱动。在74HC244 的7 段码输出线上串联100 欧姆电阻起限流作用。独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500欧姆电阻再接到电源上,当输入为低电平时,发光二极管导通发光。 图1 方波信号发生器的硬件电路原理图 (3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图 软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。 程序设计思路:根据定时器溢出的时间,将频率值换算为定时器溢出的次数(T1_over_num)。使用变量(T1_cnt)暂存定时器T1 的溢出次数,当达到规定的次数(T1_over_num)时,将输出管脚的状态取反达到方波的产生。主程序采用查询的方式实现按键的扫描和数码管的显示,中断服务程序实现方波的产生和连续按键的计时功能。单片机内部资源分配:定时器T1 用来实现方波的产生和连续按键的计时功能,内部变量的定义: hz_shu:设定的频率数;

占空比可调的方波发生器

目录 一、课程设计目的 (2) 二、课程设计正文 (2) 2.1总体论述 (2) 2.2方案选型 (2) 2.2.1总体方案 (2) 2.2.2各单元电路方案及集成电路 (2) 2.3电路原理图 (4) 2.4运行详细描述 (8) 2.5制作调试过程 (9) 2.6器件清单 (14) 三、实验设计总结或结论 (15) 四、参考文献 (15)

一、课程设计目的 1、掌握电子系统的一般设计方法。 2、理解占空比可调的方波发生器的设计原理,掌握占空比的设计原理和计算。 3、提高综合应用所学只是来指导实践的能力。 二、课程设计正文 2.1总体论述 2.1.1设计任务 1、根据技术要求和现有开发环境,分析课设题目; 2、设计系统实现方案; 3、设计绘制电路原理图并选择元器件; 4、焊接电路、调试; 5、记录结果、修改并完善设计; 6、编写课程设计报告。 2.1.2、技术要求 (1)设计要求:设计一方波产生电路。输出要求:占空比可调;输出方波电压值:8v<|V0|<15v;振荡周期:2ms

图(2)555定时器内部结构 图(3)555定时器的输出波形 接通V CC后瞬间,V CC通过R 对C充电,当u c上升到2V CC/3时,将触发器置0,u o=0,放电管T导通,C通过T放电,电路进入稳态。 u I到来时,因为u I<V CC/3,使u O又由0变为1,电路进入暂稳态。放电管T截止,V CC经R对C充电。直到u C上升到2V CC/3时,u O=0,T导通,C放电,电路恢复到稳定

如何利用示波器测试低占空比脉冲信号

高速信号在提升电子设备性能的的同时,也为检定和调试的设计工程师带来了很多问题。在这些问题中,一类典型的例子是偶发性或间歇性的事件以及一些低占空比的信号,如激光脉冲或亚稳定性,低占空比雷达脉冲等等。这些事件很难识别和检定,要求测试设备同时提供高采样率和超强的数据捕获能力。这对示波器性能提出了极高的要求。在过去,要对这些信号的测试不得不在分辨率和捕获长度之间进行取舍:所有示波器的存储长度都是有限的;在示波器中,采样率×采集时间=采集内存,以使用示波器的所有采集内存为例,采样率越高,则数据采集的时间窗口越小;另一方面,若需要加长采集时间窗口,则需要以降低水平分辨率(降低采样率)为代价。 当前的高性能示波器提供了高采样率和高带宽,因此现在的关键问题是优化示波器捕获的信号质量,其中包括:怎样以足够高的水平分辨率捕获多个事件,以有效地进行分析;怎样只存储和显示必要的数据,优化存储器的使用。 对于这两个关键问题,泰克的高性能示波器采用FastFrame分段存储技术,改善了存储使用效率和数据采集质量,消除了采集时间窗口和水平分辨率不可兼得的矛盾。 本文将分别介绍传统方法和FastFrame分段存储技术测试偶发性或间歇性的事件以及一些低占空比的信号,从而分析FastFrame分段存储技术在实际测试带来好处。 1. 传统测试方法 传统测试低占空比脉冲等间歇性的信号,通常利用数字示波器。为了提高测试精度,通常使用示波器的最高采样率来采集波形数据。通常在高采样率的支持下,可以看到大部分波形细节,见图1。 但是,如果想查看多个连续脉冲,那么必须提高采集的时间窗口。要让多个脉冲落在示波器提供的有限存储器内,很多时候必须通过降低采样率来达到。显而易见地,降低采样率本身会降低水平分辨率,使得时间测试精度大大下降。当然,用户也可以扩展示波器的存储器的长度,在不降低采样率的情况下提高采集时间窗口。但是,这种方法有其局限性。尽管存储技术不断进步,高速采集存储器仍是一种昂贵的资源,而且很难判断多少存储容量才足够。即使拥有被认为很长的存储器长度,但可能仍不能捕获最后的、可能是最关键的事件。 图2是在长记录长度时以高分辨率捕获的多个脉冲。从图2中可以看出,时间窗口扩展了10倍,可以捕获更多的间歇性脉冲。其实现方式:通常是提高采集数据的时间长度,并提高记录长度,同时保持采样率不变。这种采集方法带来了以下这些缺点: 1.更大的采集数据提高了存储器和硬盘的存储要求。 2.更大的采集数据影响着I/O传送速率。 3.更高的记录长度提高了用户承担的成本。 4.由于示波器要处理更多的信息,因此前后两次采集之间的不活动时间或“死区时间”提高了,导致更新速率下降。 考虑到这些矛盾,必须不断地在高采样率与每条通道提供的存储长度中间做出平衡,并且还是很难达到测试更多个脉冲的需求。

LM358做可调方波发生器

如何用LM358做可调方波发生器 阅读: 10260 | 回复: 5 六 2008/11/17 22:16:29 1 ywshgyw LV1 士兵 因为需要,想用LM358做一个28-400Hz 可调的,占空比为50%的方波发生器,网上找了点资料,搭了一下最后只调出一个50Hz 的方波 (是不是市电干扰 的缘故),想请教大家一下这个电路用LM358可行吗?有没有更好的办法?(原理图上是用双电源,我用单电源可行吗?) 另外有刚刚找了两张图,还没实验过,不知道可行否

先谢大家了! 标签LM 回复1帖 复制地址 收藏该帖 五2008/11/18 18:36:26 2 ywshgyw LV1 士兵

试过可以了回复2帖 四2008/12/02 20:40:14 3 xuetu LV2 班长 用图一好些 回复3帖 三2011/09/01 13:47:47 4 ouyjangxi LV2 班长 请教该电路计算公式望推荐 回复4帖 二2012/04/19 20:20:29 5 jzyhappy LV2 班长

500) {this.resized=true; this.width=500; this.alt=这是一张缩略图,点击可放大。 \n 按住CTRL ,滚动鼠标滚轮可自由缩放;this.style.cursor=hand}" height=169 jQuery1334838395859="19"> 这一款的频率 应该怎么计算呢? 或是: 正比于 输入电压信号(V+) ? 谢谢! 回复5帖 一2013/10/23 15:31:46 6 火云鞋刷 LV1 士兵 偶而看到这个帖子,试了一下,频率和电容成反比 回复6帖

基于MCS-51单片机的可调频率方波发生器课程设计报告[1]

单片机课程设计报告 设计题目:频率可调方波发生器 专业班级:生物医学工程09班 组长:李建华 组员:梁国锋,赖水兵,郭万劲,李建华2010 年 06 月 16日

摘要 本实验是基于PHILIPS AT89C51 单片机所设计的,可以实现键位与数字动态显示的一种频率可调方波发生器。通过键盘键入(10HZ-9999HZ)随机频率,使用七段数码管显示,每一个数码管对应一个键位。单片机对各个键位进行扫描,确定键位的输入,然后数码管显示输入的数值,方波发生器输出以数码管显示的数值为频率的方波。 关键词:单片机七段数码管键盘电路频率可调方波发生器

一、目的和功能 1.1 目的: 设计一种频率范围限定且可调的方波发生器,志在产生特定频率的方波。 1.2功能: 假设键盘是4*4的键盘,当键盘输入范围在10hz-9999hz的数字,单片机控制数码管显示该数值,并把该数值当做方波发生器的输入频率,单片机控制该方波发生器以该数值作为频率显示方波,从而得到我们想要频率的方波。 二、硬件设计 2.1 硬件设计思想 键盘的数字和键位关系固定,通过键盘输入产生频率,通过LED数码管显示出来,每一个数码管对应一个键位。基本设备是基于PHILIPS AT89C51单片机,外围设备采用的是4个七段数码管,PHILIPS A T89C51单片机,1个OSCILLOSCOPE 方波发生器,16个Button,若干电阻,电源电池。 2.2 部分硬件方案论述 2.2.1 七段数码管扫描显示方式的方案比较 方案一:静态显示方式:静态显示方式是指当显示器显示某一字符时,七段数码管的每段发光二极管的位选始终被选中。在这种显示方式下,每一个LED数码管显示器都需要一个8位的输出口进行控制。静态显示主要的优点是显示稳定,在发光二极管导通电流一定的情况下显示器的亮度大,系统运行过程中,在需要更新显示内容时,CPU才去执行显示更新子程序,这样既节约了CPU的时间,又提高了CPU的工作效率。其不足之处是占用硬件资源较多,每个LED数码管需要独占8条输出线。随着显示器位数的增加,需要的I/O口线也将增加。

占空比可调的方波函数发生器设计

1.项目的目的 电子电路仿真项目是通信工程专业教学体系中一个实践性很强的环节。它将模拟电子线路(低频部分和高频部分)、数字逻辑电路等课程的理论与实践有机结合起来,加强我们实验基本技能的训练,培养我们的实际动手能力、理论联系实践的能力。通过这次课程设计让我们掌握电子电路系统的设计、制作、调试、仿真的方法。 2.项目设计正文 2.1原始数据及主要任务 1、根据技术要求和现有开发环境,分析项目题目; 2、设计项目实现方案; 3、设计绘制电路原理图并选择元器件; 4、使用ewb软件进行仿真; 5、记录仿真结果、修改并完善设计; 6、设计实现电路功能; 7、编写项目设计报告。 2.2技术要求: (1)设计要求:设计一方波产生电路。要求占空比可调;输出方波电压值:8V<|V o|<15V;振荡周期:2ms

555芯片设计占空比可调的方波信号发生器

占空比可调的方波信号发生器 三、实验原理: 1、555电路的工作原理 (1)555芯片引脚介绍 图1 555电路芯片结构和引脚图 555定时器是一种应用极为广泛的中规模集成电路,该电路使用灵活、方便,只需外接少量的阻容原件就可以构成单稳、多谐和施密特触发器。因而广泛用于信号的产生、变换、控制和检测。 1脚:外接电源负极或接地(GND)。 2脚:TR触发输入。 3脚:输出端(OUT或Vo)。 4脚:RD复位端,移步清零且低电平有效,当接低电平时,不管TR、TH输

入什么,电路总是输出“0”。要想使电路正常工作,则4脚应与电源相连。 5脚:控制电压端CO(或VC)。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。 6脚:TH 高触发端(阈值输入)。 7脚:放电端。 8脚:外接电源VCC (VDD )。 (2)555功能介绍 555定时器的功能主要是由两个比较器C1和C2的工作状况决定的。由图1可知,当V6>VA 、V2>VB 时,比较器C1的输出VC1=0、比较器C2的输出VC2=1,基本RS 触发器被置0,TD 导通,同时VO 为低电平。 当V6VB 时,VC1=1、VC2=1,触发器的状态保持不变,因而TD 和输出的状态也维持不变。 当V6V A V B >V B 不变 导通

占空比可调的矩形波发生电路

占空比可调的矩形波发生电路实验二占空比可调的矩形波发生器实验 一、实验目的 1.掌握Im741芯片的使用方法; 2.了解占空比可调的矩形波发生器的设计方法。 二、实验原理 1」m741介绍 LM741系列是通用型运算放大器.其目的是为广泛的模拟应用高增益和宽工作电压范围在积分器,求和放大器,和一般反馈应用提供卓越的性能。其特点有:短路保护,出色的温度稳定性,内部频率补偿,高输入电压范围,空偏移。

图1丄M741应用电路图

LM741,LM741(芯片引脚和工作说明1和5为偏置(调零端),为正向 输入端,3为反向输入端,4接地,6为输出,7接电源,8空脚 1输出端A 2反向输入端A 3正向输入端A 4接地5正向输入端B 6 反向输入端B 7输出端B 8电源+ 741运算放大器使用时需于7、4脚位供应一对同等大小的正负电 源电压+ Vdc 与—Vdc , —旦于2、3脚位即两输入端间有电压差存在, 压差即会被放大于输出端,唯 Op 放大器具有一特色,其输出电压值 决不会大于正电源电压+ Vdc 或小于负电源电压一Vdc ,输入电压差 经放大后若大于外接电源电压+ Vdc 至-Vdc 之范围,其值会等于+ Vdc 或—Vdc,故一般运算放大器输出电压均具有如图 3之特性曲线, 输出电压于到达+ Vdc 和—Vdc 后会呈现饱和现象。 Balance \ 1 __ 1 8 Input — a 1 \ 7 Input + □ 八 4 5 NC Output Balance -15V

图3.放大器输出入电压关系图 741运算放大器之基本动作如图4所示,若在非反相输入端输入电压,会于输出端得到被放大的同极性输出;若以相同电压信号在反相输入端输入,则会在输出端获得放大相同倍率后但呈逆极性之信号输出。而当对放大器两输入端同时输入电压时,则是以非反相输入端电压值(V1)减去反相输入端电压值(V2),可于输出端得到(V1 —V2) 经过倍率放大后之输出。

频率可调的方波信号发生器设计及电路

用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。要求用“增加”、“减小”2个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2秒后,给定频率以10次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机默认输出频率为5Hz。 3.5.1模块1:系统设计 (1)分析任务要求,写出系统整体设计思路 任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O管脚的状态取反。由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8位自动装载的工作模式。 涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。问题的难点在按键连续按下超过2S的计时问题,如何实现计时功能。 系统的整体思路:主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序负责方波的产生、按键连续按下超过2S后频率值以10Hz/s递增(递减)。 (2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图 采用MCS51系列单片机At89S51作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。 数码管驱动采用2个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244作为数码管的驱动。在74HC244的7段码输出线上串联100欧姆电阻起限流作用。 独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500欧姆电阻再接到电源上,当输入为低电平时,发光二极管导通发光。 图3-14 方波信号发生器的硬件电路原理图 (3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。 程序设计思路:根据定时器溢出的时间,将频率值换算为定时器溢出的次数(T1_over_num)。使用变量(T1_cnt)暂存定时器T1的溢出次数,当达到规定的次数(T1_over_num)时,将输出管脚的状态取反达到方波的产生。主程序采用查询的方式实现按键的扫描和数码管的显示,中断服务程序实现方波的产生和连续按键的计时功能。

占空比可调方波发生器

燕山大学 课程设计说明书 题目:低通FIR滤波器设计与应用学院(系):电气工程学院 年级专业: 10级精仪二班 学号: 学生姓名:王舟济 指导教师:孟宗 教师职称:副教授

电气工程学院《课程设计》任务书 院(系):电气工程学院基层教学单位:仪器科学与工程系

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日

目录 摘要.................................................................第1章绪论.......................................................... 1.1设计内容..................................................... 1.2设计基本要求.................................................第2章总体方案论证与设计.......................................... 2.1方案论述..................................................... 2.2方波发生器的硬件组成框图..................................... 第3章方波发生器原理................................................................... .............................. 3.1方波发生器的原理与功能................................................................... ............. 3.2键盘控制原理................................................................... ................................. 3.3程序框图................................................................... ......................................... 3.4方波波形显示................................................................... ......................... 第4章系统硬件设计 ................................................................

占空比可调方波发生器

燕山大学 课程设计说明书题目:低通FIR滤波器设计与应用 学院(系):电气工程学院 年级专业: 10级精仪二班 学号: 学生姓名:王舟济 指导教师:孟宗 教师职称:副教授

电气工程学院《课程设计》任务书 院(系):电气工程学院基层教学单位:仪器科学与工程系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日

目录 摘要................................................................. 第1章绪论.......................................................... 设计内容..................................................... 设计基本要求................................................. 第2章总体方案论证与设计.......................................... 方案论述..................................................... 方波发生器的硬件组成框图..................................... 第3章方波发生器原理................................................................................................. 方波发生器的原理与功能................................................................................ 键盘控制原理.................................................................................................... 程序框图............................................................................................................ 方波波形显示............................................................................................ 第4章系统硬件设计........................................................................................... 最小单片机系统............................................... 小键盘接口电路............................................... 显示电路.................................................. 八段数码管原理............................................................................................. 第5章系统软件设计................................................ 主程序...................................................... 系统初始化子程序............................................ 显示子程序.................................................. 键盘扫描程序................................................ 定时中断子程序.............................................. 汇编总程序..................................................................................................... 第6章系统调试与测试结果分析...................................... 硬件调试..................................................... 软件调试..................................................... 结论............................................................参考文献....................................................................................................................... 附录:仿真效果图

频率可调的方波信号发生器

频率可调的方波信号发生器 用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。要求用“增加”、“减小”2个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2秒后,给定频率以10次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机默认输出频率为5Hz。 1模块1:系统设计 (1)分析任务要求,写出系统整体设计思路 任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O管脚的状态取反。由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8位自动装载的工作模式。 涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。问题的难点在按键连续按下超过2S的计时问题,如何实现计时功能。 系统的整体思路:主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序负责方波的产生、按键连续按下超过2S后频率值以10Hz/s递增(递减)。 (2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图 采用MCS51系列单片机At89S51作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。 数码管驱动采用2个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244作为数码管的驱动。在74HC244的7段码输出线上串联100欧姆电阻起限流作用。 独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500欧 图1 方波信号发生器的硬件电路原理图 (3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图 软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。 程序设计思路:根据定时器溢出的时间,将频率值换算为定时器溢出的次数(T1_over_num)。使用变量(T1_cnt)暂存定时器T1的溢出次数,当达到规定的次数(T1_over_num)时,将输出管脚的状态取反达到方波的产生。主程序采用查询的方式实现按键的扫描和数码管的显示,中断服务程序实现方波的产生和连续按键的计时功能。 单片机内部资源分配:定时器T1用来实现方波的产生和连续按键的计时功能,内部变量的定义:

相关主题
文本预览
相关文档 最新文档