当前位置:文档之家› 工业用大功率半导体激光器发展状况激光材料加工、信息与通信、(精)

工业用大功率半导体激光器发展状况激光材料加工、信息与通信、(精)

工业用大功率半导体激光器发展状况激光材料加工、信息与通信、(精)
工业用大功率半导体激光器发展状况激光材料加工、信息与通信、(精)

工业用大功率半导体激光器发展状况

激光材料加工、信息与通信、医疗保健与生命科学以及国防是世界范围内激光技术的四个最主要的应用领域,其中激光材料加工所占比例最大,同时也是发展最快、对一个国家国民经济影响最大的激光技术应用领域。激光材料加工技术在工业领域应用的广泛程度,已经成为衡量一个国家工业水平高低的重要标志。

激光材料加工用大功率激光器经历了大功率CO2激光器、大功率固体YAG激光器后,目前正在朝着以半导体激光器为基础的直接半导体激光器和光纤激光器的方向发展。在材料加工应用中,以大功率半导体激光器为基础的直接半导体激光器和光纤激光器,不仅具备以往其他激光器的优势,而且还克服了其他激光器效率低、体积大等缺点,将会在材料加工领域带来一场新的技术革命,就如同上世纪中叶晶体管取代电子管、为微电子技术带来的革命一样。因此,直接半导体激光器和光纤激光器是未来材料加工用激光器的发展方向之一。

下面将介绍近年来大功率半导体激光器的发展现状,以及目前提高半导体激光器输出功率和改善光束质量的方法和最新进展,同时介绍大功率半导体激光器在材料加工中的应用现状、分析展望大功率半导体激光器的

发展趋势。

图1:半导体激光器多光束合成技术示意图

高功率和高光束质量是材料加工用激光器的两个基本要求。为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。

图2:大功率半导体激光器的光束质量与输出功率之间的关系以及目前的应用领域。

大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。

(1)半导体激光芯片外延生长技术

大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。

(2)半导体激光芯片的封装和光学准直

激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

图3:半导体激光金属焊接在汽车工业中的应用

表1:不同激光熔覆方法的比较

半导体激光器的特殊结构导致其光束的快轴方向发散角非常大,接近40°,而慢轴方向的发散角只有10°左右。为了使激光长距离传输以便于后续光学处理,需要对光束进行准直。由于半导体激光器发光单元尺寸较小,目前,国际上常用的准直方法是微透镜准直。其中,快轴准直镜通常为数值孔径较大的微柱非球面镜,慢轴准直镜则是对应于各个发光单元的微柱透镜。经过快慢轴准直后,快轴方向的发散角可以达到8mrad,慢轴方向的发散角可以达到30mrad。

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

半导体激光器原理

半导体激光器原理 一、半导体激光器的特征 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓:GaAs:、硫化镉:CdS:、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。 二、半导体激光器的结构与工作原理 现以砷化镓:GaAs:激光器为例,介绍注入式同质结激光器的工作原理。 1〃注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。 :1:半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带:对应较低能量:。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。 :2:掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级:见图19,24:。

图19,24 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般 为:2,5:×1018cm-1;p型为:1,3:×1019cm-1。 在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散:见图19,25:。 图19,25 :3:p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p 区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

半导体激光器的最新进展及应用现状

半导体激光器的最新进展及应用现状 发表时间:2018-11-11T11:02:03.827Z 来源:《电力设备》2018年第18期作者:黄志焕[导读] 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。 (天津环鑫科技发展有限公司 300384) 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。由于半导体激光器具有体积小、寿命长、电光转换效率高、调制速度快、波长范围宽和易于集成等优点,在光互连、光通信、光存储等方面具有广泛的应用。 关键词:半导体激光器;最新进展;应用现状 1半导体激光器研究的意义半导体激光器的研究是我国光电技术研究的重要内容,是国家重点提出并且一直在努力寻求新的突破的领域。就当前半导体激光器研究的意义来看,对国家的发展具有重要的现实意义。与此同时,半导体激光器在各行各业的应用都十分广泛,并且呈现出以每年20%以上的增长速度,比如,军师领域的激光雷达、制导以及医疗、通讯、光盘等都开始应用半导体激光器。其涉及领域之广,扩展速度之快,应用价值之强,是被广泛认可的。近年来,随着信息科技的不断发展,人们对半导体激光器的性能要求越来越高,传统的半导体激光器在具体的实践应用当中已经表现出明显的不足之处。因此进行半导体激光器的研究,不短提升半导体激光器的现代化水平,具有重要的现实意义。 2半导体行业半导体器件是电子电路中必不可少的组成成分。半导体是人们为了生产生活需要,将两物质按照电学性质进行分类时确定的一个名称。它的导电性介于导体和绝缘体之间。半导体导电性能全是由其原子结构决定的。以元素半导体硅和锗为例,其原子序列分别是14和32,它们两个最外层电子数都是4。半导体具有自由电子和空穴两种载流子。而半导体的性质不同于导体和绝缘体,就是因为半导体拥有的载流子数目不同而载流子是能够运动的荷电粒子。电子和空穴都是载流子,它们相互运动即可产生电流。硅和锗是最为典型的元素半导体。 根据构成物质元素的不同,半导体可分为元素半导体和化合物导体,元素半导体由一种元素构成,化合物半导体由多种元素构成。而根据掺杂类型的不同,半导体可分为本征半导体、N型半导体和P型半导体;如果按照原子结构的排列规则不同,又可分为单晶半导体、多晶半导体和非晶态半导体。半导体行业具有技术密集、资金密集,高风险高回报和知识密集等特点。进入2010年以来,国家大力支持半导体行业的发展,2011年11月,国家税务总局和财政部联合发布了《关于退还集成电路企业采购设备增值税期末留纸税额》;2012年4月政府部门又发布了《关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》;而于2014年,工信部又发布了《国家集成电路产业发展推进纲要》。近几年,我国半导体行业发展速度超快,半导体产业逐渐呈现向大陆地区转移的新趋势,为我国各行业的发展带来设备国产化的发展机遇。而且政府政策大力支持半岛体行业的发展,大基金入场将会加速产业转型升级,成熟化发展。半导体具有掺杂特性、热敏性和光敏性三大特点。 3激光器顾名思义,激光器是一种能发射激光的装置。1954年,人们制成了第一台微波量子放大器;1958年A.L.肖洛和C.H.汤斯把微波量子放大器的原理推广到光频范围;1960年T.H.梅曼等人制成了第一台红宝石激光器;1961年A.贾文等人制成了第一台氦氖激光器。1962年R.N.霍耳等人制成了第一台半导体激光器;之后,激光器的种类就越来越多。一般而言,按工作介质分类,激光器可分为固体激光器、气体激光器、染料激光器和半导体激光器4大类。激光器的组成一般由3个重要部分构成,即工作物质、激励抽运系统、谐振腔。其中激光工作物质是一种激光增益的媒介,其原子或分子的能级差决定了激光的波长与频率。激光抽运系统是指为使激光器持续工作给予能量的源头,它实现并维持了工作物质的粒子数反转。光学谐振腔是激光生成的容器,有多种多样的设计方式是激光器设计的核心。 4激光器系统功能 4.1逻辑控制 系统通过操作面板实现逻辑控制,主要控制功能有3个。(1)内时钟工作:通过RS-422通信接口,向电源控制单元发射出光指令,工作频率可1-20Hz切换,同时通过LED反馈激光器工作状态。(2)外时钟工作:利用外部开关切换至外时钟,利用DSP外部中断接口检测外时钟。(3)自检功能:通过按压自检开关,触发激光器发射激光。 4.2高精度时序控制 激光器输出能量的大小和稳定性与激光电源的高精度时序是密不可分的,必须确保电源控制系统输出时钟的精度及稳定性。为实现μs级高精度控制逻辑,采用DSP控制芯片内置的PLL模块完成高精度时序控制,锁相环独有的负反馈和倍频技术可以提供高精度、稳定的频率,DSP 输入时钟30MHz,倍频到150MHz,时钟周期可达6.67ns。通过精确的技术方法,按照设计的延时产生所需的各路时钟,可以满足高精度的时序配置要求。 4.3恒流源驱动控制 激光器电源控制系统接收到激光发射的信号后,DSP输出12位数字信号,通过DAC1230芯片,将数字信号转换成相应的模拟参考电压信号。恒流源电路中的采样电阻R将通过泵浦模块的电流转换成相应的电压,经过F放大电路后,与参考电压进行比较,产生功率驱动信号,此信号控制功率管的开关。同时可通过DSP改变参考电压的大小,实现恒流源电流的调节。激光电源控制系统还可通RS-422通信接口,远程设置恒流源的电流和脉宽。 4.4温度控制系统 温度是影响激光器泵浦模块输出波长和泵浦效率的重要因素,故对泵浦模块进行控温是必不可少的。半导体激光器一般采用半导体热电致冷器进行控温,该制冷器具有无机械运动、无噪声、无污染、体积小、可靠性高、寿命长、制冷迅速、冷量调节范围宽及冷热转换快等特点。测温元件采用电流输出型温度传感器AD590,特点是工作直流电压较宽,一般为4-30V,输出电流为223μA(-50℃)-423μA(+150℃),灵敏度为1μA/℃。

半导体激光器的应用与分类

半导体激光器的应用与分类 半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。 半导体激光器的分类有多种方法。按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。 LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。 半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。hymsm%ddz 半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。 半导体激光器的光场是发散的而且是不对称的。在垂直PN结平面方向(快轴方向),发散角较大,通常在20°~45°之间;在平行PN结平面方向(慢轴方向),发散角较小,通常在6°~12°之间。由此可以看出,半导体二极管激光器的光场在空间分布呈椭圆形。

半导体激光器

半导体激光器 半导体激光器又称激光二极管[1](LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。 A 小功率LD 用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。 B 高功率LD 1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1 mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。最近配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。 【特点及应用范围】半导体二极管激光器是实用中最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 【半导体激光器的发展及应用】半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。 在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写

半导体激光器的发展历程2(精)

广西师范学院2017年本科毕业论文 论文题目 半导体激光器的发展历程 毕业生:吴伊琴 指导老师:王革 学科专业:物理学(师范) 目录 摘要 前言

一.理论基础及同质结半导体激光器(1917-1962) 1.1激光理念及激光技术的面世 1.2早期半导体激光器理念提出与探索(1953-1962)二.异质结半导体激光器(1963-1977) 2.1 单异质(SH)激光器 2.2 双异质(DH)激光器 三.半导体激光器实用领域的探索(1980-2005) 3.1 光纤通信与半导体激光器的相辅相成 3.2 量子阱能带工程技术的引入 4.1半导体激光器应用的多样化 4.2 半导体激光器的未来发展 结语 参考文献 摘要

双异质半导体激光器,量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,使得半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。本文梳理了1917年—2008年半导体激光器的发展历程,文中包括了半导体激光器大多研究成果,按照时间线对其进行整理。 总的说来,半导体激光器的发展历程可以分为4个阶段 第一.理论准备及起步阶段(1917-1962)。 1962年同质结半导体激光器研制成功。尽管同质结半导体激光器没有实用价值,但是它面世是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。 第二.大发展期(1962--1979 长寿命,长波长双异质半导体激光器的面世使得半导体激光器能够满足光纤通信的需求。1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。由于对AlGaAs—GaAs激光器特性的不断进步的追求,使得这个时期出现了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器留下了充足的技术支持。 第三.实用性的初步探索(1980--1990)在这期间半导体激光器的实用领域主要集中于光纤通信领域,由于光纤通信技术的不断发展,使得半导体激光器的发展也极其迅猛。 第四.实用的多样化(1990--2008 由于量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,半导体激光器的实用领域覆盖了军事,医疗,材料加工,印刷业,光通信等等领域。 本文按照时间线将半导体激光器的发展历程梳理了一遍,使得半导体激光器的发展脉络更加清晰,时候其发展历程更加具体,明了。 关键词:激光半导体激光器应用多样化发展方向 前言 激光,英文名为“laser”是20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明。其发展动向对于人类的科技,生活等等方面有着重要的影响。

半导体激光器用于材料加工

半导体激光器用于材料加工 激光器的光束模式对激光加工效果有较大的影响。如下图所示为几种常见的激光器的光束形状。以激光焊接为例,对于高斯分布的激光束,焊缝截面通常为细长的钉子形状;而对于平顶分布的激光束,激光能量分布较为均匀,焊缝截面上部与下部的宽度较一致。 半导体激光器的光束呈平顶分布,光束能量分布均匀,适用于熔覆、钎焊以及表面热处理等应用。创鑫激光高功率光纤耦合半导体激光系统具有比光纤激光器更高的电光转换效率、更紧凑的体积,激光通过光纤传导输出,适合于与自动化设备配套,实现柔性加工。 激光熔覆 激光熔覆是指在被熔覆基体表面上放置涂层材料,经激光辐照使之与基体表面同时熔化,快速凝固后形成与基体成冶金结合的表面涂层。激光熔覆能显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。激光熔覆工艺主要应用于模具、轴承等贵重易损件的材

料表面改性、表面修复,具有极高的经济价值。如图所示为典型的激光熔覆过程。 激光钎焊 激光钎焊时采用激光作为热源,钎料熔化填充接头间隙,实现被焊母材的连接。钎焊前对工件必须进行细致加工和严格清洗,除去油污和过厚的氧化膜,保证接口装配间隙。钎焊变形小,接头光滑美观,适合于焊接精密、复杂和由不同材料组成的构件,如透平叶片、硬质合金刀具和印刷电路板等。由于半导体激光器平顶光束能量均匀的特点,激光熔覆时一般采用半导体激光器作为热源。 激光焊接 激光焊接因其深宽比大、热输入量小等优点,被广泛应用于不锈钢、铝、铜等多种材料及异种材料的焊接。相较光纤激光器,半导体激光器光束能量分布均匀、光斑较粗,适用于塑料焊接,以及五金等行业焊接工件接头间隙较大的场合,焊缝表面平整,可容许接头一定的间隙,焊接质量优良。如下图所示为1.0mm厚SUS304不锈钢对接焊的焊缝宏观形貌及截面金相。

激光的发展历程及应用

南京理工大学 研究生研究型课程考试 课程名称:现代物理学导论 考试形式:□专题研究报告√论文□大作业□综合考试 学生姓名:王慧学号: 512011424 评阅人:王清华 时间:2013年6 月

激光的发展历程及应用 王慧 (南京理工大学机械工程学院南京210094) 摘要:自1960年第一台激光器发明以来,经过儿十年的发展,激光技术的研究取得了飞越性的发展并广泛应用于人们生活的各个领域。本文主要介绍了激光的应用领域以及一此处于研究前沿领域的技术。 关键词:激光发展;激光历史;激光应用 The Development and Application Prospects Of Laser Technology Abstract:Since the advent of the first optical maser, there has been several dacades. In the short years laser technology has made transilient progress and has applied to in many affairs civil use. The article is about the application of laser technology which is under application and advancing front of study. Key words:Laser Development; Laser history; Laser Applications 一.引言 自1960年7月梅曼发明了世界上第一台红宝石激光器以来,经过四十多年的发展,人们在激光的研究上突破了许多技术难题并取得了相当的成就。激光被发明以来,以其方向性强、单色性好、高亮度和高度的时空相干性引起了科学家们特别是军事家们的广泛关注,经过科学家们的不懈努力,今天的激光仪器无论是从工作原理、实验手段,还是制造工艺都已逐步成熟。激光日益受到各大军事强国的重视,并有望成为未来军事技术发展中最活跃的一个领域之一。迄今为止,激光在军事领域已经广泛应用于定向能武器、航空航天、侦察与反侦察、制导、通信等诸多领域,大大提高了军队在高技术战争条件下的打击与防御能力。同时,激光的军转民技术也得到了很大的发展。 二.激光的发展历程 早在1917年,爱因斯坦在光量子假设基础上,提出了光的两种不同性质的辐射—自发辐射和受激辐射.从理论上预言了存在受激辐射光的可能性。1928年,德国的https://www.doczj.com/doc/7617440918.html,denburg,H.Kopferman用实验证明了受激辐射假设成立。到本世纪五十年代,实验上验证了粒子数反转现象,并提出爱激辐射放大理论,由这个理论所预见的粒子数反转体系对入射电磁场产生受激放大作用的可能性,首先在无线电电子学的微波技术领域内得以实现。1954年,氮分子气体微波量子放大器诞生。微波量子放大器技术的出现和进展。促进人们在光频波段的探索。1957年9月,美国的c.H.Townes第一次提出光频受激辐射放大设想,同每11月,美国的R.G.Gould 独立提出光频受激辐射放大构思并提出证据公证。继而许多人提出了各种激光器 建议.1960年5月」.5日第一台红宝石激光器〔69招A。)由美国人T.H.Maiman研制成功至此,激光技术就以科学史上罕见的高速度向前发展着,激光理论和激光应用也很快开拓。 在理论研究方面.激光技术的出现极大地促进了光辐射理论的发展。激光以前所有各类光源的发光纂本上属于自发辐射机制.光辐射与物质的作用属于弱光与物质的相互作用,其辐射理论属于有关弱光辐射的产生机理,基本性质及其与物质相互作用的理论,经其描述的特点是麦克斯韦方程组中介质电极化强度矢量与辐射场的场强矢量成线性关系,而量子描述的特点是在进行量子力学处理l对.往往只取一级微扰近似。激光的发光机制是基于粒子数反转体系的受激

半导体激光器的应用与前景

关于半导体激光器 作者 摘要:目前半导体激光器发展非常快。随着技术的成熟,半导体激光器的应用也越来越广泛。本文主要分析半导体激光器的国内外发展现状,总结其原理、应用。评估半导体激光在未来的发展。 关键词:半导体激光器原理与应用未来前景Abstract:Nonadays,the semiconductor laser develop very fast.with the technology becomed more and more adultness, the semiconductor laser was application in kinds of filed.This essay analysis the semiconductor laser statu of develop in home and foreige,at the same time ,summarizing its principle and applicat- Ion.estimating the semiconductor laser develop in future.

Keywords:the semiconductor laser principle and application the prospest 国内外发展状况: 相对于固体激光器和气体激光器来说,半导体 激光器真可谓是姗姗来迟,但是它具有效率高、体 积小、寿命长、成本低、等优点,目前在激光器领 域中已占据一半以上的市场份额,而且还在不断扩 大,大有取代传统激光器的趋势[1]。 半导体激光是目前各种激光中发展最快的,它 占有激光市场的最大份额。半导体激光器又称为二 极管激光器(LD),随着生长技术的进步、器件量 产化能力的提高、性能的改善及成本的下降 , LD 陆续扩展到许多其它应用领域,包括 CDROM 驱动、激光打印、可擦除光存储驱动、条码扫描、 文娱表演、光纤通信 ,以及航空和军事应用如军训 模拟装置、测距机、照明器、CI等。由于LD的

高功率激光器的工艺市场前景及应用

高功率半导体激光器的前沿技术、工业应用 及发展前景 摘要 半导体激光器广泛应用在通讯、计算机和消费电子行业。这些激光器主要应用在需要提供毫瓦级能量的系统中。然而,同时高功率半导体激光器已经达到千瓦级。通过特殊的冷却技术和装备,又如组合光束和组成光束技术,高功率半导体激光器得以实现。这样的系统并不是只作为电子管二极管新的高效率和高可靠性的泵源,同样在材料处理中作为直接的能量来源。在这项应用中,高功率半导体激光器进入到了工业制造领域。这篇文章描述了半导体激光器技术和应用。德国国家研究计划“标准的半导体激光器工具”(MDS)在5年里集中研究了高功率半导体激光器,给出了关于未来的应用和新颖的应用的想法。除了改进激光束质量,这个项目的目的还有实现灵活的激光束几何形状来配合不同的积木式组合应用。 1、绪论 早在1962年,就证明了在低温学温度下,在GaAs 或者GaAsP 激光二极管领域的激光效应,而且一些年后发展到在室温环境下实现AlGaAs/GaAs双异质结构。在当时,无论如何可以肯定的是,在他们只能提供短时间的低能量却又价格昂贵时,没有人能预见到这些激光器能够在激光材料处理中发挥如此重要的作用。然而,通过成功的晶体结构研究,详细的分析失效机理和相当多的制造工艺的改进,激光二极管成功的进入通讯、消费电子和计算机市场。并且占据了惊人的份额:在2000年,总共的半导体激光器市场达到了66亿US$;事实上半导体激光器大约占据了整个激光器的2/3市场。然而,在这么高的数字中,只有1.3%(8500万$)是用在固态激光器的泵埔模块中,0.2%(1130万$)是直接用在材料处理。同样的,如今在整个激光材料处理市场中(13.33亿$),半导体泵埔固态激光器占4.5%,半导体激光器直接应用的占0.9%。然而,由于它们的小尺寸和质量轻的特点,使得它们更容易组合;由于它们的高效率和可靠性,使得它们运行成本低;半导体激光器在作为固态激光器的泵埔光源和作为材料处理的一种新的激光源中获得了广泛的关注。

相关主题
文本预览
相关文档 最新文档