当前位置:文档之家› 尺规作图与正多边形

尺规作图与正多边形

尺规作图与正多边形
尺规作图与正多边形

《尺规作图与正多边形》教案设计

一.前期分析

1.内容分析

《尺规作图与正多边形》比较系统地研究了怎样的正多边形可

以尺规作图做出来这个课题。在课型上属于定理教学课,主要

内容是处理如何在圆里面做出相应的多边形边长来,我们初中

就已经学习过一些简单的尺规作图,在初高中也已经接触了很

多圆内接正多边形。启发学生联想所学知识,运用几何法,推

导出定理 6.12。了解这个定理就可以很快知道一个正多边形

能不能尺规作图做出来。

2.学情分析

(1)学生已经了解尺规作图的定义:

尺规作图是指用没有刻度的直尺和圆规作图(2)学生已经掌握五种基本作图:

1、作一条线段等于已知线段;

2、作一个角等于已知角;

3、作已知线段的垂直平分线;

4、作已知角的角平分线;

5、过一点作已知直线的垂线;

(3)学生已具备自学能力,能够独立建立直角坐标系来解决一些简单问题。

(4)学生或许建立模型的意识比较薄弱,所以要达到独立从特

殊案例一般化推广到抽象数学问题的解决比较困难。二.教学目标

1.知识目标:通过对本节课的学习,掌握以下内容:

(1)能自己通过尺规作图作出正三,四,五边形

(2)解释为什么做不出正七边形,正九边形

(3)理解、掌握、应用公式n=2m p1p2……pk

2.能力目标:

(1)培养学生动手操作的能力,以及数形结合的思想。

(2)培养学生从特殊到一般化的推广,学生观察、分析问

题、应用所学知识解

觉问题的能力。

(3)通过在正多边形与费马素数之间建立起关系,在解决

问题的过程中培养学生的联想能力、综合应用知识的

能力

3.情感目标:

(1)培养学生的探究意识,激发学生学习兴趣,活跃学习

氛围。

(2)鼓励学生探索规律、发现规律、解决实际问题

(3)通过共同剖析、探讨问题,推进师生合作意识,加强

相互评价与自我反思

三.教学重点与难点分析

1.教学重点是能自己通过尺规作图作出正三,四,五边形、解释

为什么做不出正七边形,正九边形以及理解、掌握、应用公式n=2m p1p2……pk

2.教学难点是启发学生联想所学知识,运用几何法,推导出

定理6.12 n=2m p1p2……pk

四.教学方法分析

以学生自学为主,教师引导为辅。要求学生独立思考并且结合同学之间的讨论,将生生合作与师生合作相结合,实现教学目标。

在本节课引导学生发现,理解定理n=2m p1p2……pk

五.教学过程

1.复习导入

首先我会问大家,同学们上几节课我们证明了三个尺规作图不能解决的问题即:

1.立方倍积即求作一立方体的边,使该立方体的体积为给定立

方体的两倍。

2.化圆为方即作一正方形,使其与一给定的圆面积相等。

3.三等分角即分一个给定的任意角为三个相等的部分。

我想在生活中我们更关心那些图形可以尺规作图做出来比如我们最常见的圆内接多边形。

2.提出问题,进行探究

1.尺规作图做正三角形

先画个圆O。半径为R

在圆上取任意一点P为圆心

半径为R做弧。

与圆O相交与A,B两点。

AB是正三角形的两个顶点

再以A为圆心,AB的长为半径做弧。

与圆P有两个交点

其中一个为B点

另一个为C

则三角形ABC为正三角形

2.尺规作图做正方形

先做两个圆,圆心分别是O,P

半径为R,交点为A,B

连接O,P

连接A,B

可见OP与AB垂直,且交于Q

以Q为圆心。QP为半径作圆

与AB交于M,N两点

依次连接P,M,O,N

则PMON为正方形

3.尺规作图做正五边形

作一个圆,圆心为O

作圆的两条互相垂直的直径AZ和XY;

作OY的中点M;

以点M为圆心,MA为半径作圆,

交OX于点N;

以点A为圆心,AN为半径,

在圆上连续截取等弧,

使弦AB=BC=CD=DE=AN,

则五边形ABCDE即为正五边形。

4.尺规作图做正六边形

先画个圆O。半径为R

在圆上取任意一点P为圆心

半径为R做弧。

与圆O相交与A,B两点

连接AP,延长交于圆P于点C

连接OP,延长交于圆P于点D

连接BP,延长交于圆P于点E

依次连接AOBCDE

则AOBCDE为一个正六边形

3. 观察特例提出猜想

4.证明猜想得出定理

5.运用定理解决问题

例一:

题目:尺规作图作出正八边形

解:先画出一条直径。过圆点作直径的垂线与圆相交两点。这样两条相互垂直的直径与圆有四个交点,把四个点两两相连。得到一个正方形,再取正方形的四边依次过圆作垂线。作好后,就有八个点与圆相交,连接这八个点,就是正八边形了

六.板书设计

初中数学总复习尺规作图大全

中考总复习---尺规作图专项训练 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。题目二:作已知线段的中点。 已知:如图,线段a . 已知:如图,线段MN. 求作:线段AB,使AB = a . 求作:点O,使MO=NO(即O是MN的中点). 题目三:作已知角的角平分线。题目四:作一个角等于已知角。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 题目五:已知三边作三角形。题目六:已知两边及夹角作三角形。 已知:如图,线段a,b,c. 已知:如图,线段m,n, ∠α. 求作:△ABC,使AB = c,AC = b,BC = a. 求作:△ABC,使∠A=∠α,AB=m,AC=n.题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β ,线段m .求作:△ABC,使∠A=∠α,∠B=∠ β ,AB=m. 课堂测试

C B A C B A A C B C B 1.如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2.如图,107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 3、过点C 作一条线平行于AB ; 4、过不在同一直线上的三点A 、B 、C 作圆O ; 5、过直线外一点A 作圆O 的切线。 6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹) 7、某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1 )按圆形设计,利用图1画出你所设计的圆形花坛示意图; (2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 . C B A

中考数学一轮复习第19课时轴对称和轴对称图形尺规作图无答案

第19课时轴对称和轴对称图形、尺规作图 一、考点说明(见中考指南P96) 二、典型例题 例1 (1)如图,正方形ABCD的边长为4,E是BC上一点,CE=1,点P在 BD上移动,则PC+PE的最小值是. (2)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是 AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C, 则A′C长度的最小值是. 例2如图,△ABC三个顶点的坐标分别是A(1,1)、B(4,2)、 C(3,4).(1)请画出△ABC向右平移5个单位长度后得到的 △A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2; (3)在x轴上求作一点P,使△PAB的周小最小,请画出 △PAB,并直接写出P的坐标. 例3有一块直角三角形的绿地,量得两直角三角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 例4如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心、任意长为半径画弧分别交AB、AC于点M和点N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确 的个数是( ) ①AD是∠BAC的平分线;②∠ADC=60°; ③点D在AB的垂直平分线上;④ A.1 B.2 C.3 D.4

三、反馈检测(10分钟) 1. 下列图案中,不是轴对称图形的是() 2.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA; ③EB平分∠AED;④ED=AB中,一定正确的是() A.①②③B.①②④C.①③④D.②③④ 3. 如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为. 4. 如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED、EC为折痕将两个角(∠A,∠B)向内折起,点A、B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是 . (2)(3)(4)(5) 5. 如图,方格纸中每个小正方形的边长均为1.四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE. (1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B 是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积. 智者加速: 如图,在平面直角坐标系xOy中,点A(-2,0),点B(0,2),点C是线段OA的中点.(1)点P是直线AB上的一个动点,当PC+PO的值最小时,①画出符合要求的点P(保留作图痕迹);②求出点P的坐标及PC+PO的最小值;(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.

解读高斯正十七边形的作法(下)

解读高斯正十七边形的作法 正十七边形的尺规作法: 步骤1:在平面直角坐标系xOy 中作单位圆O 步骤2:在x 轴负半轴上取点N ,使|ON|= 41,易知|NB|=417,以N 为圆心,NB 为半径作弧,交x 轴于F 、F’,易知|OF|= 2a ,|OF’|=2b 步骤3:此时|FB|=122+?? ? ??a =242+a ,以F 为圆心,|FB|为半径作弧,交x 轴正半轴于G ,此时|OG|=2 422++a a =c 步骤4:.类似地,|F’B|=122 +?? ? ??b =242+b ,以F’为圆心,|F’B|为半径作弧,交x 轴正半轴于点G’,此时|OG’|=2422++b b =e 步骤5:以|CG’|为直径作圆,交y 轴正半轴于点H ,易知OH 2=1·e

步骤6:以H 为圆心, 21|OG|为半径作弧,交x 轴正半轴于点K ,则有|OK|=222OH OG -??? ??=222e c -?? ? ??=242e c -步骤7:以K 为圆心,|KH|=2 1|OG|为半径作弧,交x 轴正半轴于点L ,则|OL|=2 42e c c -+步骤8:取OL 的中点M ,则|OM|=4 42e c c -+=cos 172π步骤9:过点M 作y 轴的并行线交单位圆O 于两点A 2和A 17,则Α为正十七边形的第一个顶点,A 2为第二个顶点,A 17为第十七个顶点,从而作出正十七边形。 正十七边形边长的表达式 在上面得到的一系列等式: a =2171+-, b =2171--, c =242++a a ,e =2 42++b b ,cos 172π=4 42e c c -+中,依次求出c =4 17234171-++-,

全等三角形与轴对称图形练习题

全等三角形与轴对称图形测试题(1) 姓名:_____________ 1. 下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等 的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中正确的个数有()A 、3 个B 、2 个C 、1 个D 、0 个 2. 下列说法中:①如果两个三角形可以依据“AAS'来判定全等,那么一定也可以依据“ASA来判 定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要 判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A.①和② B.②和③ C.①和③ D.①②③ 3. 已知:在厶ABC中,AD为/ BAC的角平分线,DE丄AB, F为AC上一点,且/ DFA=100°,贝U ( ) A.DE>DF B. DE

专题:五种基本作图的详细作图过程

尺规作图的基本步骤和作图语言 一、作线段等于已知线段 已知:线段a 求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段 二、作角等于已知角 已知:∠AOB 求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB. 作法: (1)作射线O ′A ′. (2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′.∠A ′O ′B 三、作角的平分线 已知:∠AOB, 求作:∠AOB 内部射线OC,使:∠AOC=∠BOC, 作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的 DE 2 1 长为半径作弧,在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线. 四、作线段的垂直平分线(中垂线)或中点 已知:线段AB 求作:线段AB 的垂直平分线 作法: (1)分别以A 、B 为圆心,以大于AB 的一半为半 径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点) A O

五、过直线外一点作直线的垂线. (1)已知点在直线外 已知:直线a 、及直线a 外一点A.(画出直线a 、点A) 求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法: (1)以点A 为圆心,以适当长为半径画弧,交直线a 于点 C 、D. (2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB. 直线AB 就是所画的垂线b.(如图) (2)已知点在直线上 已知:直线a 、及直线a 上一点A. 求作:直线a 的垂线直线b ,使得直线b 经过点作法: (1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点 (2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M (4) 经过A 、M ,作直线AM 直线AM 常用的作图语言: (1)过点×、×作线段或射线、直线; (2)连结两点××; (3)在线段××或射线××上截取××=××; (4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×; (5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×; (6)延长××到点×,使××=××。 二:作图题说明 在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为点×; (5)作线段××的垂直平分线××

轴对称图形重难点题型培优

轴对称图形解答题较难题 一、翻折变换题型 1 .( 1 )数学课上,老师出了一道题,如图①, Rt △ ABC 中,∠ C=90°,AC=?AB,求证:∠ B=30°,请你完成证明过程. ( 2 )如图②,四边形 ABCD 是一张边长为 2 的正方形纸片, E 、 F 分别为AB 、 CD 的中点,沿过点 D 的折痕将纸片翻折,使点 A 落在 EF 上的点 A′处,折痕交 AE 于点 G ,请运用( 1 )中的结论求∠ ADG 的度数和 AG 的长. ( 3 )若矩形纸片 ABCD 按如图③所示的方式折叠, B 、 D 两点恰好重合于一点 O (如图④),当 AB=6 ,求 EF 的长. 二、特异三角形 1.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.

( 1 )如图 1 ,△ ABC 中,∠ B=2 ∠ C ,线段 AC 的垂直平分线交 AC 于点 D ,交 BC 于点 E .求证: AE 是△ ABC 的一条特异线; ( 2 )如图 2 ,若△ ABC 是特异三角形,∠ A=30°,∠ B 为钝角,求出所有可能的∠ B 的度数. 5 .等腰△ ABC 中, CA=CB ,点 D 为边 AB 上一点,沿 CD 折叠△ CAD 得到 △ CFD ,边 CF 交边 AB 于点 E , CD=CE ,连接 BF . ( 1 )求证: FD=FB . ( 2 )连接 AF 交 CD 的延长线于点 M ,连接 ME 交线段 DF 于点 N ,若 EF=4EC , AB=22 ,求 MN 的长. 三、点的运动变化题型 8 .如图,△ ABC 是边长为 6 的等边三角形, P 是 AC 边上一动点,由 A 向 C 运动(与 A 、 C 不重合), Q 是 CB 延长线上一点,与点 P 同时以相同的速度

高斯与正十七边形

高斯与正十七边形 数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。被誉为“数学王子”的伟大数学家高斯就是其中之一。 高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。小学毕业后,高斯考了文科学校。由于他古典文学成绩突出,入学后直接上了二年级。两年以后高斯又升入了高中哲学班。 15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。语言学和数学是他最喜爱的两门课程。 18岁时,高斯进入了哥廷根大学深造。这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。 后来,一次数学研究上的突破改变了两个引力场的均衡。高斯终于下定决心,飞向了数学之星。 事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问 题。到高斯的时代,人们已经解决了边数是n 23?、n 24?、n 25?、n 253??(=n 0,1, 2,3……)的正多边形的尺规作图问题。但是,还没有人能作出正7边形、正11边形、正17边形等等。很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。 高斯一直对正多边形尺规作图问题非常着迷。经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。他证明 了一切边数形如122+t (=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。 正17边形作图问题不仅震撼了数学界,也震撼了高斯自己的心灵。他再也无法控制自己,在数学美的巨大引力的作用下,飞向了自己理想的星球-他选择了数学。 从此,高斯的数学成就象喷泉一样涌了出来。他在几乎所有的数学学科中留下了自己的光辉成就,成为伟大的数学家。 高斯直到晚年还十分欣赏使自己走上数学之路的正17边形,对数学美的赞叹与追求伴高斯渡过了他的一生。高斯逝世后,人们按照他的遗嘱,在他的雕像下面建立了一座正17边枎的底座,用他非常欣赏的《李尔王》中的诗句赞美道:“你,自然,我的女神,我要为你的规律而献身”。

初中最基本的尺规作图总结

尺规作图 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

正十七边形做法及证明.

步骤一: 给一圆O,作两垂直的直径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a(cos3a+cos5a+cos6a+cos7a =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a 经计算知xy=-1 又有 x=(-1+根号17/4,y=(-1-根号17/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17/4 y1+y2=(-1-根号17/4 最后,由cosa+cos4a=x1,cosacos4a=(y1/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

尺规作图的定义

尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: ①作射线AP; ②在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法: ①分别以M、N为圆心,大于1/2MN的相同 线段为半径画弧,两弧相交于P,Q; ②连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 作法: ①以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; ②分别以M、N为圆心,大于1/2MN 的相同线段为半径画弧,两弧交∠AOB内于P; ③作射线OP。则射线OP就是∠AOB的角平分线。 题目四:已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: ①作线段AB = c; ②以A为圆心b为半径作弧,以B为圆心 a为半径作弧与前弧相交于C; ③连接AC,BC。 则△ABC就是所求作的三角形。

题目五:已知两边及夹角作三角形。 已知:如图,线段m,n, ∠α. 求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法: ①作∠A=∠α; ②在AB上截取AB=m ,AC=n; ③连接BC。 则△ABC就是所求作的三角形。 题目六:已知两角及夹边作三角形。 已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m. 作法: ①作线段AB=m; ②在AB的同旁作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)。

轴对称图形基本念

【本讲教育信息】 一、教学内容: 1. 基本概念:轴对称、轴对称图形,线段的垂直平分线。 2. 轴对称的性质。 3. 线段的垂直平分线的性质及判定 4. 尺规作图:轴对称图形的作法;作线段的垂直平分线 5. 关于坐标轴对称的点的坐标特点。 二、知识要点: 1. 基本概念 (1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。这时,我们也说这个图形关于这条直线(成轴)对称。 (2)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。 (3)轴对称和轴对称图形的区别和联系: 区别:①轴对称图形说的是一个具有特殊形状的图形;轴对称说的是两个图形的一种特殊位置关系。②轴对称是对两个图形说的,而轴对称图形是对一个图形说的。 联系:①都沿某条直线对折,图形重合。②如把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形;反过来,把轴对称图形的两部分分别看作两个图形,那么这两个图形成轴对称。 (4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 2. 轴对称的性质: (1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 (2)关于某条直线成轴对称的两个图形是全等图形。 轴对称图形的性质:(轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。)

3. 线段的垂直平分线的性质及判定 (1)线段垂直平分线上的点与这条线段两个端点的距离相等。 如图①,若PC是线段AB的垂直平分线(AC=BC,PC⊥AB),则PA=PB (2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 如图②,若PA=PB,则点P在线段AB的垂直平分线上。 4. 尺规作图 (1)如何作轴对称图形 几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。所以作轴对称图形的关键是作点关于直线的对称点 (2)作线段的垂直平分线 ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧交于C、D两点, ②作直线CD。 CD就是线段AB的垂直平分线。 5. 关于坐标轴对称的点的坐标特点

17边形画法

步骤一: 给一圆O,作两垂直的半径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA, 作AO延长线上E点使得∠DCE=45度。 步骤二: 作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点, 再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。 连接P4P6,以1/2弧P4P6为半径,在圆上不断截取,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明: 设正17边形中心角为a,则17a=360度,即16a=360度-a

故sin16a=-sina,而 sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a)=-1 注意到cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a) =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a) 经计算知xy=-1 又有 x=(-1+根号17)/4,y=(-1-根号17)/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17)/4 y1+y2=(-1-根号17)/4 最后,由cosa+cos4a=x1,cosacos4a=(y1)/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

八上第二章轴对称图形中尺规作图专题训练(1)(无答案)

尺规作图专题训练(一) 一、选择题 1.如图,用尺规作∠MON的平分线OP.由作图知△OAC≌△ OBC,从而得OP平分∠MON,则此两个三角形全等的依 据是( ) A. SAS B. ASA C. AAS D. SSS 2.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( ) A. SSS B. SAS C. ASA D. AAS 3.如图,在已知的△ABC中,按以下步骤作图: BC的长为半径作弧,两弧相 ①分别以B,C为圆心,以大于1 2 交于两点M,N; ②作直线MN交AB于点D,连接CD. 若CD=AC,,则∠ACB的度数为( ) A. B. C. D. 4.如图为作一个角的角平分线的示意图,该作法的依据是全等 三角形判定的基本事实,可简写为( ) A. SSS B. SAS C. ASA D. AAS 5.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分 CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作别以点C、D为圆心,大于1 2 射线OE,连接CD,则下列说法不一定成立的是( ) A. 射线OE是∠AOB的平分线 B. △COD是等腰三角形 C. C,D两点关于OE所在直线对称 D. O,E两点关于CD所在直线对称

6.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割 成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A. 3 B. 4 C. 5 D. 6 7.如图,在△ABC中,,,BC=4,以点 C为圆心,CB长为半径作弧,交AB于点D;再分别以点 BD的长为半径作弧,两弧相交于 B和点D为圆心,大于1 2 点E,作射线CE交AB于点F,则AF的长为( ) A. 5 B. 6 C. 7 D. 8 8.已知∠AOB,作图. 步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB 于点P、Q; 步骤2:过点M作PQ的垂线交P^Q于点C; 步骤3:画射线OC. 则下列判断:①P?C=C?Q;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为( ) A. 1 B. 2 C. 3 D. 4 二、填空题 9.如图所示,尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交 CD长为半径画弧,两弧交于点P, OA,OB于C、D,再分别以点C、D为圆心,以大于1 2 作射线OP,由作法得到△OCP≌△ODP的根据是______ . 10.如图是利用直尺和三角板过已知直线l外一点P作直线 l的平行线的方法,其理由是______. 11.如图,在矩形ABCD中,按以下 步骤作图:①分别以点A和 AC的长为 C为圆心,以大于1 2 半径作弧,两弧相交于点M和 N;②作直线MN交CD于点 E.若DE=2,CE=3,则矩形 的对角线AC的长为______.

正十七变形的尺规作图-推荐下载

尺规作图:正十七边形 2009-09-07 17:24:09 尺规作图是指使用圆规和没有刻度的直尺在有限步骤内的作图问题。看似几何问题,实则是一 个代数问题。比如要作一个角等于π/3,就是在给定的线段的垂直平分线上截取长度为√3/2的 线段,而作一条直线的垂线则是给定复平面上的一个点z=1,作出z'=√(-1)这个点。把这个 说法更一般化一点,尺规作图问题可以描述成:在复平面上给定那个点z_0,z_1,……,z_n(这 些点的共轭可以得到),求复平面上全体可有这些点出发经直尺和圆规在有限步骤内可作出的 点(数)的集合M。如果z∈M,即z可作,则z是F[x]中一个2^t次多项式的根, F=Q(z_0,z_1,……,z_n,\bar(z_0),\bar(z_1),……,\bar(z_n)),其中Q为有理数域,\bar(z_k)为 z_k的共轭,1≤k≤n。 现在来看一下所谓的尺规作图三大难题。 1,三等分角。给定一个角θ,要得到α=θ/3,即作出cos(α)。而我们有 cos(θ)=cos(3α)=4cos(α)^3-3cos(α), 令cos(α)=a,cos(3α)=b为已知,则有 (2a)^3-3(a)-2b=0, 在一般情况下,这个方程不一定是可约的(如取θ=π/3),在这时2a不可做,因为他不可能是一个2^t次多项式的根。除此之外尚有很多可以被三等分的角,如只要n不是3的倍数,则 α=π/3必可三等分。事实上n和3互素,因此存在证书u和v,是的3u+nv=1,1/3n=u/n+v/3,所以α/3=π/3n=uπ/n+vπ/3,π/n和π/3都可作,所以α/3也可作。 2,倍立方。即做一个正方体的体积是原正方体体积的2倍,相当于要作出x^3-2等于0的根,同1,这是不可能的。 3,化圆为方。即作一个正方形使其面积等于给定的原的面积。这相当于要作出x^2-π=0的根。但是π不是代数数,即不是任何多项式的根,所以√π也是不可作的。 尺规作图里面还有一个经典的问题,作正n边形。比如正三角形,正四边形,正五边形,正六 边形,正八边形,这些都是很容易就能做出来的,但是很长时间内人们找不到作正七变形和正 九边形的方法。这一领域的下一个进展是1796年,高斯给出了正十七边形的作法。1801年,高斯证明了如果k是费马素数,那么就可以用直尺和圆规作出正十七边形。事实上可进一步推 广为如下结论:正n边形可作当且仅当n=(2^e)p_1p_2...p_r,e为非负整数,p_k为费马素数 1≤k≤r。可以做如下简单的思考:要作正n边形,实际上就是要作n次本原单位根ω,使得 ω^n-1=0。又[Q(ω):Q]=φ(n),根据前面的讨论知φ(n)必为2^t的形式。若n=(2^e)(p_1) ^a_1(p_2)^a_2...(p_r)^a_r,则φ(n)=(2^(e-1))(p_1-1)(p_1)^(a_1-1)(p_2-1)(p_2)^(a_2-1)...(p_r-1)(p_r)^(a_r-1),要使其为为2^t的形式必有p_k为费马素数且a_k=1,1≤k≤r。 所谓费马素数是指形为F_n=2^(2^n)+1形式的素数。当初费马猜想所有这种形状的数都是素数,他验证了前五个3,5,17,257,65537,这些都是素数。但是1738年欧拉证明了当n=5时,F_5=4294967297=641*6700417,因此他不是素数。事实是此后人们再也没有发现其他的费马素数,甚至猜想费马素数只有费马当初验证的5个数。

【中考必会】五种基本尺规作图的作法与GIF

一、基本概念 1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图. 2.基本作图:最基本、最常用的尺规作图,通常称基本作图. 3.五种常用的基本作图: (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)平分已知角; (4)作线段的垂直平分线. (5)经过一点作已知直线的垂线 4.掌握以下几何作图语句: (1)过点×、点×作直线××;或作直线××,或作射线××; (2)连结两点×、×;或连结××; (3)在××上截取××=××; (4)以点×为圆心,××为半径作圆(或弧); (5)以点×为圆心,××为半径作弧,交××于点×; (6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××; (7)延长××到点×,或延长××到点×,使××=××. 5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如: (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为×; (5)作线段××的垂直平分线××. 二:五种基本作图方法GIF演示: 初中数学五种基本尺规作图

1 作一条线段等于已知线段 一、作一条线段等于已知线段 已知:线段a, 求作:线段AB,使AB=a. 作法: (1)作射线AC. (2)在射线AC上截取AB=a ,线段AB即为所求. 2 作一个角等于已知角

二、作一个角等于已知角 已知:∠AOB, 求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法: (1)作射线O′A′. (2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D. (3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′. (4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′. (5)过点D′作射线O′B′.∠A′O′B′即为所求. 3 作已知角的角平分线

相关主题
文本预览
相关文档 最新文档