当前位置:文档之家› 2011届高三数学一轮复习 三角函数的图象与性质巩固与练习

2011届高三数学一轮复习 三角函数的图象与性质巩固与练习

2011届高三数学一轮复习 三角函数的图象与性质巩固与练习
2011届高三数学一轮复习 三角函数的图象与性质巩固与练习

巩固

1.函数f (x )=tan(x +π

4)的单调增区间为( )

A .(k π-π2,k π+π

2),k ∈Z B .(k π,(k +1)π),k ∈Z

C .(k π-3π4,k π+π4),k ∈Z

D .(k π-π4,k π+3π

4),k ∈Z

解析:选C.由k π-π2

2(k ∈Z ),

得单调增区间为?

????k π-3π4,k π+π4,k ∈Z . 2.(2009年高考四川卷)已知函数f (x )=sin(x -π

2)(x ∈R ),下面结论错误的是( )

A .函数f (x )的最小正周期为2π

B .函数f (x )在区间[0,π

2]上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数

解析:选D.∵y =sin(x -π

2)=-cos x ,∴T =2π,A 正确;

y =cos x 在[0,π2]上是减函数,y =-cos x 在[0,π

2]上是增函数,B 正确;

由图象知y =-cos x 关于直线x =0对称,C 正确. y =-cos x 是偶函数,D 错误.

3.若函数y =2cos(2x +φ)是偶函数,且在(0,π

4)上是增函数,则实数φ可能是( )

A .-π

2 B .0 C.π

2 D .π

解析:选D.依次代入检验知,当φ=π时,函数y =2cos(2x +π)

=-2cos2x ,此时函数是偶函数且在(0,π

4)上是增函数.

4.函数y =12sin(π4-2

3x )的单调递增区间为________.

解析:由y =12sin(π4-23x )得y =-12sin(23x -π

4), 由π2+2k π≤23x -π4≤3

2π+2k π,k ∈Z ,得 98π+3k π≤x ≤21π

8+3k π,k ∈Z ,

故函数的单调增区间为[98π+3k π,21π

8+3k π](k ∈Z ).

答案:[98π+3k π,21π

8+3k π](k ∈Z )

5.(原创题)若f (x )是以5为周期的函数,f (3)=4,且cos α=1

2,则f (4cos2α)=________.

解析:4cos2α=4(2cos 2α-1)=-2.

∴f (4cos2α)=f (-2)=f (-2+5)=f (3)=4. 答案:4

6.已知函数f (x )=sin2x -2cos 2x (x ∈R ). (1)求函数f (x )的最小正周期;

(2)当x ∈[0,π

2]时,求函数f (x )的最大值及相应的x 值. 解:(1)f (x )=sin2x -2cos 2x =sin2x -cos2x -1,

则f (x )=2sin(2x -π

4)-1,

所以,函数f (x )的最小正周期为π.

(2)由x ∈[0,π2],得3x -π4∈[-π4,3π

4], 当2x -π4=π2,即x =3

8π时,f (x )有最大值2-1.

练习

1.函数y =|sin x |-2sin x 的值域是( )

A .[-3,-1]

B .[-1,3]

C .[0,3]

D .[-3,0] 解析:选B.当0≤sin x ≤1时,y =sin x -2sin x =-sin x ,此时y ∈[-1,0];当-1≤sin x <0时,y =-sin x -2sin x =-3sin x ,此时y ∈(0,3],求其并集得y ∈[-1,3].

2.函数f (x )=tan ωx (ω>0)图象的相邻两支截直线y =π

4所得线段

长为π4,则f (π

4)的值是( )

A .0

B .1

C .-1 D.π

4

解析:选A.由题意知T =π4 ,由πω=π

4得ω=4,

∴f (x )=tan4x ,∴f (π

4)=tanπ=0.

3.(2009年高考重庆卷)下列关系式中正确的是( ) A .sin11°

又∵g (x )=sin x 在x ∈[0,π

2]上是增函数, ∴sin11°

到图象C 的对称轴的距离的最小值是π

8,则f (x )的最小正周期是( )

A.π

2 B .π

C .2π D.π

4

解析:选A.依题意得T 4=π8,所以最小正周期为T =π

2.

5.已知函数y =2sin 2(x +π

4)-cos2x ,则它的周期T 和图象的一条对称轴方程是( )

A .T =2π,x =π8

B .T =2π,x =3π

8

C .T =π,x =π8

D .T =π,x =3π

8

解析:选D.∵y =2sin 2(x +π4)-cos2x =1-cos(2x +π

2)-cos2x =1

+sin2x -cos2x =1+2sin(2x -π

4),所以其周期T =π,对称轴方程的

表达式可由2x -π4=k π+π2(k ∈Z )得x =k π2+3π

8(k ∈Z ),故当k =0时

的一条对称轴方程为x =3π

8,故答案为D.

6.(2008年高考天津卷)已知函数f (x )是定义在R 上的偶函数,

且在区间[0,+∞)上是增函数.令a =f (sin 2π7),b =f (cos 5π

7),c =

f (tan 5π

7),则( )

A .b <a <c

B .c <b <a

C .b <c <a

D .a <b <c

解析:选A.sin 27π=sin(π-57π)=sin 5

7π. 又π2<57π<34π.

由三角函数线tan 57π<cos 57π<sin 5

且cos 5

7π<0,

sin 5

7π>0.如图.

∴???

???cos 57π<??????sin 57π<????

??tan 57π. 又f (x )在[0,+∞)上递增且为偶函数,

∴f (?

?????cos 57π)<f (??????sin 57π)<f (????

??tan 57π), 即b <a <c ,故选A.

7.函数y =lgsin x + cos x -1

2的定义域为________.

解析:(1)要使函数有意义必须有???

sin x >0

cos x -1

2≥0

, 即???

sin x >0cos x ≥1

2

解得???

2k π

3+2k π

(k ∈Z ),

∴2k π

3+2k π,k ∈Z ,

∴函数的定义域为{x |2k π

3+2k π,k ∈Z }.

答案:{x |2k π

3+2k π,k ∈Z }

8.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π

4]上的最小值是-2,则ω的最小值等于________.

解析:由题意知T 4≤π3,T =2πω,∴2ω≥3,ω≥3

2,

∴ω的最小值等于3

2.

答案:32

9.对于函数f (x )=?

????

sin x ,sin x ≤cos x

cos x ,sin x >cos x ,给出下列四个命题:

①该函数是以π为最小正周期的周期函数;

②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1;

③该函数的图象关于x =5π

4+2k π(k ∈Z )对称;

④当且仅当2k π

2+2k π(k ∈Z )时,

0

2.

其中正确命题的序号是________.(请将所有正确命题的序号都填上)

解析:画出f(x)在一个周期[0,2π]上的图象.

答案:③④

10.已知函数f (x )=log 2[2sin(2x -π

3)]. (1)求函数的定义域;

(2)求满足f (x )=0的x 的取值范围.

解:(1)令2sin(2x -π3)>0?sin(2x -π3)>0?2k π<2x -π

3<2k π+π,

k ∈Z ?k π+π6

3π),k ∈Z .

(2)∵f (x )=0,∴sin(2x -π3)=22?2x -π3=2k π+π4或2k π+3

4π,

k ∈Z ?x =k π+724π或x =k π+13

24π,k ∈Z ,故x 的取值范围是{x |x =k π+724π或x =k π+13

24π,k ∈Z }.

11.已知函数f (x )=sin 2

ωx +3sin ωx sin(ωx +π2)(ω>0)的最小正周期为π.

(1)求ω的值;

(2)求函数f (x )在区间[0,2π

3]上的取值范围.

解:(1)f (x )=1-cos2ωx 2

+3

2sin2ωx =32sin2ωx -12cos2ωx +12

=sin(2ωx -π6)+1

2.

因为函数f (x )的最小正周期为π,且ω>0,

所以2π

2ω=π,解得ω=1.

(2)由(1)得f (x )=sin(2x -π6)+1

2.

因为0≤x ≤2π3,所以-π6≤2x -π6≤7π

6,

所以-12≤sin(2x -π

6)≤1,

所以0≤sin(2x -π6)+12≤3

2,

即f (x )的取值范围为[0,3

2].

12.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π

2]时,-5≤f (x )≤1.

(1)求常数a ,b 的值;

(2)设g (x )=f (x +π

2)且lg g (x )>0,求g (x )的单调区间.

解:(1)∵x ∈[0,π

2],

∴2x +π6∈[π6,7π6],

∴sin(2x +π6)∈[-1

2,1],

∴-2a sin(2x +π

6)∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又-5≤f (x )≤1. ∴????? b =-53a +b =1,解得?????

a =2

b =-5

. (2)f (x )=-4sin(2x +π

6)-1,

g (x )=f (x +π2)=-4sin(2x +7π

6)-1

=4sin(2x +π

6)-1,

又由lg g (x )>0,得g (x )>1,

∴4sin(2x +π

6)-1>1,

∴sin(2x +π6)>1

2, ∴π6+2k π<2x +π6<5

6π+2k π,k ∈Z , 由π6+2k π<2x +π6≤2k π+π

2,得

k π

6,k ∈Z . 由π2+2k π≤2x +π6<5

6π+2k π得 π6+k π≤x <π

3+k π,k ∈Z .

∴函数g (x )的单调递增区间为(k π,π

6+k π](k ∈Z ),

单调递减区间为[π6+k π,π

3

+k π)(k ∈Z )

[例1]求经过两点P 1(2,1)和P 2(m ,2)(m ∈R )的直线l 的斜率,并且求出l 的倾斜角α及其取值范围.

选题意图:考查倾斜角与斜率之间的关系及斜率公式.

解:(1)当m =2时,x 1=x 2=2,∴直线l 垂直于x 轴,因此直线的斜率不存在,倾斜角α=

2

π (2)当m ≠2时,直线l 的斜率k =2

1

-m ∵m >2时,k >0. ∴α=arctan

21-m ,α∈(0,2

π

), ∵当m <2时,k <0 ∴α=π+arctan

21-m ,α∈(2

π

,π). 说明:利用斜率公式时,应注意斜率公式的应用范围. [例2]若三点A (-2,3),B (3,-2),C (

2

1

,m )共线,求m 的值. 选题意图:考查利用斜率相等求点的坐标的方法. 解:∵A 、B 、C 三点共线, ∴kAB =kAC ,

.22

13

2

332+-=+--m 解得m =

2

1. 说明:若三点共线,则任意两点的斜率都相等,此题也可用距离公式来解.

[例3]已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.

选题意图:强化斜率公式.

解:设直线l 的倾斜角α,则由题得直线AB 的倾斜角为2α.

∵tan2α=kAB =

.4

3

)1(3)5(2=-----

4

3tan 1tan 22=-∴

αα

即3tan 2α+8tan α-3=0, 解得tan α=3

1

或tan α=-3. ∵tan2α=

4

3

>0,∴0°<2α<90°, 0°<α<45°, ∴tan α=

3

1. 因此,直线l 的斜率是

3

1

说明:由2α的正切值确定α的范围及由α的范围求α的正切值是本例解法中易忽略的地方.

命题否定的典型错误及制作

在教材的第一章安排了《常用逻辑用语》的内容.从课本内容安排上看,显得较容易,但是由于对逻辑联结词不能做到正确理解,在解决这部分内容涉及的问题时容易出错.下面仅对命题的否定中典型错误及常见制作方法加以叙述.

一、典型错误剖析

错误1——认为命题的否定就是否定原命题的结论

在命题的否定中,有许多是把原命题中的结论加以否定.如命题:2是无理数,其否定是:2不是无理数.但据此就认为命题的否定就是否定原命题的结论就错了.例1写出下列命题的否定:

⑴对于任意实数x,使x2=1;

⑵存在一个实数x,使x2=1.

错解:它们的否定分别为

⑴对于任意实数x,使x2≠1;

⑵存在一个实数x,使x2≠1.

剖析:对于⑴是全称命题,要否定它只要存在一个实数x,使x2≠1即可;对于⑵是存在命题,要否定它必须是对所有实数x,使x2≠1.

正解:⑴存在一个实数x,使x2≠1;

⑵对于任意实数x,使x2≠1.

错误2——认为命题的否定就是原命题中的判断词改和其意义相反的判断词

在命题的否定中,有许多是把原命题中的判断词改为相反意义的词,如“是”改为“不是”、“等”改为“不等”、“大于”改为“小于或等于”等.但对于联言命题及选言命题,还要把逻辑联结词“且”与“或”互换.

例2写出下列命题的否定:

⑴线段AB与CD平行且相等;

⑵线段AB与CD平行或相等.

错解:⑴线段AB与CD不平行且不相等;

⑵线段AB与CD不平行或不相等.

剖析:对于⑴是联言命题,其结论的含义为:“平行且相等”,所以对原命题结论的否定除“不平行且不相等”外,还应有“平行且不相等”、“不平行且相等”;而⑵是选言命题,其结论包含“平行但不相等”、“不平行但相等”、“平行且相等”三种情况,故否定就为“不平行且不相等”.

正解:⑴线段AB与CD不平行或不相等;

⑵线段AB与CD不平行且不相等.

错误3——认为“都不是”是“都是”的否定

例3写出下列命题的否定:

⑴a,b都是零;

⑵高一(一)班全体同学都是共青团员.

错解:⑴a,b都不是零;

⑵高一(一)班全体同学都不是共青团员.

剖析:要注意“都是”、“不都是”、“都不是”三者的关系,其中“都是”的否定是“不都是”,“不都是”包含“都不是”;“至少有一个”的否定是“一个也没有”.正解:⑴a,b不都是零,即“a,b中至少有一个不是零”.

⑵高一(一)班全体同学不都是共青团员,或写成:高一(一)班全体同学中至少有一人共青团员.

错误4——认为“命题否定”就是“否命题”

根据逻辑学知识,任一命题p都有它的否定(命题)非p(也叫负命题、反命题);而否命题是就假言命题(若p则q)而言的.如果一个命题不是假言命题,就无所谓否命题,也就是说,我们就不研究它的否命题.我们应清醒地认识到:假言命题“若p则q”的否命题是“若非p则非q”,而“若p则q”的否定(命题)则是“p且非q”,而不是“若p则非q”.

例4写出命题“满足条件C的点都在直线F上”的否定.

错解:不满足条件C的点不都在直线F上.

剖析:对于原命题可表示为“若A,则B”,其否命题是“若┐A,则┐B”,而其否定形式是“若A,则┐B”,即不需要否定命题的题设部分.

正解:满足条件C的点不都在直线F上.

二、几类命题否定的制作

1.简单的简单命题

命题的形如“A是B”,其否定为“A不是B”.只要把原命题中的判断词改为与其相反意义的判断词即可.

例5写出下列命题的否定:

⑴ 3+4>6;

⑵ 2是偶数.

解:所给命题的否定分别是:

⑴ 3+4≤6;

⑵ 2不是偶数.

2.含有全称量词和存在量词的简单命题

全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等,形如“所有A 是B”,其否定为“存在某个A不是B”;存在量词相当于“存在一个”,“有一个”,“有些”,“至少有一个”,“至多有一个”等,形如“某一个A是B”,其否定是“对于所有的A都不是B”.

全称命题的否定是存在命题,存在命题的否定是全称命题.

例6写出下列命题的否定:

⑴不论m取什么实数,x2+x-m=0必有实根.

⑵存在一个实数x,使得x2+x+1≤0.

⑶至少有一个整数是自然数.

⑷至多有两个质数是奇数.

解:⑴原命题相当于“对所有的实数m,x2+x-m=0必有实根”,其否定是“存在实数m,使x2+x-m=0没有实根”.

⑵原命题的否定是“对所有的实数x,x2+x+1>0”.

⑶原命题的否定是“没有一个整数是自然数”.

⑷原命题的否定是“至少有三个质数是奇数”.

3.复合命题“p且q”,“p或q”的否定

“p且q”是联言命题,其否定为“非p或非q”(也写成┐p或┐q“;“p或q”是选言命题,其否定为“非p且非q”(也写成┐p且┐q“;

例7写出下列命题的否定:

⑴他是数学家或物理学家.⑵他是数学家又是物理学家.

21

23

x x

+-

≥0.

解:⑴原命题的否定是“他既不是数学家也不是物理学家”.

⑵原命题的否定是“他不能同时是数学家和物理学家”,即“他不是数学家或他不是物理学家”.

⑶若认为┐p:

21

23

x x +-<0,那就错了.┐p是对p的否定,包括

2

1

23

x x

+-

<0

21

23

x x

+-

=0.

或∵p:x>1或x<-3,∴┐p:-3≤x≤1.

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

三角函数图像与性质知识点总结和经典题型

三角函数图像与性质经典题型 题型1:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所 以排除A 、C ,当x ∈(0, 2 π )时,y =-xc os x <0。 题型2:三角函数图象的变换 例2.试述如何由y =31sin (2x +3 π )的图象得到y =sin x 的图象。 解析:y =31sin (2x +3π))(纵坐标不变倍 横坐标扩大为原来的3 πsin 312+=?????????→?x y x y sin 313 π =????????→?纵坐标不变个单位图象向右平移 x y sin 3=?????????→?横坐标不变 倍 纵坐标扩大到原来的 例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移 2 π 个单位,再沿y 轴向下平移1个单位,得到的曲 线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y = x cos 21+,因为要将原曲线向右、向下分别移动2π 个单位和1个单位,因此可得 y = ) 2 cos(21π -+x -1为所求方程.整理得(y +1)sin x +2y +1=0. 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线 y =3与函数f (x )图象的所有交点的坐标。 解析:根据图象得A =2,T = 27π-(-2π)=4π,∴ω=21,∴y =2sin (2 x +?),又由图象可得相位移为-2π,∴-2 1? = - 2 π,∴?= 4π.即y =2sin (21x +4π)。根据条件3=2sin (4 21π+x ),∴421π+x =2k π+ 3π(k ∈Z )或 4 21π+x =2k π+32 π(k ∈Z ),∴x =4k π+ 6 π (k ∈Z )或x =4k π+ 65π(k ∈Z )。∴所有交点坐标为(4k π+3,6 π)或(4k π+3,65π )(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。 解析:(1)0≤c os x <1?2k π- 2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )∴所求函数的定义域为{x |x ∈[2k π-2 π ,2 k

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数经典例题

经典例题透析 类型一:锐角三角函数 本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小. 1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那 么( ) A.B.C.D. 思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可. 解析: 解法1:利用三角形面积公式,先用勾股定理求出 ,∴. ∴. 解法2:直接利用勾股定理求出, 在Rt△ABC中,.答案:A 总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可. 2.计算:(1)________; (2)锐角A满足,则∠A=________. 答案:(1);(2)75°. 解析:(1)把角转化为值.(2)把值转化为角即可. (1).

(2)由,得, ∴.∴A=75°. 总结升华: 已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角. 3.已知为锐角,,求. 思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾 股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出 ,再利用,使可求出. 解析: 解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,. 则, ∴. 解法2:由,得 , ∴. 总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或 利用,来求.

三角函数知识点及典型例题

三角函数知识点及典型例题 §1.1.1、任意角 1、 正角、负角、零角、象限角的概念. 2、 与角α终边相同的角的集合:{} |360,S k k Z ββα==+?∈ . §1.1.2、弧度制 1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 r l =α. 3、弧长公式: R 4、扇形面积公式: S=21 lr=2 1αr 2. §1.2.1、任意角的三角函数 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么: x y x y = ==αααtan ,cos ,sin . 2、 设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=) _______ sin r y =α,________cos r x =α,_____tan x y =α. 3、 αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余 和三角函数线的画法. 4、 诱导公式一: ()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+k k k (Z k ∈) 5、 特殊角0°,30°,45°,60°, 90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式 1、 平方关系:2 2 sin cos 1αα+=.2、 商数关系:sin tan cos α αα =. §1.3、三角函数的诱导公式 1、 诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+ 2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=- 3、诱导公式四: ()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=- 4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=?? ? ??-=??? ??-

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

三角函数知识点总结及练习题

高中数学必修4三角函数知识点总结 一、角的概念和弧度制: (1)在直角坐标系内讨论角: 注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。 (2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: (3)区间角的表示: ①象限角:第一象限角: ; 第四象限角: ; 第一、三象限角: ; ②写出图中所表示的区间角: (4)由α的终边所在的象限, 来判断2α所在的象限,来判断3 α所在的象限 (5)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零; 任一角α的弧度数的绝对值r l =||α,其中l 为以角α为圆心角时所对圆弧的长。 (6)弧长公式: ;半径公式: ;扇形面积公式: ; 练习:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。(22cm ) 二、任意角的三角函数: (1)任意角的三角函数定义: 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系 I )在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan (注意r>0) 练习:已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。 角α的终边上一点)3,(a a -,则=+ααsin 2cos 。 II )作单位元交角α的终边上点),(y x P ,则=αsin ;=αcos ;=αtan (2)在图中画出 角α的正弦线、 余弦线、正切 线; 练习: (1)若α为锐角,则,sin ,tan ααα的大小关系为_____ (sin tan ααα<<) (2)函数)3sin 2lg(cos 21+++=x x y 的定义域是______222,33x k x k k Z ππππ??∣- <≤+∈???? (3)特殊角的三角函数值: 三、同角三角函数的关系与诱导公式: (1)同角三角函数的关系

三角函数知识点及例题讲解

三角函数知识点 1.特殊角的三角函数值: (1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα == ) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβ αβαβαβααα αα αβα αβααβα αα αα =±=???→=-↓=-=-±±= ?-↓= - (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、 两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-, 2()()αβαβα=+--,22 αβαβ++=?,()( ) 222αββ ααβ+=---等), (2)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-=与升幂公 式:21cos 22cos αα+=,21cos 22sin αα-=)。如

(; (3)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=? tan sin 42 ππ=== 等),. 。 (4)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2||T π ω=。如 (5)单调性:()sin 2,222y x k k k Z ππππ? ?=-+∈??? ?在上单调递增,在 ()32,222k k k Z ππππ??++∈??? ?单调递减;cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! (6)、形如sin()y A x ω?=+的函数: 1几个物理量:A ―振幅;1 f T =―频率(周期的倒数); x ω?+― 相位;?―初相; 2函数sin()y A x ω?=+表达式的确定:A 由周 期确定;?由图象上的特殊点确()sin()(0,0f x A x A ω?ω=+>>,||)2 π?<()f x =_____(答:15()2sin()23 f x x π =+); 3函数sin()y A x ω?=+图象的画法:①“五点法”――设X x ω?=+,令X =0,3,,,222 ππ ππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。 4函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;②函数()si n y x ?=+图象的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图象;③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象;④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图象。要特别注意,若由 ()sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |? ω 个单位,如 (1)函数2sin(2)14 y x π =--的图象经过怎样的变换才能得到sin y x =的图象?

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

初中三角函数知识点总结及典型习题)

锐角三角函数知识点总结及典型习题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 5、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、的增减性: 当0°<α<90°时,tan α随α的增大而增大, 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边

仰角铅垂线 水平线 视线 视线 俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l = 。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 例1:已知在Rt ABC △中,3 90sin 5 C A ∠==°,,则tan B 的值为( )A .43 B .45 C .54 D .34 例2:104cos30sin 60(2)(20092008)-??+---=______. 1. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米 B .83米 C . 83 3 米 D . 43 3 米 2. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( ) A .5sin 40° B .5cos 40° C .5tan 40° D .5 cos 40° 3. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( ) A . 8 33 m B .4 m C .43m D .8 m 4. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53 米 B . 10米 C .15米 D .103米 5.如图,在矩形ABCD 中,D E ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则 DE 的长度是( )A .3 B .5 C .25 D . 2 2 5 6. 如图所示,小明在家里楼顶上的点A 处,测量 建在与小明家楼房同一水平线上相邻的电梯楼的高,在点 :i h l =h l α A B C D 1 h B C A A B

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

九年级《三角函数》知识点、经典例题

九年级《三角函数》知识点、例题、中考真题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 22c b a =+ 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90 °特殊角的三角函数值(重要) 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 A 90B 90∠-?=∠? =∠+∠得由B A 对边 邻边 A C A 90B 90∠-?=∠? =∠+∠得由B A

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 9、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 10、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 11、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 12、解斜三角形所根据的定理 (在△ABC 中) ① 正弦定理: SinC c SinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系: Sin(180ο -A)= sinA , Cos(180ο -A)= - cosA , tan(180ο -A)=-cotA , cotA(180ο -A)=-tanA. ④ S △ABC =21absinC=21bcsinA=2 1 casinB. 三角函数中考试题分类例题解说 一、三角函数的定义 :i h l =h l α 图1

三角函数知识点及例题讲解

2 三角函数知识点 1)巧变角 (已知角与特殊角的变换、已知角与目标角的变换、角与其倍角 的变 换、两角与其和差角的变换 . 如 ( ) 2 ( ) ( ) , (1) 平方关 系: 2 sin cos 2 1,1 tan 2 2 sec ,1 cot 22 csc (2) 倒数关系: sin csc =1,cos sec =1,tan cot =1, ( 3) 商数关 系: tan sin ,cot cos cos sin 两角和与差的正弦、 余弦、 正切公式及倍角公式 : sin sin cos cos sin 令 sin2 2sin cos cos cos cos m sin sin 令 cos2 2 cos 2 1 1 2sin 2 tan 1mtan tan 2 sin = 1 cos2 tan2 2tan 1 tan 2 (2) 三角函数次数的降升 (降幂公式: 2 1 cos2 2 cos , sin 1 cos2 2 与升幂 2 2 等), 3 、 2 cos = 1+cos2 2 2cos tan tan sin 2

公式:1 cos2 2cos2,1 cos2 2sin 2 2

(3) 常值变换主要指“ 1”的变换 ( 1 sin 2 x cos 2 x tan 4 sin 2 L 等), 4)周期性 :① y sin x 、 y cos x 的最小正周期都是 2 ;② f ( x) A sin( x )和 f ( x) A cos( x )的最小正周期都是 T | 2 | 。如 5 )单 调 性 : y sin x 在 2k , 2k 2 kZ 2 上单 调递增, 在 2k ,2k 3 k Z 单调递减; y cos x 在 2k ,2 k kZ 上单调递减, 在 2 2 2k ,2k 2 k Z 上单调递 特别提别忘了 k Z ! (6) 、形如 y A sin( x ) 的函数: 1 几个物理量 : A ―振幅;f 1 ―频率(周期的倒数); 相位; ―初相; 2 函数 y A sin( x ) 表达式的确定 :A 由最值确定; 期 确 定 ; 由 图 象 上 的 特 殊 点 确 定 , 如 f (x) Asin( x )(A 0, 0,| | ) 的图象如图所示, 2 3 函数 y Asin( x ) 图象的画法 :①“五点法”――设 X x ,令 X =0 , , , ,2 求出相应的 x 值,计算得出五点的坐标,描点后得出图象;②图象变换法: 22 这是作函数简图常用方法。 4 函数 y A sin( x ) k 的图象与 y sin x 图象间的关系 :①函数 y sin x 的图象 纵 坐标不变,横坐标向左( >0 )或向右( <0 )平移 | | 个单位得 y sin x 的图 象; ②函数 y sin x 图 象的纵坐 标不 变, 横坐标变为原 来的 1 ,得到函 数 y sin x 的图象;③函数 y sin x 图象的横坐标不变,纵坐标变为原来的 A 倍, 得到函数 y A sin( x ) 的图象;④函数 y Asin( x ) 图象的横坐标不变,纵坐 标向上( k 0 )或向下( k 0 ),得到 y Asin x k 的图象。要 特别注意 , 若由 y sin x 得到 y sin x 的图象,则向左或向右平移应平移 | | 个单位, 如 1 )函数 y 2sin( 2 x ) 1的图象经过怎样的变换才能得到 y sin x 的图象? (; 22 sec x tan x tan x cot x 2sin(15x 2 由周 则 f ( x) f ( x)

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

相关主题
文本预览
相关文档 最新文档