当前位置:文档之家› 机器人课程设计说明书

机器人课程设计说明书

机器人课程设计说明书
机器人课程设计说明书

1.绪论 2

1.1课题背景 3

1.2 慧鱼机器人 3

1.3 走进实验室 4

1.4 按键式传感器 4

1.5 设计工作原理 5

1.6慧鱼模型操作规程 6

2. 移动机器人6

2.1 移动机器人基础模型7

2.2 移动机器人仿真图7

2.3移动机器人结构简图8

2.4移动机器人仿真程序框图9

3. 仿生人10

3.1仿生机器人迈克仿真示意图10

3.2仿生机器人迈克仿真程序图示10

3.3仿生机器人结构简图11

4. 寻光机器人10

4.1寻光机器人仿真示意图15

4.2寻光机器人仿真程序框图16

4.3寻光机器人结构简图16

5.寻踪机器人14

5.1寻踪机人仿真示意图15

5.2寻踪机人仿真程序框图16

5.3寻踪机器人结构简图16 6.个人总结18 7。参考文献19

摘要

1.1课题背景

由机器人的发展和快速广泛的被使用,可知科学家对于机器人的功能也相提高,除了超强的逻辑运算、记忆能力及具备类似的自我思考能力,另外在机器人的外表及内部结构,科学家更希望能模仿人类。对于外在资讯的选集,也透过各种感应器,企图达到类似人类各种触觉的功能,选集了外在环境的资讯,一旦外在环境起了改变,机器人一定要能随着变化,做出该有的反应动作,更新自己的资料库,达到类似人类学习的功能。

移动式机器人形态分为车轮式、特殊车轮式、不限轨道式、不行式等,若是在平坦的地面上移动时,车轮式是最具效率的,不懂机构简单,且具实用性,但其缺点是在凹凸不平的岩地上便不能行走。此外,因普通车轮无法在阶梯及有段差的地外行走,因此积极研究一种有车轮、三辆以上连结构的特殊形态,及特殊组合的不限轨道式机器人,最近亦努力开发步行机器人,使其能登上阶梯。

本次研究即为移动机器人设计及其在控制器的实现,是说明当移动机器人在轨行动作中若遇到障碍物时会透过微动开关将讯息传回电路板中进行判断,再配合计数器的动作使机器人能避开障碍物并往下个路径前进,知道要到远的目标。

无疑,自动化控制理论本来是要使机器人变聪明。但是如何实现呢?

我们先用一个启发式实验进行说明。我们可能都观察过飞蛾趋光的特点,飞蛾找到光源,向那里飞去,即使非常近的距离,也绝不会拍打到光源。显然飞蛾之所以能够这样做,是因为它发觉光源,划出路线然后再向其扑去。这本领是基于这种昆虫自身具备的机敏的行为模式。

现在我们将上述能力应用到一个技术系统中。先用光学传感器探测到光源,马达执行动作,这样,我们必须在发现信号和执行信号之间建立一个合理的连接,即程序。

20世纪50年代,一位名叫沃特格雷(Walter Grey)的英国人将上述引人思考的实验付诸于实践。借助于几个简单的传感器,马达和电路,他创作出多种自

动化动物,可以准确模仿出飞蛾的动作。左图所示的是“自动”海龟的复制品,

展示在华盛顿的史密森博物馆里。

鉴于上述的奇思妙想,我们也要为我们的机器人建立起类似的行为模式,并用程序来和机器人进行交流。

但是我们为什么需要可移动机器人?让我们试着将“虚拟的飞蛾”的动作应用到技术装置上。首先,一个很简单的例子就是寻光。我们将一个光条粘在地上作为光源,把传感器面朝下并排放在一起,而非面向前。这样,如果是在仓库,移动机器人就会从中找到自己的行进路线。沿着这条线,还有一些特殊的信息采集点,如条形码,将引导机器人进行下一步的动作,比方说到达这些点时,抓取和放下货盘。事实上,这样的机器人系统到今天已经存在了。在很多大医院里,通常需要走很远的路来运送日常所需的消耗品,比如被单枕套等,让护理人员运输这些物资无疑是既耗时、耗财又费力的事情。当然,也大大减少了对病人照顾的时间。

最近今年里,科学家们开始研究另一种本质上非常相近的动作形式,走或跑。开发出的机器人具备了用腿移动的能力。由布鲁塞尔皇家军事研究院研制的电气气动步行机器人“阿基里斯”(Achille)就是一个六足步行机器人的典型。头上和六条腿上分别都配备了照相机,阿基里斯能够机械的对提起或放下的障碍(物体或者坑)能够机械的做出反应。

这种步行机器人能运用到各个地方,比如轮轨式车辆不可能通过的坎坷或松软的地带,它翻越障碍,攀爬楼梯,跨越壕沟进入诸如核电站、煤矿隧道等危险地带作业或者进行营救。

1.2慧鱼机器人

怎样用慧鱼创意模型的构件大家我们自己的机器人呢?传感器(如:接触传感器)和动力装置(如马达)是必不可少的,然后加上许许多多的机械部件,组

成所需的模型。慧鱼ROBO 移动机器人组为此提供了理想的模式。

本设计是以德国慧鱼创意积木所组成的仿生模拟机器人为其基本架构,透过圈形式人机介面LLWin,经由智慧型微电脑介面板去驱动机器人,使机器人细部动作很容易达到我们需求,进而取代以往由硬体描述语言所驱动架构,不但操作简易,更可使我们了解机械运作的原理。

1.3走进实验室

先从一个简单测试安装来检查接口板和各个传感器的基本功能。然后,搭建出简易模型,让其具备特定的功用,再渐渐尝试越来越复杂的系统。

你是不是觉得有时候编制自己的程序要么太难,要么太浪费时间?你可以先下载软件中提供的一些现成程序到接口板,控制机器人。该接口板的最重要的作用在于输入量的逻辑连接。这就需要程序来完成,程序决定输入数据和传感器信号如何处理并转换为适当的输出数据,电机控制信号等等。有了ROBO接口板,我们就有足够的计算能力来设计和处理最复杂的程序。

搭建和最初控制机器人,是非常重要的环节,一定要格外认真才行。连接各个电气元件时一定要严格按照说明书操作,然后检查两三遍以确保准确无误。在进行机械构件搭接时,我们要特别注意连接的平滑度,尤其是齿轮与紧固件的连接,不要太用力。好了,现在让我们发挥自己无穷的创造力为机器人“谱写”新的动作程序啦!1.4按键式传感器(接触传感器)

举例说明,将一个接触传感器接在数字输入口I1,观察一下当键按下去时,输入端状态框的变化。

虽然极性在连接电机或接触传感器不起作用(充其量电机旋转方向错误),准确接通光电传感器是至关重要的。晶体管有红标的接点应连接红色接头,没有标注的接点连接绿色接头。第二个绿色接头要插在输入端AX的插孔中(靠近接口板边缘的那个孔),第二个红色的插头要插在靠近里面的AX的插孔中。(注意:连接光电传感器到数字输入端I1——I8,红色接头需插在紧靠接口板边的插孔中。

现在,我们用一个手电来改变光电传感器光的亮度。这将改变AX蓝色状态条的读数。如果指示器从其最大值没有变动,那就得检查一下光电传感器的连接情况。如果即使手电筒灭掉,指示仍为零,那有可能是房间里的光太亮了。我们遮住光电传感器,状态条的位置就会变化。

再回到红绿接线头上来:装配时,要红色接头接红线,绿色接头接绿线。当电路配线时必需极性正确的话,通常我们将红线作为正,绿线为负。这样,非常细心的配线,将使得线路走势更系统,更一目了然,自然更方便了我们排除故障。

1.5设计工作原理

机器人指的是可程式控制的机械,整体来说可分为两大部分,分别为机械架构及软体的控制的两大部分。

(一)机械架构

本设计移动机器人之机械构架采用德国慧鱼创意积木所组成,它的优点在于方便组装,能在设计阶段能起到一定的辅助作用,减少设计成本以及更好的观察到设计的可行性及其优缺点,以便更好改进设计中的缺点。一般机械所用到的零组件如齿轮、马达、光电开关等,都可以在慧鱼创意积木中找到,且功能毫不逊色。

首先针对我们所需的机械架构做规划,收集所需用到之慧鱼创意积木零件,将其组装机械架构。

该架构主要是由两个丝杆与一个马达连接,两丝杆再平均接上传动齿轮实现此仿生机器人的运动及其开关所组成,而这个开关主要用于判断机器人的开关及其运动方向。

(二)软体控制

在控制软体方面,我们使用圆形式人机介面软体LLWin(Lucky Logic for Windows),LLWin是一种新控制语言,它的特色在于使用了创新的程式模块,你只需事先将机器人行动流程规划好,再配合所需用到的程式模块,将内部参数设定好即可,不但避问了以往繁杂的程式语言,更让使用者不再被要求学习程式语言的复杂语法,使之达到更为快速和方便的效果。

图1为智慧型微电脑界面板,它的主要功用在于储存LLWin之程式,使程式经由此介面板驱动机器人,达到预设之动作。

图1-1

智慧型微电脑介面板细部说明如下:

1、此装置是所有电脑控制套件的控制逻辑核心,他负责与PC间的通讯和运算,将电脑所编辑的程式转换成控制命令来控制马达等。

2、此装置有八个数位输入,两个类比输入可接收0~5欧姆的电阻值,四个可逆马达输出控制,控制马达dc relay等。

3、电源供应电池或充电器的方式,大小为9伏特5瓦。

4、可在On-line(以传输线与PC连线),也可在Off-line(不需与电脑连线)两种模式下作业。

5、与电脑连接时不需额外插卡,利用CMOM2通讯即可。

1.6慧鱼模型操作规程:

1、实验前先按照清单清点零件个数;

2、熟悉零件分装方式,了解零件分装的大致规律;

3、检查袋子的封口;

4、每次仅取出要用到的零件;

5、每次取用零件后勿忘将袋子封口封好;

6、拆除模型后将零件放回相应的袋子;

7、按照清单清点零件。

二、移动机器人

为了机器人能够感知周围的环境,各种传感器式必不可少的。下面所介绍的几个不同的移动机器人就让我们看到了传感器的区别。机器人必需要有外部信

号,比如寻光、寻色或者寻轨迹;也需要有内部信号,如用脉冲齿轮来测量所行

距离。因此每个机器人我们都分配了不同的任务,会给你很多启发,让你更加了解任务的主题。所有任务的相应程序都可以在ROBO Pro目录中\Sample Programs\ROBO Mobile Set\ 下找到。

2.1基础模型

比起“仿生机器人”,这个基础模型更稳定更坚固。而且,它有两个传感器来测量所行距离,都含有一个接触式开关和一个脉冲齿轮。脉冲齿轮连接到电机的减速轴上,使得电机旋转一圈,接触开关启动四次。这个模型可成为其他移动

机器人的基础。

参照装配手册,组装这个基础模型。搭建时要特别留意,机械构件搭接完成后,不用接口板,直接用电池连接电机,检查其运行是否顺畅。

图2-1 移动机器人示意图

图2-2 移动机器人结构简图

1、接口板编程,让模型向前行走40步(40个脉冲)

2、输入口I1作为计数传感器的端口,测量脉冲数量。

3、重复3遍,记录表格中所显示的不同数值。

4、接通两个电机(转向:向左)

5、用Pulse Counter (脉冲计数器) 模块计算I1的脉冲数。

6、计算所有脉冲边沿(按下接触传感器的键,0变1,再松开,1变0,这一过程为一次脉冲)。你可以在属性窗口中Pulse type(脉冲型) 里设置。这就能在测算所型距离时比较准确。

7、然后切断电机,结束程序。

8、可以参考Basic Model1.rpp的程序。

现在我们明白了我们所设置的电机转向实际上是为了让模型按该方向行进。在下列表做下记录,这样我们就不用每次都得想着要改变电机方向了。如果严格按照装配手册正确接线,向左旋转就使得任一电机带动车轮向前行。所有的示例程序中的电机都是如此编程的。

图2-3 移动机器人仿真程序框图

三、仿生机器人(迈克)

机械迈克,即仿生态六足爬行机器人,是一种基于仿生学原理研制开发的新型足式机器人,仿生态六足爬行机器人比传统的轮式机器人有更好的移动性,自动化程度高,具有丰富的动力学特性。此外,足式机器人采用类似生物的爬行机构进行运动,比其他机器人具有更多的有点:它可以较易的跨过比较大的障碍,并且机器人足所具有的大量自由度可以是机器人的运动更加灵活,对凹凸不平的地形的适应能力更强;足式机器人的立足点是离散的,跟地面的接触面积较小,

因而可以在可达到的地面上选择最优支撑点。

图3-1 仿生机器人(迈克)示意图

图3-2 仿生机器人(迈克)仿真程序框图

图3-3 仿生机器人结构简图

四、寻光机器人

现在对基本模型使用得已经够充分了,是时候让机器人学着对环境信号作出反应了。类似于实验中的飞蛾,让它寻找光源并跟随之。组合包中包含了两个光电传感器,可以用作光线探测器。因此,每一个传感影响一个电机,,使机器人追踪光源成为可能。程序由两个部分组成,一个部分来处理光源的寻找,另一部分来实现对光源的追踪。这里我们同样用子程序来实现它们。机器人通电之后,“光源寻找”子程序就启动了,此子程序一直执行,直到检测到检测到一个光源。然后主程序控制着机器人驶向机器人。当机器人偏离了目标光源的方向,其中一个传感器就不再检测到光源。机器人应该能够改变自己的方向,直到两个传感器重新都能检测到光源。

图4-1 寻光机器人仿真示意图

4-2 寻光机器人结构简图

首先,按照组装手册装配寻光机器人模型。

1先编出“光源寻找”程序,机器人应该缓慢旋转至少360度。如果它找到了光源,就停下来。否则它将反方向旋转360度,如果它仍然没能够找到光源,它将等待5秒钟,然后继续它的寻找。

2如果机器人成功地寻找到光源,它应该向光源驶去。如果光源左右移动,机器人应该能够跟踪光源的移动。如果机器人丢失了光源,应该回到“寻找光源”流程。试一下,用一个手电筒来吸引机器人,并引导它绕过障碍物。

图4-2 寻光机器人仿真程序框图

提示:

1我们已经用子程序为基础模型改变方向编程了。下载程序Basic model 2.rpp,可以看到基础模型2的程序,子程序在Loaded programs 下的element group window 中。可以把这些子程序插入到新程序中。

2要找到“寻找光源”的子程序,需要调用Count Loop (循环计数) 模块。(该模块的描述参见ROBO Pro手册)

3在“N”端和“+1”端的循环中,可以查询光电传感器并对脉冲传感器进行计数。循环不断重复,直到机器人发现光源或者旋转360度后停止。可以简单计算一下机器人完成一个完整的位移程序进行多少次的循环。然后在Count Loop(循环计数)模块中输入变量“Z”。

4第二个循环程序编程的方法一样,只是方向相反。

5一旦机器人找到光源,停下来,退出子程序。

6右图是完整的寻光的子程序:(图右)

7在主程序里再次查询光电传感器,根据其是否检测到光源控制电机转动:

8将M1、M2调整为同向不同速,模型就能够向右、向左转,而且活动自如。9主程序最后就是这样的:(如下图)

10完整程序参照Lightseeker.rpp。

11用手电做光源。注意光柱不要太集中,这样光电传感器就都能探测到光源。而且还要注意在一个光线充足的地方,其他的光源,比如从大飘窗透过的阳光,可能比手电的光还亮。这样一来,会导致机器人忽略你的灯光而走向更亮的光源。

五、寻踪机器人

搜寻和追踪是智能机器人所具备的基本特点。通过寻光机器人,我们制造并编程了一个可以根据目标方向信号反应的机器人。

通过寻踪机器人,我们来应用另一个搜寻规则。这次,我们不用光源做为目标,而是让机器人按照我们标出的颜色来动作。这个任务如果用光电传感器解决起来相对容易。它们反射出颜色,马达就会相应作出改变。为确保该功能的准确性,我们要用灯把这条线照亮。注意避免不正确的结构配置,导致从灯发射出散光干扰光敏传感器。在这一点上,白炽灯泡的光学透镜的聚光性是非常有帮助的。下面,根据装配手册学习装配寻踪机器人模型。

图5-1 寻踪机器人示意图

任务1

●首先写出寻找轨迹的子程序。模型需要转一次,来寻找轨迹。

●如果机器人没有找到轨迹,它就直行一段时间,然后重新搜索轨迹。光电晶体管在轨迹的识别中要用到。

●如果轨迹走完,或者机器人偏离了它,它会机敏的重新定向,重新开始新的搜索。

图5-2 寻踪机器人仿真程序框图

提示

1.灯亮后需要稍等片刻(约一秒钟),再检测光电晶体管。否则它总是探测到“暗”,就是找到了轨迹,其实前面什么都没有,原因就是在灯充分点亮之前,读数已经读过了。

2. 轨道,可以用宽度约20毫米(或0.787英寸)的黑胶带或者在白纸上画出这么宽的黑色轨道来。转弯不能太急,否则机器人会因看不到轨迹而频繁的偏离。首先用接口板检测光电晶体管能够准确探测到轨迹。不要忘了,这时候可要把灯泡接通啊。

3. 调整灯泡以保证光电晶体管在比较亮的背景下,输出值为1,即使这时候M1、M2都是开启的。如果电池电量低,马达转起来的时候,灯光会有些暗,如果再不正确的调整灯泡,那光电晶体管即使在没找到轨迹的情况下,也会探测为“暗”。

4. 寻轨迹和寻光的方法很相近。只是需要调整一下模型,让它先向前走一会儿,转一圈之后,才开始搜索。

5. 注意不管什么时候,只要两个光电晶体管的输出值“暗”(=0),模型就要一直向前走。

心得体会

慧鱼机器人课程设计是机械类各专业学生学习工程材料及机械制造基础等课程必不可少的先修课,它对于培养我们的动手能力有很大的意义。而且可以使我们了解机械的基础知识了,和现代机器人技术。作为机械专业的一名学生,学好理论知识固然重要,但动手能力也是至关重要,现在的很多大学生,特别是来自城市的同学,平时自己动手的机会少,动手的能力差,很难适应以后社会对全面人才的需求。而这么课程设计为我们这些理工科的学生带来了实际锻炼的机会,让我们走出课堂,在各种各样的小零件中,自己动手,自己发挥,亲身体验,这些对我们的帮助是巨大的。感谢学校为我们提供这样的机会,同时也感谢辛苦带领和指导我们学习的老师们。

随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高,移动机器人和机器人的视觉和触觉等技术就是典型的代表。由于这些技术的发展,推动了机器人概念的延伸。80年代,将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一概念不但指导了机器人技术的研究和应用,而且又赋予了机器人技术向深广发展的巨大空间,水下机器人、空间机器人、空中机器人、地面机器人、微小型机器人等各种用途的机器人相继问世,许多梦想成为了现实。将机器人的技术(如传感技术、智能技术、控制技术等)扩散和渗透到各个领域形成了各式各样的新机器——机器人化机器。当前与信息技术的交互和融合又产生了“软件机器人”、“网络机器人”的名称,这也说明了机器人所具有的创新活力。

通过这次慧鱼课程设计让我们能够近距离的接触了机器人技术,充对机器人有了进一步的了解

参考文献

[1]孙晋萍.浅谈机械基础实践创新基地建设『J1.太原理工大学学报,2005,

23(2):94-95.

[2]常春耘,陆南.实验教学存在的问题及改革措施[J].实验室研究与探索,2006,

25(5):235—237.

[3]魏先民.实验室工作的创新探索与实践l J1.实验室研究与探索,2006,25(5):

547-551.

[4]张铁异,曹晓中,黄炳琼.慧鱼实验系统的二次开发[J].广西大学学报(自

然科学版),2007,32(Z1):12—14.

[5]张建文.PLC控制的教学机械手[J].华东地质学院学报。2001。24(3):237.z41.

[6]陈中玉,马方.基于AT89S52的教学机械手控制器的设计[J].现代企业文化,

2008,(3):125—126.

[7]张兴国,刘明.工业机器人组合式模块化结构设计研究[J].制造业自动化,

2008。30(7):71-74.

[8]肖晓萍,廖青,李白胜.基于机器人实验教学平台的研制[J].机电产品开发

与创新,2008,21(4):19-21.

[9]朱慧玲.教学机器人的开发与设计[J].机电产品开发与创新,2007,20(2):17—19.

工业机器人设计(大四机器人课设作业)(DOC)

“工业机器人”设计大作业 作品题目:货物装卸机器人 专业:机械设计制造及其自动化 姓名:班级:学号: 姓名:班级:学号: 姓名:班级:学号: 指导教师:陈明

1 前言 货物装卸作业是指用一种设备握持工件,是指从一个加工位置移到另一个加工位置。货物装卸机器人可安装不同的末端执行器以完成各种不同形状和状态的工件货物装卸工作,大大减轻了人类繁重的体力劳动。目前世界上使用的货物装卸机器人愈10 万台,被广泛应用于机床上下料、冲压机自动化生产线、自动装配流水线、码垛货物装卸、集装箱等的自动货物装卸。部分发达国家已制定出人工货物装卸的最大限度,超过限度的必须由货物装卸机器人来完成。装卸货物装卸是物流的功能要素之一,在物流系统中发生的频率很高 2 设计方案论证 本课题通过对货物装卸机器人工作对象及工作场所的分析研究,深入了解其工作是 如何进行,各部分零部件应该如何运行以及如何紧密配合,先确定其总体结构再对主要 零部件进行设计计算确定其尺寸大小以及确定电机型号。 2.1 基本思想 (1)设计要考虑要求和工作环境的限制。 (2)考虑到货物装卸货物时所需要精确度不是很高,为了简化结构,境地成本,采用 角铁焊接结构。 (3)为了满足设计要求,须设计三个独立的电机驱动系统,各部分之间通过计算 机控制、协调工作。 (4)本次设计只是该题目的机械部分,而对应控制部件的考虑较少。 3 仓库货物装卸机器人的设计计算 3.1 货物装载伸缩装置的设计 3.1.1 确定传动方案 我们所学的传动方式有以下几种:带传动、链传动、齿轮传动、蜗轮蜗杆传动和钢 丝绳传动等,一般地说,啮合传动传递功率的能力高于摩擦传动;蜗轮传动工作的发热 情况较为严重,因而传动的功率不宜过大;摩擦轮传动由于必须有足够的压紧力,故而 在传递同一圆周力时,其压轴力比齿轮传动的大几倍,因而不宜用于大功率传动。带传

工业机器人课程设计

河南机电高等专科学校《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 扣号: 姓名:流星 2014 年 10 月 1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15) 一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一

步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,利用限位开关来保护电机和控制机械手位置的准停。 这个课题可以充分的体现机电一体化的由程序自动控制机械结构的运动,对自己以前的所学的课程也是一种巩固。另一方面这个机械手可以实现一定的搬运功能具有很强的实用性能。 2、发展现状和趋势

工业机器人课程设计说明书

工业机器人课程设计基于Matlab的工业机器人运动学和雅克比运动分析 班级: 学号 姓名:

目录 摘要 ..................................................................................................................................................... - 2 - PUMA560机器人简介 ...................................................................................................................... - 3 - 一、PUMA560机器人的正解 .......................................................................................................... - 4 - 1.1、确定D-H 坐标系 .................................................................................................................... - 4 - 1.2、确定各连杆D-H 参数和关节变量 ........................................................................................ - 4 - 1.3、求出两杆间的位姿矩阵 ......................................................................................................... - 4 - 1.4、求末杆的位姿矩阵 ................................................................................................................. - 5 - 1.5、M A TLAB 编程求解 .................................................................................................................. - 6 - 1.6、验证 ......................................................................................................................................... - 6 - 二、PUMA560机器人的逆解 .......................................................................................................... - 7 - 2.1、求1θ ........................................................................................................................................ - 7 - 2.2、求3θ ........................................................................................................................................ - 7 - 2.3、求2θ ........................................................................................................................................ - 8 - 2.4、求4θ ........................................................................................................................................ - 9 - 2.5、求5θ ........................................................................................................................................ - 9 - 2.6、求 6 θ ...................................................................................................................................... - 10 - 2.7、解的多重性 ........................................................................................................................... - 10 - 2.8、M A TLAB 编程求解 ................................................................................................................ - 10 - 2.9、对于机器人解的分析 ........................................................................................................... - 10 - 三、机器人的雅克比矩阵 ............................................................................................................... - 11 - 3.1、定义 ....................................................................................................................................... - 11 - 3.2、雅可比矩阵的求法 ............................................................................................................... - 11 - 3.3、微分变换法求机器人的雅可比矩阵 ................................................................................... - 12 - 3.4、矢量积法求机器人的雅克比矩阵 ....................................................................................... - 13 - 3.5、M A TLAB 编程求解 ................................................................................................................ - 14 - 附录 ................................................................................................................................................... - 15 - 1、M ATLAB 程序 ........................................................................................................................... - 15 - 2、三维图 ...................................................................................................................................... - 24 -

机器人课程设计报告范例

机器人课程设计报告范例

**学校 机器人课程设计名称 院系电子信息工程系 班级10电气3 姓名谢士强 学号107301336 指导教师宋佳

目录 第一章绪论 (2) 1.1课程设计任务背景 (2) 1.2课程设计的要求 (2) 第二章硬件设计 (3) 2.1 结构设计 (3) 2.2电机驱动 (4) 2.3 传感器 (5) 2.3.1光强传感器 (5) 2.3.2光强传感器原理 (6) 2.4硬件搭建 (7) 第三章软件设计 (8) 3.1 步态设计 (8) 3.1.1步态分析: (8) 3.1.2程序逻辑图: (9) 3.2 用NorthStar设计的程序 (10) 第四章总结 (12) 第五章参考文献 (13)

第一章绪论 1.1课程设计任务背景 机器人由机械部分、传感部分、控制部分三大部分组成.这三大部分可分成驱动系统、机械结构系统、感受系统、机器人一环境交互系统、人机交互系统、控制系统六个子系统现在机器人普遍用于工业自动化领域,如汽车制造,医疗领域,如远程协助机器人,微纳米机器人,军事领域,如单兵机器人,拆弹机器人,小型侦查机器人(也属于无人机吧),美国大狗这样的多用途负重机器人,科研勘探领域,如水下勘探机器人,地震废墟等的用于搜查的机器人,煤矿利用的机器人。如今机器人发展的特点可概括为:横向上,应用面越来越宽。由95%的工业应用扩展到更多领域的非工业应用。像做手术、采摘水果、剪枝、巷道掘进、侦查、排雷,还有空间机器人、潜海机器人。机器人应用无限制,只要能想到的,就可以去创造实现;纵向上,机器人的种类会越来越多,像进入人体的微型机器人,已成为一个新方向,可以小到像一个米粒般大小;机器人智能化得到加强,机器人会更加聪明 1.2课程设计的要求 设计一个机器人系统,该机器人可以是轮式、足式、车型、人型,也可 以是仿其他生物的,但该机器人应具备的基本功能为:能够灵活行进,能感知光源、转向光源并跟踪光源;另外还应具备一项其他功能,该功能可自选(如亮灯、按钮启动、红外接近停止等)。 具体要求如下: 1、根据功能要求进行机械构型设计,并用实训套件搭建实物。 2、基于实训套件选定满足功能要求的传感器; 3、设计追光策略及运动步态; 4、用NorthStar设计完整的机器人追光程序;

工业机器人课程设计--多功能机械手-精品

《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 2014 年10 月1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15)

一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,

机器人课程设计报告

机器人课程设计报 告

智能机器人课程设计 总结报告 姓名: 组员: 指导老师: 时间:

一、课程设计设计目的 了解机器人技术的基本知识以及有关电工电子学、单片机、机械设计、传感器等相关技术。初步掌握机器人的运动学原理、基于智能机器人的控制理论,并应用于实践。经过学习,具体掌握智能机器人的控制技术,并使机器人能独立执行一定的任务。 基本要求:要求设计一个能走迷宫(迷宫为立体迷宫)的机器人。要求设计机器人的行走机构,控制系统、传感器类型的选择及排列布局。要有走迷宫的策略(软件流程图)。对于走迷宫小车控制系统设计主要有几个方面:控制电路设计,传感器选择以及安放位置设计,程序设计 二、总体方案 2.1 机器人的寻路算法选择 将迷宫看成一个m*n的网络,机器人经过传感器反馈的信息感知迷宫的形状,并将各个节点的与周围节点的联通性信息存储于存储器中,再根据已经构建好的地图搜索离开迷宫的路径。这里可选择回溯算法。对每个网格从左到右,每个网格具有4个方向,分别定义。并规定机器人行进过程中不停探测前方是否有障碍物,同时探测时按左侧规则,进入新网格后优先探测当前方向的左侧方向。探测过程中记录每个网格的四个方向上的状态:通路、不通或未知,探测得到不同状态后记记录,同时记录当前网

格的四个方向是否已被探测过。若某网格四个方向全部探测过则利用标志位表示该网格已访问。为了寻找到从起点到终点的最佳路径,记录当前网格在四个方向上的邻接网格序号,由此最后可在机器人已探测过的网格中利用Dijkstra算法找到最佳路径。并为计算方便,记录网格所在迷宫中行号、列号。并机器人探索过程中设置一个回溯网格栈记录机器人经过的迷宫网格序号及方向,此方向是从一个迷宫网格到下一个迷宫网格经过的方向。设置一个方向队列记录机器人在某网格内探测方向的顺序。设置一个回溯路径数组记录需要回溯时从回溯起点到回溯终点的迷宫网格序号及方向。 考虑到迷宫比较简单,且主要为纵横方向的直线,可采用让小车在路口始终左转或者始终右转的方法走迷宫,也就是让小车沿迷宫的边沿走。这样最终也能走出迷宫。本次课程设计采用此方法。即控制策略为机器人左侧有缺口时,向左进入缺口,当机器人前方有障碍是,向右旋转180°,其余情况保持前进。 2.2 传感器的选择 由于需要检测机器人左侧和前方是否有通路,采用红外传感器对机器人行进方向和左侧进行感知。红外避障传感器是依据红外线的反射来工作的。当遇到障碍物时,发出的红外线被反射面反射回来,被传感器接收到,信号输出引脚就会给出低电平提示信号。本机器人系统的红外避障信号采用直接检测的方式进行,直接读取引脚电平。传感器感应障碍物的距离阈值能够经过调节

机器人课程设计

沈阳工程学院 课程设计 设计题目:三自由度微型直角坐标工业机器人模型设计 系别自控系班级测本081 学生姓名步勇捷学号 2008310110 指导教师祝尚臻职称讲师 起止日期:2012年 1 月 2 日起——至 2012 年 1 月13 日止 - I -

沈阳工程学院 课程设计任务书 课程设计题目:三自由度直角坐标工业机器人设计 系别自动控制工程系班级 学生姓名学号 指导教师职称讲师 课程设计进行地点: F430 任务下达时间: 2011年 12月31日 起止日期:2012 年 1 月2日起——至 2012 年 1 月13日止教研室主任年月日批准 - II -

三自由度直角坐标工业机器人设计 1 设计主要内容及要求 1.1 设计目的: 1了解工业机器人技术的基本知识以及单片机、机械设计、传感器等相关技术。 2初步掌握工业机器人的运动学原理、传动机构、驱动系统及控制系统并应用于工业机器人的设计中。3通过学习,掌握工业机器人的驱动机构、控制技术,并使机器人能独立执行一定的任务。 1.2 基本要求 1要求设计一个微型的三自由度的直角坐标工业机器人; 2要求设计机器人的机械机构(示意图),传动机构、控制系统、及必需的内外部传感器的种类和数量布局。 3要有控制系统硬件设计电路。 1.3 发挥部分 自由发挥 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选; (2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份; (3)设计过程的资料保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,包括附录中的图纸。项目齐全、不许涂改,不少于3000字。图纸为A4,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(总体设计框图与电路原理图)。 3 时间进度安排 顺序阶段日期计划完成内容备注 1 2012.1. 2 讲解主要设计内容,布置任务打分 2 2012.1. 3 检查框图及初步原理图完成情况,讲解及纠正错误打分 3 2012.1. 4 检查机械结构设计并指出错误及纠正;打分 4 2012.1. 5 继续机械机构和传动机构设计打分 5 2012.1. 6 进行控制系统设计打分 6 2012.1.9 检查控制系统原理图设计草图打分 7 2012.1.10 完善并确定控制系统打分 8 2012.1.11 指导学生进行驱动机构的选择打分 9 2012.1.12 进行传感器的选择和软件流程设计打分 10 2012.1.13 检查任务完成情况并答辩打分 - III -

工业机器人课程设计

河南机电高等专科学校 《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 扣号:1534542251 姓名:流星 2014 年10 月1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15)

一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,

机器人课程设计报告范例

**学校 机器人课程设计名称 院系电子信息工程系 班级10电气3 姓名谢士强 学号107301336 指导教师宋佳

目录 第一章绪论 (2) 1.1课程设计任务背景 (2) 1.2课程设计的要求 (2) 第二章硬件设计 (3) 2.1 结构设计 (3) 2.2电机驱动 (4) 2.3 传感器 (5) 2.3.1光强传感器 (5) 2.3.2光强传感器原理 (6) 2.4硬件搭建 (7) 第三章软件设计 (8) 3.1 步态设计 (8) 3.1.1步态分析: (8) 3.1.2程序逻辑图: (9) 3.2 用NorthStar设计的程序 (9) 第四章总结 (11) 第五章参考文献 (12)

第一章绪论 1.1课程设计任务背景 机器人由机械部分、传感部分、控制部分三大部分组成.这三大部分可分成驱动系统、机械结构系统、感受系统、机器人一环境交互系统、人机交互系统、控制系统六个子系统现在机器人普遍用于工业自动化领域,如汽车制造,医疗领域,如远程协助机器人,微纳米机器人,军事领域,如单兵机器人,拆弹机器人,小型侦查机器人(也属于无人机吧),美国大狗这样的多用途负重机器人,科研勘探领域,如水下勘探机器人,地震废墟等的用于搜查的机器人,煤矿利用的机器人。如今机器人发展的特点可概括为:横向上,应用面越来越宽。由95% 的工业应用扩展到更多领域的非工业应用。像做手术、采摘水果、剪枝、巷道掘进、侦查、排雷,还有空间机器人、潜海机器人。机器人应用无限制,只要能想到的,就可以去创造实现;纵向上,机器人的种类会越来越多,像进入人体的微型机器人,已成为一个新方向,可以小到像一个米粒般大小;机器人智能化得到加强,机器人会更加聪明 1.2课程设计的要求 设计一个机器人系统,该机器人可以是轮式、足式、车型、人型,也可以是仿其他生物的,但该机器人应具备的基本功能为:能够灵活行进,能感知光源、转向光源并跟踪光源;另外还应具备一项其他功能,该功能可自选(如亮灯、按钮启动、红外接近停止等)。 具体要求如下: 1、根据功能要求进行机械构型设计,并用实训套件搭建实物。 2、基于实训套件选定满足功能要求的传感器; 3、设计追光策略及运动步态; 4、用NorthStar设计完整的机器人追光程序; 5、调试; 6、完成课程设计说明书,内容:方案设计、硬件搭建过程(附照片)、控制 算法流程、程序编写、调试结果、心得体会。

智能扫地机器人课程设计

1、课题背景及研究的目的和意义 1.1课题背景 扫地机器人是服务机器人的一种,可以代替人进行清扫房间、车间、墙壁等。提出一种应用于室内的移动清洁机器人的设计方案。其具有实用价值。室内清洁机器人的主要任务是能够代替人进行清扫工作,因此需要有一定的智能。清洁机器人应该具备以下能力:能够自我导航,检测出墙壁,房间内的障碍物并且能够避开;能够走遍房间的大部分空间,可以检测出电池的电量并且能够自主返回充电,同时要求外形比较紧凑,运行稳定,噪音小;要具有人性化的接口,便于操作和控制。结合扫地机器人主要功能探讨其控制系统的硬件设计。 1.2研究目的和意义 国家农业智能装备工程技术研究中心邱权博士介绍说,扫地机器人可以看作是一种智能吸尘器,通过其基于传感器检测的智能运动规划算法使原本由人操作的吸尘器成为一个可自主运行的智能化设备。它通过各种传感器,比如碰撞开关、红外接近开关、超声传感器、摄像头等,来感知自身的位置和状态,通过智能算法决定当前的任务状态。它可以根据某个传感器检验地面清洁程度,根据历史信息确定哪些区域已经打扫过,它的充电座会发出红外线信息,在电量低于一定值后,它开始寻找红外信息来自动充电。防跌落是基于机器人底部所安装的红外传感器检测地面的距离,当距离发生变化时机器人将停止并改变路线。由于扫

地机器人是一个智能化产品, 1.3工作原理 扫地机器人机身为可移动装置,机器人依托红外识别以及超声波测距从而避障,配合芯片控制内部电机转动以及内部真空环境吸尘,通过路线设计,在室内自由行走,由中央主刷旋转清扫,并且辅以边刷,沿直线或者之字形活动路径打扫。 2、设计要求与内容 1)以 AT89S52系列单片机为核心设计移动清扫机器人电机驱动与控制电路,采用红外传感器和超声波传感器完成障碍物检测电路设计,完成充电站检测电路设计,完成避障算法与路径规划算法设计。 2)按键选择清扫模式和充电模式。 3)显示方式LED 显示当前时间和机器人当前工作状态。 3、系统方案设计 3.1设计任务 1)利用AT89S52处理器编程实现电机驱动。 2)液晶显示扫地机器人的内部参数。 3)当扫地机器人显示电量不足时,无线模块发送命令到充电桩,开始进行充电模式,此时红外发射光线充电桩与扫地机器人充电接口对接,此

机器人课程设计说明书

机器人课程设计说明书 指导教师: 院系: 班级:

: 学号:

一、课程设计的容 1、目的和意义 机器人涉及机械、电子、传感、控制等多个领域和学科。本课程设计是在《机器人学》课程的基础上,利用多传感技术、控制技术实现机器人控制系统的综合与应用,达到锻炼学生综合设计能力的目的。让我们把理论与实践结合起来,掌握更多技能。 2、设计容 (一)、机器人硬件 本课程设计使用实验室已有的移动机器人。机器人有两个驱动轮、一个从动轮,驱动轮由舵机直接驱动。机器人控制器为89S52单片机。机器人结构图如图1所示。 图1 机器人结构简图

(二)、设计任务 利用多传感器技术,实现对机器人的轨迹规划及控制。具体为:控制机器人在规定的场地避开障碍物走遍整个场地。 二C51单片机编程环境与机器人智能 1、单片机与C51系列单片机 (一)、单片机 单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域的广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。 (二)、C51系列单片机 MCS51是指由美国INTEL公司生产的一系列单片机的总称。这一系列单片机包括了好些品种,如8031,8051,8751等,其中8051是最典型的产品,该系列单片机都是在8051的基础上进行功能的增、减、改变而来的。 本课程设计所用的AT89S52单片机是在此基础上改进而来的。AT89S52是一种高性能、低功耗的8位单片机,含8k字节ISP可反复擦写1000次的FLASH只读程序存储器,兼容标准MCS51指令系统及其引脚结

智能机器人课程设计报告[资料]

智能机器人课程设计报告[资料] 天津师范大学 计算机与信息工程学院 课程设计报告 课程名称: 机器人设计 设计题目: 专业: 信息工程 班级: 08(1)班 组别: 学生姓名: 吴雪萍学号: 08509205 起止日期: 2011年3月1日 ~ 2011年 7月1日 指导教师: 刘岩恺梁景莲 同组人员: 课程设计题目机器人设计实验 姓名吴雪萍学号 08509205 班级 08信息(1)班 班级专业信息工程 组别组长组员 指导教师刘岩恺梁景莲 课程 设计设计家庭组机器人和机器人行走目的 课程 设计Vc++ 环境

课程 设计 任务用C++语言设计一个颜色识别的程序和一个机器人行走程序 和要 求 课程设计内容描述: 1(绪论 通过学习机器人设计2课程~学会了家庭组机器人和足球机器人的一些理论知识。了解了机器人方向识别~动手调试了全景摄像头和前置摄像头~设置了场地、球门、白线、足球等的颜色数值。 2. 颜色识别的产生 结合梁老师给的人脸识别程序~通过改变人脸模型建立颜色识别程序。 3. 平台的选择及搭建 根据刘老师给的参考资料~首先安装了DirectX9.0 SDK和Visual C++软件~然后一步步的按照老师所给的步骤~先建立基本界面~接着编制串口通讯控制机器人 的程序~读取距离传感器信息等~最后得出了机器人行走程序如下。 课程设计源程序: 机器人行走 // VoyTestDlg.cpp : implementation file // #include "stdafx.h" #include "VoyTest.h" #include "VoyTestDlg.h" #ifdef _DEBUG

慧鱼机器人课程设计说明书。

慧鱼机器人 一、概述 1.1机电一体化技术 1.1.1机电一体化技术的定义和内容 机电一体化技术综合应用了机械技术、计算机与信息技术、系统技术、自动控制技术、传感检测技术、伺服传动技术,接口技术及系统总体技术等群体技术,从系统的观点出发,根据系统功能目标和优化组织结构目标,以智能、动力、结构、运动和感知等组成要素为基础,对各组成要素及相互之间的信息处理、接口耦合、运动传递、物质运动、能量变换机理进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质和能量的有规则运动,在高质量、高精度、高可靠性、低能耗意义上实现多种技术功能复合的最佳功能价值的系统工程技术。 1.1.2机电一体化系统组成 1.机械本体机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着 支撑系统中其他功能单元、传递运动和动力的作用。 2.检测传感部分检测传感部分包括各种传感器及其信号检测电路,其作用就是检测机电 一体化系统工作过程中本身和外界环境有关参量的变化,并将信息传递 给电子控制单元,电子控制单元根据检查到的信息向执行器发出相应的 控制。 3.电子控制单元电子控制单元是机电一体化系统的核心,负责将来自各传感器的检测信 号和外部输入命令进行集中、存储、计算、分析,根据信息处理结果, 按照一定的程度和节奏发出相应的指令,控制整个系统有目的地进行。 4.执行器执行器的作用是根据电子控制单元的指令驱动机械部件的运动。执行器是运动 部件,通常采用电力驱动、气压驱动和液压驱动等几种方式。 5.动力源动力源是机电一体化产品能量供应部分,是按照系统控制要求向机械系统提供 能量和动力使系统正常运行。提供能量的方式包括电能、气能和液压能。

人工智能课程设计(五子棋)解读

《人工智能导论》课程报告 课题名称:五子棋 姓名: X X 学号:114304xxxx 课题负责人名(学号): X X114304xxxx 同组成员名单(学号、角色): x x1143041325 XXX1143041036 指导教师:张建州 评阅成绩: 评阅意见: 提交报告时间:2014年 1 月 9 日

五子棋 计算机科学与技术专业 学生XXX 指导老师张建州 [摘要]人类之所以不断在进步,是因为我们人类一直不断的在思考,五子棋游戏程序的开发符合人类进步也是促进人类进步的一大动力之一。五子棋游戏程序让人们方便快捷的可以下五子棋,让人们在何时都能通过下棋来提高逻辑思维能力,同时也培养儿童的兴趣以及爱好,让孩子更加聪明。 同时,五子棋游戏程序的开发也使得五子棋这个游戏得到了广泛的推广,让世界各地的人们知道五子棋,玩上五子棋,这已经不是局限。五子棋游戏程序使得越来越多的人喜欢上了五子棋,热爱下五子棋,它是具有很好的带动性的。 关键词:五子棋进步思考

目录 《人工智能导论》课程报告 0 1 引言 (3) 1.1五子棋简介 (3) 1.2 五子棋游戏的发展与现状 (3) 2 研究问题描述 (4) 2.1 问题定义 (4) 2.2 可行性研究 (4) 2.3 需求分析 (5) 2.4 总体设计 (5) 2.5 详细设计 (6) 2.6编码和单元测试 (6) 3 人工智能技术 (6) 4 算法设计 (7) 4.1α-β剪枝算法 (7) 4.2极大极小树 (7) 4.3深度优先搜索(DFS) (8) 4.4静态估值函数 (9) 5 软件设计和实现 (9) 5.1 数据结构定义 (9) 5.2 程序流程图 (17) 6 性能测试 (18) 6.1 程序执行结果 (18) 7 总结 (21) 参考文献 (21)

机器人课程设计说明书

课程设计说明书设计名称:机器人课程设计 题目:自动分货机 学生姓名: 专业:机械设计制造及其自动化 班级: 13机械3班 学号: 指导教师: 日期: 2016 年 1 月 15 日

课程设计任务书 机械设计制造及其自动化专业 13 年级机械3 班 一、设计题目 自动分货机 二、主要内容 利用德国慧鱼公司的“智能创意教具”模型,设计、装配出较有创意的机构或机械设备模型,使用可编程控制器PLC编写控制程序,实现对模型工作状态的正确控制。 三、具体要求 1.查阅资料,复习先修课程(如:机电传动控制,数控技术、机械原理、机械设计等); 2.熟悉慧鱼模型组件,设计装配出较有创意的机构模型; 3.学习可编程控制器PLC相关内容; 4.编制PLC控制程序,实现对模型的正确控制; 5.整理和撰写设计说明书(不少于1500字,图表除外)。 四、进度安排 本课程设计的计划时间为2周,按10个工作日计算,进度安排如下: 1、查阅资料,熟悉模型组件,设计装配出较有创意的机构模型2天 2、学习可编程控制器PLC相关内容2天 3、完成机械模型与PLC的接线设计,编制控制程序3天 4、完成整体调试0.5天 5、撰写设计说明书2天 6、验收及其它0.5天

五、完成后应上交的材料 1.设计说明书1份,主要内容如下: ●课程设计的主要内容和任务; ●机构模型的原理图(或实体图),以及模型的工作原理; ●机械模型与PLC的接线设计,PLC的程序设计; ●结论及心得体会; ●参考文献。 2.将设计程序和模型图片,或模型工作过程的录像(最佳)整理好,刻录光盘统一上交。 六、总评成绩 指导教师签名日期年月日 系主任审核日期年月日

管道机器人设计—课程设计

前言 (ⅰ) 目录 (ⅱ) 中文摘要 (ⅲ) 第一章概述 (1) 1.1机器人概述 (1) 1.2管道机器人概述 (3) 1.3国内外管道机器人的发展 (4) 1.3.1国内管道机器人的发展 (4) 1.3.2国外管道机器人的发展 (6) 1.4 机器人的发展景 (8) 第二章总体方案的制定与比较 (10) 2.1 管道机器人设计参数和技术指标 (10) 2.2总体结构的设计和较 (10) 第三章部件的设计和算 (15) 3.1 管道机器人工作量算 (15) 3.3 撑开机构和放大杆组的计 (24) 第四章其他 (32) 5.1 大小锥齿轮的设计和核 (32) 5.2 轴Ⅰ的设计和核 (35) 5.3 键的校核 (44)

在工农业生产及日常生活中,管道应用范围极为广泛。在管道的使用过程中,会产生管道堵塞与管道故障和损伤,需要定期维护、检修等。但管道所处的环境往往是人们不易达到或者不允许人们直接进入,所以开发管道机器人就显得尤为重要。 以金属冶炼厂管道清洁机器人为研究目标,根据其工作环境和技术要求设计了一种可适应φ700mm-φ1000mm管道的管道清洁机器人。该管道机器人采用三履带式的可伸缩行走装置,操作装置为2个自由的的操作臂,末端操作器上安装有吸尘头,吸尘头吸起的灰尘通过吸尘软管收集在装灰箱体内。当灰尘装满后,机器人行走到倒灰口,打开卸料门,将灰尘倒掉。本次设计主要对管道清洁机器人进行结构设计,利用三维参数化特征建模软件Pro/Engineer建立了管道清洁机器人的三维模型,生成了机器人主要零部件的工程图。对管道机器人中的主要机构进行动态仿真,验证了所设计机构的正确性。最后对主要零部件进行了设计校核计算,并简单叙述了该机器人控制方案。 第一章概述 1. 1 机器人概述 机器人----这一词最早使用始于1920年至1930年期间在捷克作家凯勒尔* 凯佩克(Karel capek)的名为"罗莎姆的万能机器人"的幻想剧中,

A-算法人工智能课程设计

人工智能(A*算法) 一、 A*算法概述 A*算法是到目前为止最快的一种计算最短路径的算法,但它一种‘较优’算法,即它一般只能找到较优解,而非最优解,但由于其高效性,使其在实时系统、人工智能等方面应用极其广泛。 A*算法结合了启发式方法(这种方法通过充分利用图给出的信息来动态地作出决定而使搜索次数大大降低)和形式化方法(这种方法不利用图给出的信息,而仅通过数学的形式分析,如Dijkstra算法)。它通过一个估价函数(Heuristic Function)f(h)来估计图中的当前点p到终点的距离(带权值),并由此决定它的搜索方向,当这条路径失败时,它会尝试其它路径。 因而我们可以发现,A*算法成功与否的关键在于估价函数的正确选择,从理论上说,一个完全正确的估价函数是可以非常迅速地得到问题的正确解答,但一般完全正确的估价函数是得不到的,因而A*算法不能保证它每次都得到正确解答。一个不理想的估价函数可能会使它工作得很慢,甚至会给出错误的解答。 为了提高解答的正确性,我们可以适当地降低估价函数的值,从而使之进行更多的搜索,但这是以降低它的速度为代价的,因而我们可以根据实际对解答的速度和正确性的要求而设计出不同的方案,使之更具弹性。 二、 A*算法分析 众所周知,对图的表示可以采用数组或链表,而且这些表示法也各也优缺点,数组可以方便地实现对其中某个元素的存取,但插入和删除操作却很困难,而链表则利于插入和删除,但对某个特定元素的定位却需借助于搜索。而A*算法则需要快速插入和删除所求得的最优值以及可以对当前结点以下结点的操作,因而数组或链表都显得太通用了,用来实现A*算法会使速度有所降低。要实现这些,可以通过二分树、跳转表等数据结构来实现,我采用的是简单而高效的带优先权的堆栈,经实验表明,一个1000个结点的图,插入而且移动一个排序的链表平均需500次比较和2次移动;未排序的链表平均需1000次比较和2次移动;而堆仅需10次比较和10次移动。需要指出的是,当结点数n大于10,000时,堆将不再是正确的选择,但这足已满足我们一般的要求。

相关主题
文本预览
相关文档 最新文档