当前位置:文档之家› 车联网TSP平台软件漏洞分析与安全测试

车联网TSP平台软件漏洞分析与安全测试

车联网TSP平台软件漏洞分析与安全测试
车联网TSP平台软件漏洞分析与安全测试

10.16638/https://www.doczj.com/doc/7711622723.html,ki.1671-7988.2016.12.047

车联网TSP平台软件漏洞分析与安全测试

赵德华,张晓帆

(华晨汽车工程研究院,辽宁沈阳110141)

摘要:信息系统软件安全漏洞是各种安全威胁的主要根源之一,安全漏洞的大量出现和加速增长使网络安全总体形势趋于严峻,分析安全漏洞并能够提出安全测试方法对保障车联网TSP平台系统运维安全具有重要意义。本文分析了车联网平台软件常见安全漏洞的种类,并阐述安全测试的概念、方法及必要性。

关键词:TSP平台;漏洞;安全测试

中图分类号:U463.6 文献标识码:A 文章编号:1671-7988 (2016)12-136-03

Software vulnerability analysis and security testing of vehicle networking TSP platform

Zhao Dehua, Zhang Xiaofan

(Brilliance Auto R&D Center (BARC), Liaoning Shenyang 110141)

Abstract: Information system software security vulnerabilities are one of the main causes of various security threats.Security vulnerabilitiesmass emergence and accelerated growth made the overall situation of network security is becoming more and more serious. It is important to analyze the security vulnerabilities and to put forward the security testing methods to ensure the safety of the car network TSP platform system operation and maintenance. This paper analyzes the types of common security vulnerabilities of the vehicle networking platform software, and expounds the concept, method and necessity of security testing.

Keywords: TSP platform; Vulnerability; Security test

CLC NO.: U463.6 Document Code: A Article ID: 1671-7988 (2016)12-136-03

引言

漏洞是在硬件、软件、协议的具体实现或系统安全策略上存在的缺陷,从而可以使攻击者能够在未授权的情况下访问或破坏系统。就车联网TSP平台而言,漏洞可能来自软件系统设计时的缺陷或编码时产生的错误,也可能来自业务在交互处理过程中的设计缺陷或逻辑流程上的不合理之处。这些缺陷、错误或不合理之处可能被有意或无意地利用,从而对整个车联网的运行造成不利影响。例如系统被攻击或控制、重要资料被窃取、用户数据被篡改、甚至冒充合法用户对车辆进行控制。

漏洞嗅探是攻击者与防护者双方对抗的关键,防护者如果不能早于攻击者发现可被利用的漏洞,攻击者就有可能利用漏洞发起攻击。越早发现并修复漏洞,信息安全事件发生的可能性就越小。

1、TSP平台常见漏洞

系统安全漏洞与系统攻击活动之间有紧密的关系。因而不该脱离系统攻击活动来谈论安全漏洞问题。了解常见的系统漏洞,以及找到相应的补救方法是十分必要的。

1.1 SQL注入

由于程序在编写时,没有对用户输入数据的合法性进行判断,使应用程序存在安全隐患。用户可以提交一段数据库查询代码,根据程序返回的结果获得某些他想得知的数据。

其主要危害有:在未经授权状况下操作数据库中的数据;

作者简介:赵德华,就职于华晨汽车工程研究院。

恶意篡改网页内容;私自添加系统帐号或者是数据库使用者帐号;网页挂木马等。

1.2 XSS

[1]XSS,跨站脚本攻击。恶意攻击者往Web页面里插入恶意html代码,当用户浏览该页之时,嵌入其中Web里面的html代码会被执行,从而达到恶意攻击用户的特殊目的。

其主要危害有:攻击者通常会在有漏洞的程序中插入JavaScript、VBScript、ActiveX或Flash以欺骗用户。一旦得手,他们可以盗取用户帐户、修改用户设置、盗取/污染cookie、做虚假广告等。

1.3 信息泄露

信息泄露是指应用程序泄露应该保密的信息,例如客户端注释中泄露敏感信息、系统日志泄露敏感信息等。这些泄露的信息可能会对攻击者进一步了解应用程序,以致攻击应用程序提供一定的帮助。

1.4 越权漏洞

越权漏洞是指由于应用程序未正确实现授权功能,造成用户可以执行其没有资格执行的操作,包括可以查看或修改他本身没资格查看或修改的资源,以及可以执行用户本身没有的功能。

1.5 暴力破解

暴力破解是一种针对于密码的破译方法,即将密码进行逐个推算直到找出真正的密码为止。攻击者利用该漏洞可以破解存在该漏洞的应用程序的用户密码。

1.6 文件上传漏洞

文件上传漏洞是由于对用户文件上传部分的控制不足或者处理缺陷,而导致的用户可以越过其本身权限向服务器上传可执行的动态脚本文件。恶意攻击者利用该漏洞可以直接向服务器上传ASP 木马、PHP 木马等,从而控制TSP服务器。1.7 CSRF

[2]跨站请求伪造(CSRF)攻击特性是危害性大但非常隐蔽。发起的目标都是通过伪造一个用户请求,该请求不是用户想发出去的请求,而对服务器或服务来说这个请求是完全合法的一个请求,但是却完成了一个攻击者所期望的操作。

1.8 路径遍历漏洞

许多功能强迫Web应用程序根据用户在请求中提交的参数向文件系统读取或写入数据。如果以不安全的方式执行这些操作,攻击者就可以提交专门设计的输入,使得应用程序访问开发者并不希望他访问的文件,这就是路径遍历漏洞。攻击者可利用这种缺陷读取密码和应用程序日志之类的敏感数据,或者复写安全性至关重要的数据项,如配置文件和软件代码。在最为严重的情况下,这种漏洞可使攻击者能够完全攻破应用程序与基础操作系统。

2、安全测试

安全测试不同于渗透测试,渗透测试考虑的是以黑客方法,侧重于几个点的穿透攻击,能解决急迫的一些问题,但无法针对系统做完备性的安全测试,所以难以解决系统自身实质性的安全问题。而安全测试是侧重于对安全威胁的建模,系统地对来自各个方面,各个层面威胁的全面考量,从整体系统架构、安全编码、安全测试、安全测试覆盖性、安全度量等多个因素去考虑问题,提出的解决方法则是逐步引入安全开发过程,提供相应的工具支撑,目标是提升系统自身实质性安全问题。安全测试可以检测出系统可能会来自哪个方面的威胁,正在遭受哪些威胁,以及系统已经可抵御什么样的威胁。当然,安全测试涵盖渗透测试的部分内容。

2.1 安全需求

根据车联网TSP平台个人征信系统的实际情况并结合Web系统的常见安全漏洞,系统应满足如下安全需求:系统应具备身份认证功能,保证其设计和实现上不存在漏洞。

1)系统应具备会话管理功能,保证会话的一致性和持续性,同时不存在设计和实现上的漏洞。

2)系统应具备访问授权功能,保证权限被正确的设置并不存在设计和实现上的漏洞。

3)系统应对客户端提交的数据进行安全性检查,并保证检查和过滤的全面性和有效性。

4)应保证系统在上线前,其所依赖的相关安全配置被正确设置。

5)系统应保证其敏感操作被正确的设计并实现,不存在安全漏洞。

2.2 测试内容

2.2.1 身份认证(IA)

1

2.2.2 会话管理(SM)

2

(下转第185页)

7、尾气分析法

尾气分析法就是通过对汽车尾气中的CO 、HC 、CO2和O2等排放成分作为主要分析参数来对发动机故障进行诊断的一种方法。在多种排放成分中,CO 主要来自空气不足的情况下可燃混合气的不完全燃烧,是汽油机尾气中有害成分浓度最大的物质。HC 是未燃燃料、可燃混合气不完全燃烧或裂解的碳氢化合物及少量的氧化反应中间产物。CO2时可燃混合气燃烧的产物,它能够反映出燃烧的效率。汽车尾气成分与发动机的工况有着密切联系,通过汽车尾气的检测可初步分析发动机的工作状况、性能好坏。更为重要的是,当发动机某系统出现故障时,尾气中某种成分含量必然偏离正常值,通过检测发动机不同工况下尾气中不同气体成分的含量,可判断发动机故障所在的部位。

8、总结

汽车电控发动机的故障诊断是一项较为复杂和细致的工作。在实际运用中,以上诊断方法不是独立的。维修人员应在掌握较强的理论知识的基础上,综合运用以上方法,以期达到事半功倍的效果。

参考文献

[1] 王翠.汽车发动机电控系统故障分析和检修[J ].科技资讯,2016

(03).

[2] 张艳菊,刘文涛.浅谈电控发动机故障诊断技术[J ].电子世界,2016

(13).

[3] 吴新锋.电控汽车故障诊断技术的现状与发展趋势[J ],黑龙江交

通科技,2009(08).

(上接第137页)

2.2.3 访问授权(AA )

3

2.2.4 数据验证(DV )

4

2.2.5 配置管理(CM )

表5

类别 编号 测试项 HTTP 协议(CM-01) CM-V01 启用非安全的HTTP 方法 CM-V02 Web Server 安全选项未打开

CM-V03 网站目录遍历 Web Server(CM-02)

CM-V04

Web Server 历史漏洞未修补 CM-V05 服务器提供外网ftp 服务 FTP Server(CM-03)

CM-V06

外网ftp 服务允许匿名登录 CM-V07 数据库开放外网端口 DB Server(CM-04)

CM-V08

数据库允许匿名登录

参考文献

[1] 邱永华.XSS 跨站脚本攻击剖析与防御[M ].北京:人民邮电出版

社,2013.

[2] 季凡,方勇,蒲伟,周妍.CSRF 新型利用及防范技术研究[J].信息安

全与通信保密,2013(3).

车联网之APP安全

车联网网络安全之APP 安全 背景:我们的生活、工作、学习都正在被数字化、移动化。智能手机的普及推动了手机APP 的快速发展,小到沟通聊天、车票预定,大到银行理财、支付交易,各种APP 层出不穷。人们对APP 的功能性、多样性的积极态度远远超出了对信息安全的担忧,APP 的安全方面并没有得到很好的保证,通过APP 导致的信息安全事件,经常被爆出。正在兴起的车联网也未能幸免,据统计车联网信息安全约50%安全漏洞、风险,来自于车载APP。针对APP 的设计与研发,需要对信息安全高度重视,做到杜渐防萌,确保用户敏感数据的安全。 车载APP 攻击手段 ?静态分析 静态分析指的是对APP 安装文件的安全漏洞检测。首先获得应用程序安装包文件,即APK 文件,然后通过逆向工具(如APKIDE、Dex2Jar 等)进行反编译,将APK 文件逆向为Java 源文件或JAR 文件,对其进行源代码级的解析。 常见的Java 层逆向工具:Android Killer 和APKIDE Android Killer 是一款可以对APK 文件进行反编译的可视化工具,它能够对反编译后的Smali 文件进行修改,并将修改后的文件重新进行打包形成APK 文件。一旦APK 文件被逆向,那么很容易对其进行篡改和注入攻击。 APKIDE 也是可视化的、用于修改安卓APK 文件的工具。该工具集成了ApkTool,Dex2jar,JD-GUI 等APK 修改工具,集APK 反编译、APK 打包、APK 签名为一体,是非常便利的APK 修改工具。

常见的NATIVE 层逆向工具:IDA pro IDA pro 以其强大的功能和众多的插件成为了很多逆向分析师的首选。IDA pro 是商业产品。使用IDA 反汇编二进制文件的目的,是利用工具得到反汇编之后的伪代码,另外,再结合file 、readelf 等指令使用,可以说如虎傅翼,准确还原出源代码并非难事。 以上是Java 层和Native 层逆向的常用方法。静态分析的优点是无需运行代码,无需像动态分析那样改写Android 系统源码,或要求用户对Android 系统进行重定制和安装定制版的ROM,因此静态分析具有速度快、轻量级的优点。但是静态分析的缺点是因为无法真实模拟程序的动态运行,所以存在误报率高的问题。 ?动态分析 由于静态分析难以满足安全人员的分析要求,天生对软件加固、混淆免疫的动态分析技术应运而生。相对于轻量级的静态分析,动态分析则是重量级的程序运行时的分析。在一般情形,需对Android 系统进行重新定制与改写,包括改写安全机制;在原生Android 系统中加入监视器,实时监视数据的流向;在危险函数调用时,检测所需权限等。 常见的动态分析的工具:TaintDroid TaintDroid 是变量级和方法级的污点跟踪技术工具,可对敏感数据进行污点标记,污点数据在通过程序变量、方法、文件和进程间通信等途径扩散时,对其进行跟踪审查。如果污点数据在一个泄露点(如网络接口)离开系统,TaintDroid 就在日志中记录数据标记、传输数据的应用程序和数据目的地,实现对多种敏感数据泄露源点的追踪。 动态分析的优点是,检测精度较高,缺点是需要修改Android 系统源码,形成用户全新裁

《车联网体系架构分析》

《车联网体系架构分析》 车联网体系结构与解决方案 背景介绍 近年来,随着汽车保有量的持续增长,道路承载容量在许多城市已达到饱和,交通安全、出行效率、环境保护等问题日益突出。在此大背景下,汽车联网技术因其被期望具有大幅度缓解交通拥堵、提高运输效率、提升现有道路交通能力等功能,而成为当前一个关注重点和热点。欧洲、美国、日本等国家和地区较早进行了智能交通和车辆信息服务的研究与应用,xx年3月大唐电信科技产业集团与启明信息技术股份有限公司携手共建车联网联合实验室,4月在重庆建立国内首个“智能驾驶与车联网实验室”等,充分表明当前国内外对车联网研究的迫切性和广泛性。 车联网与物联网 物联网是一个以互联网为主体,兼容各项信息技术,为社会不同领域提供可定制信息化服务的具有泛在化属性的信息基础平台。物联网的概念和内涵随着信息技术的发展和不同阶段人们信息化需求的不断演进,因其接入对象的广泛性、运用技术的复杂性、服务内容的不确定性以及不同社会群体理解和追求上的差异性,很难用已有概念和标准来准确完整地给出权威定义。然而,车联网概念的出现,因其服务对象和应用需求明确、运用技术和领域相对集中、实施和评价标准较为统 一、社会应用和管理需求较为确定,引起了业界的普遍关注,已

被认为是物联网中最能够率先突破应用领域的重要分支,并成为目前的研究重点和热点。 源于物联网的车联网,以车辆为基本信息单元,以提高交通运输效率、改善道路交通状况、拓展信息交互方式,进而实现智能交通管理,使物联网技术这一原本宽泛的概念在现代交通环境中得以具体体现。本文立足物联网基础理论和模型,以构建以信息技术为主导的智能交通系统为背景,对车联网的基本概念、体系结构、通信架构及其关键技术进行研究。 车联网基本概念和分类车联网概念是物联网面向行业应用的概念实现。物联网是在互联网基础上,利用射频识别(radiofrequencyidentification,rfid)、无线数据通信等技术,构造一个覆盖世界上万事万物的网络体系,实现任何物体的自动识别和信息的互联与共享。物联网不刻意强调物体的类型,更多的是强调物理世界信息的获取和交换,以实现当前互联网未触及的物与物信息交换领域。车联网是物联网概念的着陆点,将这个具体的物理世界限定到车、路、人和城市上。车联网利用装载在车辆上电子标签rfid获取车辆的行驶属性和系统运行状态信息,通过gps等全球定位技术获取车辆行驶位置等参数,通过3g等无线传输技术实现信息传输和共享,通过rfid和传感器获取道路、桥梁等交通基础设施的使用状况,最后通过互联网信息平台,实现对车辆运行监控以及提供各种交通综合服务。 从技术角度区分,车联网技术主要有电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术。

车联网数据安全传输

基于SSX1019芯片的物联网数据安全传输系统 ——同方车联网信息加密传输技术介绍 GPRS

行业数据现状 1.明文传输 最初设计时,很多行业系统采集的数据是以明文形式传输。 2.易截获 采用公网传输时,数据容易被截获甚至篡改。 3.高成本硬件通道 部分行业为保证安全性,会架设专用的硬件传输通道,然而随着传输距离扩大、采集点数量增多等因素,成本也会随之提高。 4.软加密 采集数据使用软实现方式加密,易被攻击获取加密密钥,从而获取数据明文。 5.原系统安全改造 很多现有采集设备已经在运行中,在按国家要求实施安全性改造时,有可能会重新设计原有采集设备甚至整体设计方案。 6.不熟悉安全性设计 各行业设计人员仅仅了解自己行业领域,通常对国家新要求的安全性传输设计了解甚少,自己开发加入安全部分,可能会拉长整个设计周期、提升研发成本,甚至无法确定项目是否能够顺利完成。 系统架构图 执行采集操作 密文密文 发送采集数据

硬件设备 1.物联网安全网关 2.终端安全模块 物联网安全网关 功能概述: 解密待进入内网的数据;加密待发向外网的数据。

物联网安全网关工作原理 用于与终端安全模块建立安全信道,解析终端安全模块传输过来的IPSEC的客户端设备数据,并将解析得到的数据分发给客户的业务数据控制平台上,也可将业务数据控制平台下发的命令通过安全信道加密传输给指定的终端安全模块,终端安全模块再将数据传送给客户端设备。 终端安全模块 功能概述: 解密来自于公网的数据;加密待发向公网的数据。

安全接入模块搭载SSX1019核心,支持以太网、GPRS 传输的安全接入模块;支持网口、串口通信;内部支持国密算法SM1/SM2/SM3,模块私钥存储在芯片flash内部,受到芯片保护,可以很好的保证客户端设备与业务数据控制平台之间的安全通讯。 接入物联网安全平台的要求 1.业务数据控制平台 普通电脑即可接入物联网安全平台。通过物联网安全平台的网关解密接收客户端设备发来的数据。 2.客户端设备 客户端设备只要硬件上支持串口通信或是以太网通信,即可接入物联网安全平台,实现数据透传。 物联网安全平台优势

车联网嵌入式设计概述

车联网嵌入式设备设计概述 车联网系统,是指利用先进传感技术、网络技术、计算技术、控制技术、智能技术,对道路和交通进行全面感知,实现多个系统间大范围、大容量数据的交互,对每一辆汽车进行交通全程控制,对每一条道路进行交通全时空控制,以提供交通效率和交通安全为主的网络与应用。 2010年10月28日,第一届中国国际物联网(传感网)大会上传来消息,汽车移动物联网(车联网)项目将被列为国家重大专项第三专项中的重要项目。目前相关内容已上报国务院,一期拨款有望达百亿级别,预期2020年实现可控车辆规模达2亿。车联网是对传统汽车交通概念的彻底颠覆,真正实现汽车的智能出行,最大程度地优化交通资源的调配,缓解城市交通拥堵,减少尾气排放,保障交通安全,让车主在处于最优化行驶状态的同时,享受到高品质的车载信息服务。 随着科技的发展,我们的日常生活已经逐渐被各种新兴媒体填满。从广播、电视等传统媒体,如今又有网络媒体,移动传媒等新兴媒体,并且这些媒体发展的非常迅速。我们每天都要受到大量来自这些媒体的信息冲击。这些信息弥漫在大街小巷,无时无刻不在渗入我们的生活。 虽然信息泛滥是经济社会发展必然的产物,但是对于汽车来说是否还需要再次增加海量的信息支持呢?汽车需要的是有序有效的信息,既可以提高汽车安全和旅途娱快,又可以美化城市环境。车联网到底需要怎样的信息终端呢?用户到底需要什么? 首先汽车需要的是显示终端而不是交互终端,所有需要双手过多操作的都是和汽车安全相背道而驰的。汽车终端最大的需要是听。如何把汽车上面的传感器采聚到的数据传送到云端进行计算到发送到手机,再根据用户自已定制需要用语音的方式说给车主听才是正理。其次,安全是一切的基础。来自美国汽车协会(AAA)的“车内司机注意力认知测量”的实验研究,通过一系列可量化的测量方法,要求被试司机在行车过车中做规定要求的动作,以测量其注意力的分散程度。研究显示,语音短信任务所测量的注意力分散程度是3,但其他任务则为2,明显是让司机更分神的操作。所谓的智能并不能给车主带来安全的保障反倒增加了风险,又如何带动车主的消费观念呢?用户表示自己每天面对电脑的时间已经够多了,不愿意在车内还面对屏幕。什么高清屏带来的不过是视觉的疲劳和分心。 人、车、生活的有机结合,是车联网想带给人们最终生活感受。如何把最需

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

车联网总结

车联网的现状及趋势 当前车联网的发展应该说还处在初级阶段,对于无人驾驶、无事故、不堵车、智能停车、智能导航等理想的交通状态相比,还有很长的路要走。因此车联网的发展要更针对当前拥有的技术和需求进行设计:一方面去掉那些现阶段难以实现的功能和华而不实的功能;另一方面应用好RFID和传感器方面的最新进展。车联网是物联网的一个应用方面,因此技术上有很多重合,如RFID和传感器,;又有其特点,是对动态信息的实时采集、处理、传输,对传感器要求更高,对海量数据的处理和分析传输是个难题。 一、车联网主体功能现在对车联网的定义表述不尽相同,但主体大致是连接车和路、人和车、车和车以及车与服务中心的一个网络,主要实现车辆的安全、有序驾驶,交通的智能管理、方便的服务等功能。 二、车联网网络架构根据各个科研单位的侧重点不同,研究的目的不同,车联网的网络架构也不相同。《车联网网络架构与媒质接入机制研究》,同济大学,2011年05月18 日,作者:须超,王新红,刘富强。文章提出面向安全应用的车联网无线网络架构及其协同通信协议栈,并对车联网自适应多信道媒质接入协议进行分析。网址如下: 我们也可以按照自己的想法设计一个网络架构,如按照物联网结构也分为感知层、网络层、应用层三层结构。也可以按照功能来设计网络架构。下图为自己设计。根据具体情况可不断调整扩展。 现阶段车联网的两个关键领域为(ITS)智能交通技术和(RFID)射频识别技术。智能交通包括传感技术、通信技术、数据处理技术和信息发布技术等;射频识别技术可应用于车辆通信、自动识别、移动定位、远距离监控

等方面。中国科学院、北京邮电大学、同济大学等几所院校在物联网领域有一定能力。 国内车联网发展资金来源主要有政府专项资金、国有大企业、民间基金三个方面,主要来自于政府支持和国有企业投资。 三、车联网相关科研院校及公司 1.目前车联网终端设备领先的是金龙客车与杭州鸿泉合作开发的G-BOS 设备,即苏州金龙智慧客车3G客车。其车载设备终端整合了数据采集、硬盘录像、车辆身份信息、可视倒车、行车记录仪、GPS导航等主要功能。获得相关专利两项:司机行为监测方法和基于3G无线网络海量实时数据采控装置。 2.同济大学在车联网的应用示范与原型系统搭配方面有实力,它提出的车联网架构包括三个方面:被服务终端(汽车、列车、路上行人等),基础设施(热点接入点、基站、卫星、交通设施等),交通管理和控制实体(交通控制中心)。 3.长安汽车与清华大学:侧重于汽车安全技术,主动安全技术,国外已较为成熟。 4.力帆汽车、长安汽车与重庆邮电大学:国内首个“智能驾驶与车联网实验室”,2011年4月11日成立。 5.车联网车载系统设备产品还有中国电信、华为的车载模块/EVDO车载模块,江苏天泽的天泽星网,潍柴动力的共轨行系统等。 6.国内的宝信软件是公路信息化整体解决方案供应商,启明信息是车载端信息系统开发商,新国都开发了自助缴费系统。

车联网网络安全与传统网络安全的区别及挑战

车联网网络安全与传统网络安全的区别及挑战 1. 车联网网络安全范畴 车联网作为物联网在交通领域的典型应用,内容丰富,涉及面广。基于“云”、“管”、“端”三层架构,车联网主要包括人、车、路、通信、服务平台5 类要素。其中,“人”是道路环境参与者和车联网服务使用者;“车”是车联网的核心,主要涉及车辆联网和智能系统;“路”是车联网业务的重要外部环境之一,主要涉及交通信息化相关设施;“通信”是信息交互的载体,打通车内、车际、车路、车云信息流;“服务平台”是实现车联网服务能力的业务载体、数据载体。车联网网络安全的范畴根据车联网网络安全的防护对象,分为智能汽车安全、移动智能终端安全、车联网服务平台安全、通信安全,同时数据安全和隐私保护贯穿于车联网的各个环节,也是车联网网络安全的重要内容。 2. 车联网网络安全与传统网络安全的关系 1 )安全防护对象 传统网络安全防护的对象往往是具有较强计算能力的计算机或服务器。而车联网以“两端一云”为主体,路基设施为补充,包括智能汽车、移动智能终端、车联网服务平台等对象,涉及车-云通信、车-车通信、车-人通信、车-路通信、车内通信五个通信场景。涉及的保护对象众多,保护面广,任何一环出现安全问题都有可能造成非常严

重的后果。大量的车联网终端往往存在计算能力、存储能力受限等问题,甚至还有可能暴露在户外、野外,为车联网网络安全防护带来更大的困难与挑战。 2 )攻击手段和防御方法 传统安全和车联网安全常见的攻击手段有篡改、伪造、拒绝服务,但在车联网中,因车辆节点通常快速移动,网络拓扑高速动态变化,且存在错综复杂的V2V,V2I,V2N 等各种传输介质(无线或有线)、协议(TCP/IP 和广播)、结构(分布式和集中式)的网络等,使得车联网攻击一般针对信息的网络架构的安全完整性和时效性。为应对常见的攻击,传统安全和车联网一般采取设置网络防火墙,入侵防御等防火措施,对于车联网安全而言,首先要根据其不同的场景以及功能要求,采取有针对性的防御措施,形成“检测-保护-响应-恢复”的车联网网络安全体系。 3 )安全后果 传统网络安全事件往往集中在网络服务中断、信息泄露、数据完整性破坏等方面,但对于车联网来说,出现网络安全事件,轻则会造成汽车失窃、数据泄露,严重情况下甚至会失去汽车的控制权,危害驾驶员及乘客生命安全。 3.车联网网络安全技术产业发展 车联网的网络安全防护并非仅指车辆本身信息安全,而是一个包含通信、云平台和外部新兴生态系统的整体生态安全防护,同时安全防护需要长期进行,需要定期对整个生态做安全检测以便发现潜在的风

车联网之信息安全

车联网之信息安全 概述:伴随着车联网技术的飞速发展,其所面临的信息安全威胁日渐凸显,已引起学术 界、工业界和政府部门的高度关注。作为在智能交通车载中具有典型性和先进性的车联网,较之传统的互联网,因其应用环境更加特殊、组网更复杂、管理更困难,其安全威胁更突 出。 根据不同的通信节点,可将其通信模式分为车与车(V2V)通信,车与路(V2I)通信,车与其他节点的混合通信(V2X)。车联网的出现让汽车使用者可以随时随地享受互联服务带来的便捷,同时也伴生了一系列安全问题:从数据角度出发,包括数据采集、数据运算、数据传输、数据使用、数据保存提出车联网的安全架构,重点从APP 应用、算法、链路连接、安全存储、车域网、车载自组网和车载移动互联网安全,7 个方面分析和面临的安全威胁。 重要性:安全可以说是一切事物的基础,没有安全作为保障,一切都是空谈,车联网也不例外。 车联网可以使我们更容易的在车辆中获取各种信息,可以使我们提前知晓前方路况,同时车联网也是安全自动驾驶实现的重要前提。尽管车联网将给我们未来的汽车生活带来无尽的便利,但是不可否认的是车联网也会给我们带来一系列的新增风险和潜在威胁。如果车联网不安全了,可想而知,后果是很严重的,互联网被黑客攻击,导致大面积电脑瘫痪,如果车联网被黑客攻击了,往小了说,会造成严重的交通都塞,整个区域交通瘫痪;往大了说,电影《速度与激情8》里操作整个停车场所有车辆的镜头并非不可能出现。 现状: 近年来,车联网信息安全事件频发,国内外专家、学者与致力于车联网安全邻域的工程师们 不断挖掘安全漏洞,竭尽全力完善漏洞技术。 o 2015 年两位美国黑客远程破解并控制了克莱斯勒的JEEP 汽车,克莱斯勒因此召回了140 万辆汽车,损失巨大;

车联网云服务平台方案

车联网云服务平台

目录 1. 概述 (1) 1.1. 系统需求分析 (3) 1.1.1. 政府部门需求 (3) 1.1.2. 运输企业需求 (4) 1.2. 解决方案 (7) 1.3. 系统设计目标 (7) 1.4. 系统设计原则 (8) 1.4.1. 高可靠性原则 (8) 1.4.2. 高可用性原则 (8) 1.4.3. 高效性原则 (8) 1.4.4. 高兼容性原则 (8) 1.4.5. 开放性原则 (8) 1.4.6. 先进性原则 (9) 1.4.7. 安全性原则 (9) 2. 系统总体设计 (9) 2.1. 云计算平台简述 (9) 2.2. 平台网络拓扑 (12) 2.3. 平台架构 (12) 2.3.1. 基础设施即服务(IaaS) (13) 2.3.2. 平台即服务(PaaS) (14) 2.3.3. 软件即服务(SaaS) (19) 2.4. 平台概要设计 (20) 2.4.1. 各功能逻辑子系统介绍 (20) 2.4.2. 系统分层逻辑设计 (23) 3. 平台功能介绍 (25) 3.1. 安全监管 (25) 3.1.1. 实时车辆定位 (26) 3.1.2. 位置监控 (27) 3.1.3. 报警信息处理 (28) 3.1.4. 多媒体采集 (28) 3.1.5. 实时视频监控 (30) 3.1.6. 视频检索回放 (30) 3.1.7. 监听 (31) 3.1.8. 远程遥控 (31) 3.1.9. 轨迹回放 (31) 3.1.10. 信息调度 (32) 3.1.11. 行驶记录仪 (33) 3.1.12. 到期提醒 (33) 3.2. 车辆管理 (33) 3.2.1. 车辆信息 (34) 3.2.2. 绑定车队 (34) 3.2.3. 车辆证件信息 (34)

车联网解决方案 - 华为解决方案

车联网解决方案 早期的功能型车联网,无法满足车企在全球不同区域的用户使用场景和个性化出行服务的需求,以至于造成客户续约率低、建设/运营成本高、装配率低下等问题。最典型的问题为:没有统一平台,不同车型接入不同的业务平台,割裂的烟囱式系统,维护复杂,管理成本高;平台能力不足,无法满足高并发、高频率接入需求,20万车辆就已经出现严重性能瓶颈;系统已经运行了多年,系统老旧,难以叠加新的业务,扩展困难。 同时,在新能源车的迅速发展、互联网企业对汽车制造及无人驾驶技术的探索,大众对共享经济的接受度以及国家监管政策颁发等因素的共同作用下,汽车行业开始制定新四化(网联化、电动化、共享化、自动化)的战略,并通过实现自身产品与服务的数字化转型与多样化市场需求接轨。

车企数字化转型成功的一大关键是构建一个生态型数字云平台,通过平台聚合生态开发者、行业应用合作伙伴,在全球市场环境下满足跨国销售其产品和服务,共同向车主及车辆使用者提供个性化出行服务需求,并满足当地政府强制性监管的要求。 华为车联网解决方案 华为车联网解决方案主要基于OceanConnect 物联网平台,并依托华为全球公有云、或者和运营商的合营云,以云服务的方式提供。OceanConnect 物联网平台的定位是:帮助车企在数字化转型过程中,将车内的信息以安全、可靠、高效的方式传递到云端,形成以车为核心的数字化资产,再开放给丰富的上层应用,同时具备C-V2X/AI等未来演进能力。

解决方案亮点 面向上层应用(车联网应用平台和第三方应用),提供丰富的业务使能套件,比如出行服务、保养服务、车队管理、分时租赁、UBI等;面向未来,提供预测性维护,ADAS 分析、AI(比如个人助理)、车路网协同服务、故障定界等能力的支持。 提供丰富的开发API,帮助应用开发者降低开发成本,满足业务灵活定制及个性化,实现新业务快速上线;提供全球一体化的车辆接入和管理能力,比如车辆的安全接入和鉴权、双方通信的双向证书加密、设备管理、远程控制、FOTA/SOTA等能力;支持千万级别的终端接入,200万消息并发处理;通道端到端加密,确保用户信息安全。 车厂通过控制基础平台来掌握核心技术资产和数据资产;同时,提供IoT大数据分析能力,将应用数据的价值最大化,包括车辆运行状况、位置追踪和驾驶行为分析等等。

车联网OBU多级安全架构及通信方案研究

车联网OBU多级安全架构及通信方案研究车联网(IoV,Internet of Vehicles)作为物联网在智能交通领域的重要分支,融合了多学科和技术体系,将车-路-网连接成为一个有机整体,实现车与车,车与人,车与基础设施以及车与云服务器的智能协同和交互。随着5G移动通信技术的应用,IoV不断向智能化和网联化方向推进,多网络融合、主动的信息提供和车辆控制等成为车载单元(OBU,On Board Unit)在汽车辅助驾驶设计理念和相关技术的发展趋势。 然而,传统的车内网一直被视为一种绝对安全的闭式网络,一旦允许外部网络和设备接入,将会引入重大的信息安全问题,严重威胁到IoV通信的机密性以及驾驶员的生命安全。本文针对车内网、终端直通(D2D,Device-to-Device)通信网络、专用短程通信(DSRC,Dedicated Short Range Communications)以及蜂窝网路等多网络接入与融合引发的安全问题,综合分析了现有的车内网和OBU安全方案存在的不足,旨在研究一种安全可靠的OBU及通信方案,防止车辆被非法控制,并提高多网络交互的安全性。 本文的主要研究工作概括为:(1)提出了一种面向车联网三级安全架构的新型OBU(NOTSA,Novel OBU with Three-level Security Architecture for Internet of Vehicles)。本方案针对车辆攻击模型,以及基于ISO 13335 GMITS 标准的安全威胁评估,设计了多级安全区,部署了三层安全防护机制。 在此基础上,构建了硬件仿真平台,验证了NOTSA设计方案的可行性。此外,基于可靠性框图(RBD,Reliability Block Diagrams)的可靠性分析,以及多种方案的实验分析和对比,体现了NOTSA拥有更高的可靠性。 (2)基于NOTSA提出了多级安全协议。该协议包括外部网络和设备的强安全

车联网解决方案智能终端.pdf

车联网解决方案(智能终端) 深圳车联网解决方案公司《酷点网络》提供车联网智能终端开发,app开发,汽车协议解码、汽车电子开发、汽车电控系统改装专用模块。 模块将汽车CAN总线数据解析后通过UART输出,供用户二次开发。模块体积小巧,易集成于用户系统,同时使用UART输出极易于二次开发。 功能描述I 可采集汽车OBD接口CAN总线上的所有原始数据,并将数据解析出其具体意义(汽车内部电控系统的各项传感器数值)后通过串口输出,供用户读取、解析、开发等使用。用户可以通过串口指令或模块自动发送的方式,将读取到的汽车内部运行数据通过串口直观的输出。功能描述II 用户无需深入了解汽车CAN总线或CAN数据,只需将模块集成到用户开发设备的硬件系统中,就能将用户自身的产品(各种单片机、PC串口、GPS、DVD、PND等设备)与汽车CAN 总线快速连接,可以非常方便、快速的实现自身产品二次开发及功能扩展。 功能描述III 模块目前可支持标准的ISO15765协议、OBD II汽车故障诊断功能,支持DTC诊断请求、故障码输出、故障码清除。 模块集成自动打火启动、熄火休眠功能,系统休眠时消耗电流为微安级,满足低功耗标准。还可自动识别带发动机自动启停功能的车辆,即使汽车在怠速状态发动机自动停止也不会误认为汽车熄火而停止工作。 性能特点 ●标准OBD II接口支持 ●覆盖所有主流汽车CAN协议 ●CAN总线信息主动转换到串口发出(可定制发送命令读取参数) ●车辆点火自动唤醒,车辆熄火自动休眠 ●自动匹配带“发动机自动启停”功能的车辆 ●支持瞬时油耗、平均油耗及耗油量数据 ●支持车辆故障码诊断,两条指令即可完成故障码的读取和清除 ●支持实时故障码扫描 ●支持急加速、急减速等驾驶习惯统计 ●模块化设计,高集成度 ●车辆级抗干扰设计 ●车联网定制“解决方案” ●接口协议数据简单易用●孔型焊盘设计,超小尺寸16mm*10mm

车联网功能应用测试软件平台

车联网功能应用测试软件平台 本平台由车载音视频监控DVR及硬盘、网络与电力辅助设备配件、车联网功能应用测试软件平台系统组成。集成国家智能交通综合测试基地已有车联网路侧测试设备,支撑测试场景设计与实施,实现车联网测试状态实时监控与结果分析。 1.车联网功能应用测试软件平台功能 (一)用户管理 1、实名认证。软件平台需能够对注册人提供的身份信息进行实名认证; 2、短消息验证。软件平台需提供短消息验证功能,至少支持4位短信验证码; 3、密码格式检查。软件平台需对登录密码进行格式检查(须包含至少1个大写字母、至少1个小写字母、至少1个数字、至少1个特殊符号,密码长度为12~20个字符); 4、双重验证。软件平台在注册用户登录时,要求用户首先输入用户名和密码,而后需通过短消息进行双重验证,验证通过后,方可使用软件平台; 5、新建用户。新建并自主添加测试管理用户、测试用户的相关信息(用户名、密码、联系方式、身份信息、角色等); 6、列表显示。列表显示测试管理用户和测试用户的基本信息(用户名、密码、联系方式、身份信息、角色等); 7、信息编辑。删除、更新与用户相关信息(用户名、密码、联

系方式、身份信息、角色等); 8、列表查询。用户列表可通过默认条件或自定义条件,如姓名、身份证号、联系方式、角色等进行筛选; 9、角色信息。新建、更新、删除角色的相关信息(角色名称、角色权限等); 10、用户角色。激活、冻结、删除用户角色及相应权限; 11、页面权限。不同角色用户是否具备进入/浏览某页面的权限; 12、操作权限。不同角色用户具备进入/浏览某页面的权限后,是否具备对该页面进行操作的权限; 13、数据权限。不同角色用户是否针对某些数据具备浏览权限; 14、用户分为管理用户、测试管理用户和测试用户三种类型: 管理用户:对注册用户进行增加、删除、查询、信息修改、用户激活及权限修改等操作;测试管理用户:负责软件平台的设备管理和测试用例的维护,包括测试设备和测试用例的增加、删除、信息查询及修改操作;负责测试文档的维护、撰写与更新;负责测试管理工作,包括测试计划的制订、软件平台及设备的使用、测试进程中的各项管理工作;测试用户:需注册并激活后使用软件平台;提交待测试相关信息,申请测试,并在测试过程中配合测试管理用户工作。 (二)设备管理 1、测试设备信息管理。测试设备信息需包括但不限于:设备类别、设备编号、设备型号、设备厂商;购买时间、安装位置、IP地址、软件版本号、关联基础设施编号;关联测试设备;关联测试协议;

车联网技术全面解析及主要解决方案盘点教学内容

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

不容忽视的车联网时代安全

不容忽视的车联网时代安全 在近日举行的2019年第六届国家网络安全宣传周分论坛车联网安全高峰论坛上,车联网安全问题成为热议话题。来自车联网及网络安全领域的专家学者,围绕车联网安全产业发展、安全技术、应用创新等议题展开了深入研讨,并积极建言献计。 专家认为,互联网产业的快速发展离不开网络安全工作的支撑,车联网发展也给网络安全带来了新的挑战。目前车联网安全整体仍处于起步阶段,需要汽车业界的共同参与和相关产业的联动配合,凝聚行业力量,从技术、标准、管理甚至到产业体系以及人才培养等各方面继续加大研发创新和投资力度,构建以人为中心的车联网网络安全体系,保护终端(车端)链路数据的安全。加快5G与车联网融合创新 2018年,车联网产业迈入快车道。这一年,我国陆续发布多个促进车联网发展的政策文件。 2018年4月,工信部等三部门发布《智能网联汽车道路测试管理规范(试行)》,这意味着“无人”驾驶汽车可以在更多实际道路测试。2018年6月,工信部发布《国家车联网产业标准体系建设指南(总体要求)》系列文件,提出到2020年,初步建立能够支撑辅助驾驶及低级别自动驾驶的智能网联汽车标准体系。

2018年11月,工信部发布《车联网(智能网联汽车)直连通信使用5905-5925MHz 频段管理规定(暂行)》,支持国家经济特区、新区、自由贸易试验区等加快智能交通系统建设。 2018年12月25日,工信部印发《车联网(智能网联汽车)产业发展行动计划》,明确到2020年,实现车联网(智能网联汽车)产业跨行业融合取得突破,具备高级别自动驾驶功能的智能网联汽车实现特定场景规模应用,车联网用户渗透率达到30%以上,智能道路基础设施水平明显提升。 在这些政策文件的指引下,我国车联网产业发展进一步提速,产业规模不断扩大。 9月6日,在2019物博会智能交通与车联网产业发展高峰论坛上,国家级江苏(无锡)车联网先导区创建实施方案正式对外发布。9月7日,苗圩与吴政隆在江苏无锡共同为全国首个车联网先导区揭牌。 苗圩提出,要结合5G商用部署,发挥我国在网络技术、试点示范、产业融合、体制机制等方面的基础和优势,加快5G与车联网融合创新;聚焦车用芯片、计算平台、车载操作系统等“卡脖子”技术环节,逐一实现突破,支持有条件的地区和企业先行先试;推动完善有关法律规范,加快车联网先导区建设,加强管理机制与运营模式探索,提高安全防护技术水平,保障车联网产业健康发展。

车联网系统

车联网系统 定义 车联网系统,是指通过在车辆仪表台安装车载终端设备,实现对车辆所有工作情况和静、动态信息的采集、存储并发送。系统分为三大部分:车载终端、云计算处理平台、数据分析平台,根据不同行业对车辆的不同的功能需求实现对车辆有效监控管理。车辆的运行往往涉及多项开关量、传感器模拟量、CAN 信号数据等等,驾驶员在操作车辆运行过程中,产生的车辆数据不断回发到后台数据库,形成海量数据,由云计算平台实现对海量数据的“过滤清洗”,数据分析平台对数据进行报表式处理,供管理人员查看。 2 3简介 车联网系统分为三大部分:车载终端、云计算处理平台、数据分析平台。 车载终端采集车辆实时运行数据,实现对车辆所有工作信息和静、动态信息的采集、存储并发送。车载终端由传感器、数据采集器、无线发送模块组成,车辆实时运行工况包括驾驶员的操作行为、动力系统工作参数数据等;由云计算处理平台处理海量车辆信息,对数据进行“过滤清洗”;数据分析平台则负责对数据进行报表式处理,供管理人员查看。 中国物联网校企联盟认为:未来的车联网系统可以使感知更加透彻,除了道路状况外,还可以感知各种各样的要素——污染指数、紫外线强度、天气状况、附近加油站……同时还可以感知驾驶员的身体状况、驾驶水平、出行目 的……路线的不再是“快速到达目的地”,而是“最适合驾驶员,最适合这次出行”,汽车导航将由“以路为本”变为“以人为本”。[1] 4概念 ITS

即智能交通。将先进的传感器技术、通信技术、数据处理技术、网络技术、自动控制技术、信息发布技术等有机运用于整个交通运输管理体系而建立起的一种实时的、准确的、高效的交通运输综合管理和控制系统。 CAN CAN是控制器局域网络(Controller Area Network,CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以 CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。 5车联网应用编辑 国际车联网现状 车辆运行监控系统长久以来都是智能交通发展的重点领域。在国际上,美国的IVHS、日本的VICS等系统通过车辆和道路之间建立有效的信息通信,已经实现了智能交通的管理和信息服务。而Wi-Fi、RFID等无线技术近年来也在交通运输领域智能化管理中得到了应用,如在智能公交定位管理和信号优先、智能停车场管理、车辆类型及流量信息采集、路桥电子不停车收费及车辆速度计算分析等方面取得了一定的应用成效。 当今车联网系统发展主要通过传感器技术、无线传输技术、海量数据处理技术、数据整合技术相辅相成配合实现。车联网系统的未来,将会面临系统功能集成化、数据海量化、高传输速率。车载终端集成车辆仪表台电子设备,如硬盘播放、收音机等,数据采集也会面临多路视频输出要求,因此对于影像数据的传输,需要广泛运用当今流行3G网络。[2] 国内车联网现状 杭州鸿泉与金龙客车 目前,金龙客车已经通过与杭州鸿泉数字设备有限公司合作,在车辆出厂前安装车载终端设备采集车辆运行状况数据和司机驾驶行为,如今,由杭州鸿泉公司研发,金龙客车使用的G-BOS系统已经管理车辆60000多台,但当用户数量大幅增加时,数据传输、过滤、存储及显示也一直在承受相当大的考验。 2012年3月11日,基于云计算的第三代车联网云计算解决方案鸿泉云网正式

车联网安全之TLS

车联网安全之TLS1.3比TLS1.2更安全在哪里 概述: 车联网中,云与端通信时信息安全大多是通过TLS(Transport Layer Security)协议来保证的。TLS中文意思为传输层安全性协议,其前身为安全套接层(Secure Sockets Layer,缩写SSL)安全协议。使用TLS的目的是为车联网通信提供安全及数据完整性保障。该协议由两部分组成: TLS记录协议(TLS Record)和 TLS握手协议(TLS Handshake)。较低的层为TLS记录协议,位于某个可靠TLS 记录协议的传输协议 (例如 TCP) 上面。现在普遍采用的方案都是TLS1.2,由于技术和成本的限制,据了解目前还没有车厂采用TLS1.3协议,是否在未来车联网信息安全技术的选择上会有所改变呢,我们不妨从技术角度对TLS1.2与TLS1.3进行一下分析。 TLS作用: ?所有信息都是加密传播,第三方无法窃听。 ?具有校验机制,一旦被篡改,通信双方会立刻发现。 ?配备身份证书,防止身份被冒充。 ?注:TLS 记录协议负责消息的压缩、加密以及数据的认证。 TLS的位置: 图1:TLS在通信链路中的位置

从图中可以看到,SSL/TSL层的加入,建立了一个安全连接(对传输的数据提供加密保护,可防止被中间人嗅探到可见的明文;通过对数据完整性的校验,防止传输数据被中间人修改)和一个可信的连接(对连接双方的实体提供身份认证)。 TLS1.2的握手(云与端数据通信协议) 下面介绍一下,TLS 1.2协议的密钥交换流程,以及其缺点。 RSA密钥交换步骤如下: 1:client发起请求 (Client Hello) 。 2:server回复certificate。 3:client使用证书中的公钥,加密预主密钥,发给 server (Client Key Exchange) 。 4:server 提取出预主密钥,计算主密钥,然后发送对称密钥加密的finished。 5:client计算主密钥,验证finished,验证成功后,发送ApplicationData了。 缺点:RSA密钥交换不是前向安全算法(私钥泄漏后,之前抓包的报文都能被解密)。 图2:TLS1.2的握手图解 注:图2是单向认证,TLS1.2是支持双向认证的。

相关主题
文本预览
相关文档 最新文档