当前位置:文档之家› 直流电机调速电路发展、现状以及前景综述

直流电机调速电路发展、现状以及前景综述

直流电机调速电路发展、现状以及前景综述
直流电机调速电路发展、现状以及前景综述

直流电机调速电路发展、现状以及前景综述

摘要:在现代化的工业生产过程中,几乎无处不使用电力传动装置,生产工艺、产品质量的要求不断提高和产量的增长,使得越来越多的生产机械要求能实现自动调速。对可调速的电气传动系统,可分为直流调速和交流调速。直流电动机具有优良的调速特性,调速平滑、方便,易于在大范围内平滑调速,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起制动和反转,能满足生产过程自动化系统中各种不同的特殊运行要求,至今在金属切削机床、造纸机等需要高性能可控电力拖动的领域仍有广泛的应用,所以直流调速系统至今仍然被广泛地应用于自动控制要求较高的各种生产部门,是截止到目前为止调速系统的主要形式。

关键词:直流电机;调速系统;直流电机应用;自动控制

直流电机发展状况:

直流电动机分为有换向器和无换向器两大类。无刷直流电机是在有刷直流电机的基础上发展起来的。1831年法拉第发现了电磁感应

现象,奠定了现代电机的理论基础。十九世纪四十年代研制成功了第一台直流电机,经过约七十年,直流电机才趋于成熟阶段。随着用途的扩大,对直流电机的要求也越来越高,显然,有接触的换向装置限制了有刷直流电机在许多场合的应用,为了取代有刷直流电机的那种电刷——换向器结构的机械接触装置,人们曾经对此做过长期的探索。早在1915年,美国人Langmil发明了控制栅极的水银整流器,制成

了由直流变交流的逆变装置;20世纪30年代,有人提出用离子装置实现电机的定子绕组按转子位置换接的所谓整流子电机,此种电机由于可靠性差、效率低、整个装置笨重而又复杂,故无实际意义。

科学技术的迅猛发展,带来了半导体技术的飞跃。开关型晶体管的研制成功,为创造新型电机——无刷直流电机带来了生机。

1955年美国D.Harrison等人首次申请用晶体管换向线路代替电机电刷接触的专利,这就是无刷直流电机的雏形,它由功率放大部分、信号检测部分、磁极体和晶体管开关电路等所组成。其工作原理是是:当子旋转时,在信号绕组W1或W2中感应出周期性的信号电势,此信号分别使晶体管BG1和BG2轮流导通,这样就使功率绕组W1和W2轮流馈电,即实现了换流。问题在于,首先,当转子不转时,信号绕组内不产生感应电势,晶体管无偏置,功率绕组也就无法馈电,所以这种无刷电机没有起动转距;其次,由于信号电势的前沿陡度不大,晶体管的功耗大。为了克服这些弊端,人们采用了离心装置的换向器,或在定子上放置辅助磁钢的方法来保证电机可靠的起动,但前者结构复杂,而后者尚需要附加的起动脉冲;其后,经过反复的实验和不断的实践,人们终于找到了用位置传感器和电子换向线路来代替有刷直流电机的机械换向装置,从而为无刷直流电机的发展开辟了新的途径。六十年代初期,以接近某物而动作的接近开关式位置传感器、电磁谐振式位置传感器和高频耦合式位置传感器相继问世,之后,又出现了磁电耦合式和光电式位置传感器。

半导体技术的飞速发展,使人们对1879年美国人霍尔发现的霍

尔效应再次发生兴趣,经过多的努力,终于在1962年试制成功了借

助霍尔效应来实现换流的无刷直流电机。随着比霍尔元件的灵敏度高千倍左右的磁敏二极管的出现,在七十年代初期,又试制成功了借助磁敏二极管实现换流的无刷直流电机。

在试制各种类型的位置传感器的同时,人们试图寻求一种没有附加位置传感器结构的无刷直流电机。1968年原联邦德国

W.Mieslinger提出采用电容移相实现换流的新方法;在此基础上,

原联邦德国R.Hanitsh等人试制成功借助数字式环形分配器和过零

鉴别器的组合来实现换流的无附加位置传感器的无刷直流电机。

人们一直都在致力于无位置传感器的研究,根据同步电机转子磁极位置辨识的方法,利用定子绕组的感应电动势(电压)间接获得无刷直流电机转子磁极位置,即间接检测法。与直接检测法相比,省去了位置传感器,从而可简化原电机本体结构的复杂性,特别适合于小尺寸、小容量无刷直流电机。80年代以后,随着微机技术的快速发展,使得无转子位置传感器的无刷直流电机得以进入实用化阶段;另外,随着多功能传感器的问世,在无刷直流电机伺服驱动系统中已有用一个传感器同时检测转子磁极位置、速度及伺服位置的实用化应用成果。

半导体技术自20世纪50年代后期诞生以来,发展速度很快,功率半导体器件的性能得到逐步提高,同时其相应驱动电路也获得了飞速发展,现可以做到使用一片驱动电路,一个驱动电路就可驱动三相6个开关管,从而大大简化了外围电路尤其是驱动电路的设计。同时高性能永磁材料,如钐钴、钕铁硼等的问世,均为无刷直流电机的广

泛应用奠定了坚实的基础。

在一些要求高效率和高功率密度的特殊应用领域中,预示着无刷直流电机驱动的美好前景,从各个方面对无刷直流电机及其驱动系统展开的国际性开发热还将继续下去,这样的结果,无刷直流电机将继续成为未来高性能无位置伺服装置的不可轻视的对象。

直流调速系统发展史

直流电气传动系统中需要有专门的可控直流电源常用的可控直流

电源有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行,设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些

辅助励磁设备,因而体积维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是

水银蒸汽对维护人员会造成一定的危害等。第四,1957年,世界上

出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。

从20世纪80年代中后期起,以晶闸管整流装置取代了已往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。

随着微型计算机、超大规模集成电路、新型电子电力开关器件和传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,电气传动装置不断向前发展。微机的应用使电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。近年来,一些先进国家陆续推出并大量使用以微机为控制核心的多种直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的

PAD/PSD等等。

直流调速控制装的国内外发展现状

数字直流调速装置,从技术上,它能成功地做到从给定信号、调

节器参数设定、直到触发脉冲的数字化,使用通用硬件平台附加软件程序控制一定范围功率和电流大小的直流电机,同一台控制器甚至可以仅通过参数设定和使用不同的软件版本对不同类型的被控对象进

行控制,强大的通讯功能使它易和PLC等各种器件通讯组成整个工业控制过程系统,而且具有操作简便、抗干扰能力强等特点,尤其是方便灵活的调试方法、完善的保护功能、长期工作的高可靠性和整个控制器体积小型化,弥补了模拟直流调速控制系统的保护功能不完善、调试不方便、体积大等不足之处,且数字控制系统表现出另外一些优点,如查找故障迅速、调速精度高、维护简单,使其具备了广一阔的应用前景。

国外主要电气公司如瑞典的ABB公司、德国的西门子公司、AEG 公司、日本的三菱公司、东芝公司、美国的GE公司、西屋公司等,均已开发出全数字直流调速装置,有成熟的系列化、标准化、模板化的应用产品。

我国从20世纪60年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统也得到迅速的发展和广泛的应用。目前,晶闸管供电的直流调速系统在我国国民经济各部门得到广泛的应用。

我国关于数字直流调速系统的研究主要有:综合性最优控制,补偿PID控制,PID算法优化,也有的只应用模糊控制技术,并有很少的智能控制应用于其中。随着新型电力半导体器件的发展,GIBT(绝缘栅双极型晶体管)具有开关速度快、驱动简单和自关断等优点,克服了晶闸管的主要缺点。我国直流调速正向脉宽调制方式发展。

我国现在大部分数字化控制直流调速装置依靠进口。但由于进口设备价格昂贵,也给出了国产全数字控制直流调速装置的发展空间。目前,国内许多大专院校、科研单位和厂家也都在开发全数字直流调速装置。

直流电动机的调速方法

直流电机转速n的表达式为:

式中:Ua——电枢端电压(V);

Ia——电枢电流(A);

Ra——电枢电阻总电阻(Ω);

Φ——每极磁通量(wb);

Ce——与电机结构有关的常数;

由式1可以看出,式中Ua、Ra、Φ三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;(2)改变励磁磁通Φ;(3)改变电枢供电电压Ua。

(1)改变电枢电路总电阻在电动机电枢外串联电阻进行调速,只能有级调速,调速比一般约为1:2左右,转速变化率大,轻载下很难得到低速,效率低、平滑性能差、机械特性软,故现在已极少采用;

(2)改变励磁磁通Φ进行调速。由式1可看出,电动机的转速与磁通Φ(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反

之,则n降低。与此同时,由于电动机的转矩Te是磁通Ф和电枢电流Ia的乘积(即Te=CTΦIa),电枢电流不变时,随着磁通Φ的减小,其转速升高,转矩也会相应地减小。所以,在这种调速方法中,随着电动机磁通Φ的减小,其转矩升高,转速也会相应地降低。在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。

为了使电动机的容量能得到充分利用,通常只是在电动机基速以上调速时才采用这种调速方法。采用弱磁调速时的范围一般为1.5:1~3:1,特殊电动机可达到5:1。这种调速电路的实现很简单,只要在励磁绕组上加一个独立可调的电源供电即可实现。

(3)调节电枢电压Ua。改变电枢电压从而改变转速,属恒转矩调速方法,动态响应快,适用于要求大范围无级平滑调速的系统。改变电枢电压主要有三种方式:旋转变流机组、静止变流装置、PWM(脉宽调制变换器(或称直流斩波器)。

旋转变流机组用交流电动机和直流发电机组成机组以获得可调直流电压,简称G-M系统,国际上统称Ward-Leonard系统,这是最早的调压调速系统。G-M系统具有很好的调速性能,但系统复杂、体积大、效率低、运行有噪音、维护不方便。

20世纪50年代,开始用汞弧整流器和闸流管组成的静止变流装置取代旋转变流机组,但到50年代后期又很快让位于更为经济可靠的晶闸管变流装置。采用晶闸管变流装置供电的直流调速系统简称V-M系统,又称静止的Ward-Leonard系统,通过控制电压的改变来

改变晶闸管触发控制角α,进而改变整流电压Ud的大小,达到调节直流电动机转速的目的。V-M在调速性能、可靠性、经济性上都具有优越性,成为直流调速系统的主要形式。

PWM(脉冲脉宽调制)变换器又称直流斩波器,是利用功率开关器件通断实现控制,调节通断时间比例,将固定的直流电源电压变成平均值可调的直流电压,亦称DC-DC变换器。

针对具体的无刷直流电机,文献中提供了各种各样的控制策略,他们各有各的优点。

直流电机双闭环调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。

基于TMS320LF2407A的无刷直流电机调速系统采用速度环和电流环双闭环控制策略,采用数字PID算法,对转速反馈实行PI控制,对电流反馈采用PID控制(见图1)。图1中给定速度与反馈速度形成偏差,经速度调节后产生参考电流量,它与反馈电流量的偏差经电流调节后形成一定占空比的PWM控制量,PWM占空比随给定速度改变从而实现三相无刷直流电机速度控制。本系统中控制算法设计方法是根据实际情况设定一个误差阈值,当跟踪误差大于阈值时,采用Bang-Bang控制,可避免过大的超调,使系统有较快的动态响应;当跟踪误差小于阈值时,采用PD控制,保证系统的控制精度。

无刷直流电机模糊控制器的设计与仿真提出了基于自适应权值修正理论的模糊PI调节器的设计方法,系统采用双路控制,采用自适应的权值修正法,得到电机的供电电压。由于整个控制系统采用双路控制的形式,采用PI调节器是为了使系统的稳态误差小,克服由于模糊控制不易于进行稳态无差控制的弊病。并且,利用PI调节器来给出控制电压的基本值;采用模糊控制器是为了使系统的快速性好,且超调量较小。为了调节两者的连接权值,借鉴了神经网络理论中的自适应的权值修正算法。

针对Fuzzy-PI调节器设计了系统仿真模型。整个系统的框图如图2所示,在整个系统中,采用了模糊控制和PI控制器的双路独立设计方法,并采用了自适应的加权方法将两路信号相加。在系统的设计中为了减小稳态误差,对PI调节器的设计采用了比较大的比例系数,同时,为了减小前期误差对后面控制精度的影响,而相应的积分系数选择较小。

直流电机调速系统的运动增强学习控制适用于重复运动轨迹的系统。控制系统由前馈和反馈两部分组成,无模型学习自适应反馈控制算法为系统稳定性提供了保障,迭代学习控制算法作为前馈控制去补偿系统的非线性、未知动态和干扰,因此增强了系统单独应用PID 或无模型学习自适应控制算法时的控制性能,通过与传统PID和无模型学习白适应控制算法的仿真比较,验证了采用智能前馈控制的优势。

无刷直流电机调速系统神经网络自适应滑模变结构控制器运用了滑模变结构控制理论,通过调节端电压来实现对电机速度的控制,换相由霍尔元件位置检测来实现;从实际应用的角度出发,采用径向基神经网络(Radial Basis Function Neural Network, RBFNN)非线性函数估计器,对变结构控制量中的不确定项进行动态估计,补偿到控制量中,很好地抑制了系统抖振。该方法控制无刷直流电机,超调量小,速度响应快,控制精度高,且系统对各种干扰和参数摄振具有较强的鲁棒性,动、静态性能均优于PID控制。

直流电机前景综述

首先,电力电子技术自诞生以来,发展极为迅速,功率器件经历

了晶闸管、GTR、MOSFET、IGBT的发展过程,使得功率半导体器件的性能得以提高,也促使了驱动电路的飞速发展。近几年,随着微电子技术的发展,智能功率集成电路得以进一步发展并普及,为功率器件实现智能化、高频化、小型化创造了条件,这一切都为直流电机的驱动线路性能的提高开辟了道路。电力电子技术作为一门极具发展潜力的新兴技术,相信在将来必定能为直流电机技术的发展提供动力。

其次,微型计算机(含单片机)自出现以来,便以其集成度高、功能强、体积小、功耗低、价格低廉、灵活方便等一系列优点,广泛应用于国防、地质、教育、经济、日常生活等各个领域,发挥着巨大的作用。当前微型计算机控制系统的发展,也促进了控制理论的发展。在电机控制领域,电机性能的改善提高受到许多客观因素的制约影响。因此,电机控制技术的发展和控制器的发展显得更加密切,随着计算机控制技术的发展,尤其的DSP芯片的出现,人们更加注意到从提高控制器的性能来提高永磁无刷直流电机的性能,并取得了良好的效果。借助于高性能DSP芯片,系统辨识、最优控制、自适应控制等理论也被引入到电机控制策略中来,从而推动了直流电机朝着智能化、柔性化和全数字化方向发展。

最后,随着多功能传感器的问世,除了检测磁极位置外,还能够进行速度及伺服位置的检测。检测技术的发展,必将导致更为先进的速度及位置辨识方法的产生,从而推动直流电动机的应用和普及。

直流电机PWM调速电路

直流电机P W M调速电 路 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

《电子技术》课程设计报告 课题:直流电机PWM调速电路 班级电气工程1101学号1101205304 学生姓名xxx 专业电气信息类 系别电子与电气工程学院 指导老师电子技术课程设计指导小组 xxxxx 电子与电气工程学院 2012年5月 一、设计目的 a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 二、设计任务与要求 1.设计电机驱动主回路,实现直流电机的正反向驱动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4.设计电机转速调节电路;可以按键或电位器调节电机转速; 5.安装调试; 6.撰写设计报告。 三、设计思想及设计原理

1.信号可以采用数字方法给定,也可以采用电位器给定。建议采用数字方法。 2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。建议采用数字方法。 3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现; 4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。建议采用光电编码器。 5.显用数字方法显示电机转速。采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。建议采用数字方法。 6.(提高部分)可以采用反馈控制技术对系统进一步完善。 四、单元电路设计 4.1LM324组成的PWM直流电机产生电路 4.1.1它主要由U1(LM324)和Q1组成 图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。 图4.1LM324组成的PWM直流电机产生原理图 4.1.2工作原理 脉冲宽度调制(PWM)是英文“PulseWidthModulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电机调速电路的设计

课程设计说明书 直流电机调速电路的设计 系、部: 学生姓名: 指导教师: 专业: 班级: 完成时间: 摘要

将电子技术和控制技术引入传统的电力技术领域,利用半导体开关器件组成各种电力变换电路实现电能的变换和控制,构成了一门完整的学科,被国际电工委员会命名为电力电子学或称为电力电子技术,他是一门综合了电子技术,控制技术和电力技术的新兴交叉学科。直流电机是电机的主要类型之一。一台直流电机即可作为发电机使用,也可作为电动机使用,用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用。直流电动机是人类最早发明和应用的有一种电机。直流电动机是将直流电转换为的旋转机械。他与交流电动机相比,虽然直流电动机因为结构复杂,维护困难,价格比较贵等缺点制约了它的发展,应用不如交流电动机广泛。但由于直流电动机有优良的启动,调速和制动性能,因此在工业领域中仍占有一席之地。 关键词电力电子技术;直流电动机;机械能 ABSTRACT

Will the electronic technology and control technology into the traditional power technology, using semiconductor switching parts of all kinds of power transformation of electric power circuit implementation transformation and control, constitute a complete discipline, be door to the international electrotechnical commission named power electronics or called power electronic technology, he is a comprehensive electronic technology, control technology and the emerging interdisciplinary power technology. Dc motor is one of the main types of the motor. A dc motor as a generator can use, also can use as a motor, used as dc generators can get dc power, and as a dc motor, since it has good performance of speed adjustment, in many speed performa, is still widely used. Dc motor is the earliest human invention and application of a kind of motor. Current motor is converted to dc of rotating machine. He compared with ac motor, although dc motor for the complex structure, maintenance difficulties, price is more expensive shortcomings constrains its development, the application as ac motor widely. But because of dc motor with fine start, speed and braking performance, so in industry still has a place. Key words power electronic technology; dc motor; mechanical energy 目录

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈,从电刷B 流出,根据电磁力定律,载流导体和收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是,从电刷B 流出。 此时载流导体和受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下

直流电机调速电路

电动机电子调速控制器一 本例介绍的电动机电子调速控制器,可用于600W以下、额定电压为22Ov的直流电动机的调速。 电路工作原理 该电动机电子调速控制器电路由电源电路、励磁电路、触发电路和调速控制电路组成,如图8-58所示。 电源电路由熔断器FU、电阻器Rl-R3、整流二极管VD5-VD9、稳压二极管VS和滤波电容器C3组成。 励磁电路由电阻器Rl5、Rl6、电容器Cl、C2和二极管Dl-D4组成。 触发控制电路由脉冲变压器T、单结晶体管VU、晶体管Vl、V2、二极管VDlO-VDl2、电容器C4-C6和电阻器R4-R7组成。 调速控制电路由晶闸管VTl、VT2、二极管VDl3-VDl5、电阻器R8-R14、电容器C7和电位器RP组成。 交流220V电压经Rl和R2限流降压、VDl-VD4整流、R3限流、VS稳压后,产生24V左有的脉动直流电压。该电压一路经R4为VU提供同步电源;另一路经VD9隔离、C3滤波后,为Vl、V2和由R8、RP、R9组成的分压电路提供22V稳定的直流电压。 交流220V电压还经VDl-VD4整流后加至直流电动机M的励磁绕组W上,作为励磁电源。 在RP的中心抽头处能得到可控制M转速的控制电压。调节RP的阻值,该电压可花4·6-2OV之间变化。 R12和R13组成电枢电压取样反馈电路,两电阻器的接点处产生0--9·3V的取样电压。该电压与控制电压叠加后加至Vl的基极,控制Vl和V2的工作电流。调节RP的阻值使Vl和V2的导通电流增大时,通过C5、VU和T、VDll使VTl和VT2的导通角增大,电枢电压升高,电动机M的转速加快;反之,调节RP的阻值使Vl和V2的导通电流变小时,VTl和V饱的导通也相应地变小,电枢电压下降,电动机M的转速降低。 Rl5、Cl和R16、C2为尖脉冲吸收电路,用来保护VDl-VD4。VDl3为续流二极管,用来消除M电枢绕组的反峰电压。R14和C7为峰值吸收电路,用来保护VTl和VT2。 改变电动机电枢电压极性或改变励磁电压极性,即可改变直流电动机的旋转方向。 元器件选择 Rl-R3均选用lOW的线绕电阻器;R4选用1/2W的金属膜电阻器;R5-RlO、Rl2和R13均选用1/4W金属膜电阻器;RIl选用4-5W的线绕电阻器;R14-R16均选用lW的金属膜电阻器。 RP选用3W的精密合成膜电位器或线绕电位器。 Cl、C2和C7均选用耐压值大于400V的CBB电容器;C3和C6均选用耐压值为5OV的铝电解电容器;C4和C5均选用耐压值为160V的涤纶电容器。 VDl-VD4和VDl3均选用1N6308(3A、600V)型硅整流二极管;VD5-VDl2均选用IN4007(1A、

直流电动机调速课程设计教学提纲

直流电动机调速课程 设计

电机与拖动课程设计报告 (2014—2015学年第二学期) 题目直流电动机调速系统设计 系别信息与控制系 专业电气工程及其自动化 班级 1103 学号 311101423 姓名周军 指导教师顾波 完成时间 评定成绩

目录 第一章直流电动机....................................................... - 0 - 第二章直流电动机的结构与工作原理....................................... - 1 - 2.1 直流电动机的结构................................................ - 1 - 2.2 直流电动机的工作原理............................................ - 2 - 第三章他励直流电动机的调速............................................. - 3 - 3.1电机调速指标.................................................... - 4 - 3.2 电枢串电阻调速.................................................. - 6 - 3.3改变电枢电源电压调速............................................ - 7 - 3.4弱磁调速........................................................ - 8 - 第四章课程设计内容.................................................... - 10 - 4.1 采用电枢串电阻调速............................................. - 10 - 4.2 采用电枢电压调速............................................... - 11 - 4.3 采用改变励磁电流调速........................................... - 11 - 结论................................................................... - 12 - 设计体会............................................................... - 13 - 参考文献............................................................... - 15 -

直流电动机调速课程设计-直流电动机的调速方法

西安科技大学继续教育学院《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名:高俊 班级: 09电气自动化大专 指导老师:邓凡 提交日期: 2012 年 3 月

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、制动性能,宜于在大范围内平滑调速,良好的起动性以及简单的控制电路等优点,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。 本文设计了直流电机控制系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用霍尔元器件测量电动机的转速,本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。经过驱动放大电路对直流电机进行调速控制。并将转速显示出来。从而实现快速的调节电机转速 关键字:直流调速 Summary In the electrical era, the motor plays an important role in industrial and agricultural production and daily life. DC motor as the most common type of motor, with a very good linear mechanical properties of a wide speed range, the braking performance, it is appropriate to smooth speed in a wide range, good start, and a simple control circuit advantages, has been widely used in many of the governor or the fast forward and reverse the field of electric drive. Designed the basic scheme of the DC motor control system, described the basic structure of the system, working principles, operating characteristics and its design method. The system uses the Hall components to measure the motor speed, the design of DC motor control and measurement methods, which the motor control accuracy, faster response and energy conservation are all of great significance. After the driver amplifier for DC motor speed control. And speed is displayed. Enabling rapid adjustment of motor speed Keywords: DC speed control

相关主题
文本预览
相关文档 最新文档