当前位置:文档之家› 精馏塔的设计详解

精馏塔的设计详解

精馏塔的设计详解
精馏塔的设计详解

目录

一.前言 (3)

二.塔设备任务书 (4)

三.塔设备已知条件 (5)

四.塔设备设计计算 (6)

1、选择塔体和裙座的材料 (6)

2、塔体和封头壁厚的计算 (6)

3、设备质量载荷计算 (7)

4、风载荷与风弯距计算 (9)

5、地震载荷与地震弯距计算 (12)

6、偏心载荷与偏心弯距计算 (13)

7、最大弯距计算 (14)

8、塔体危险截面强度和稳定性校核 (14)

9、裙座强度和稳定性校核 (16)

10、塔设备压力试验时的应力校核 (18)

11、基础环设计 (18)

12、地脚螺栓设计 (19)

五.塔设备结构设计 (20)

六.参考文献 (21)

七.结束语 (21)

前言

苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。

甲苯是有机化合物,属芳香烃,分子式为C6H5CH3。在常温下呈液体状,无色、易燃。它的沸点为110.8℃,凝固点为-95℃,密度为0.866克/厘米3。甲苯不溶于水,但溶于乙醇和苯的溶剂中。甲苯容易发生氯化,生成苯—氯甲烷或苯三氯甲烷,它们都是工业上很好的溶剂;它还容易硝化,生成对硝基甲苯或邻硝基甲苯,它们都是染料的原料;它还容易磺化,生成邻甲苯磺酸或对甲苯磺酸,它们是做染料或制糖精的原料。甲苯的蒸汽与空气混合形成爆炸性物质,因此它可以制造梯思梯炸药。甲苯与苯的性质很相似,是工业上应用很广的原料。但其蒸汽有毒,可以通过呼吸道对人体造成危害,使用和生产时要防止它进入呼吸器官。

苯和甲苯都是重要的基本有机化工原料。工业上常用精馏方法将他们分离。精馏是分离液体混合物最早实现工业化的典型单元操作,广泛应用于化工,石油,医药,冶金及环境保护等领域。它是通过加热造成汽液两相体系,利用混合物中各组分挥发度的差别实现组分的分离与提纯的目的。

实现精馏操作的主要设备是精馏塔。精馏塔主要有板式塔和填料塔。板式塔的核心部件为塔板,其功能是使气液两相保持密切而又充分的接触。塔板的结构主要由气体通道、溢流堰和降液管。本设计主要是对板式塔的设计。

一.塔设备任务书

三 . 塔设备已知条件

表二:已知条件列表

四. 塔设备设计计算

1、 选择塔体和裙座的材料

设计压力是指设定的容器顶部的最高压力,由“工艺部分”的工艺条件可知塔顶表压为

='p 4kPa ;通常情况下将容器在正常操作情况下容器顶部可能出现的最高工作压力称为容

器的最大工作压力用w p 表示,即w p =='p 0.004MPa ;取设计压力==w p p 1.10.0044MPa 。

设计温度是指容器在正常操作情况下,在相应设计压力下,设定的受压组件的金属温度,其值不得低于容器工作是器壁金属达到的最高温度。本设计塔内最高温度塔底取得

max 120t =oC,设计温度可以取为150t =oC。

从上可知,设计压力和设计温度都属于低压、低温状态,塔体和裙座的材料可用: Q235-A ,GB912,热轧,厚度为3~4mm ,常温下强度指标=b σ375MPa 、=s σ235MPa ,设计温度下的许用应力=t ][σ113MPa 。

2、 塔体和封头壁厚的计算

2.1 塔体壁厚的计算

塔体的壁厚是值塔体计算出来的有效厚度,有效厚度可以用下式计算

21C C n e --=?+=δδδ(式中δ为理论计算厚度,mm ;?为除去负偏差以后的圆整值,

mm ;n δ为名义厚度,mm ;1C 为钢板厚度负偏差,mm ;2C 为腐蚀裕量,mm 。) 2.1.1理论计算厚度

p

pD t

i

-=

?σδ][2,其中i D 指塔体的内径,由工艺部分计算可知i D =1.2m ;?为焊接头系数,本设计采用双面焊、局部无损探伤,?=0.85。

p

pD t

i -=

?σδ][2==-???0044.085.011321200

0044.00.03mm 对于碳素钢和低合金钢制容器,mm 3min ≥δ,而δ1C (钢板厚度按8~25mm 计)。假设腐蚀裕量2C =2mm 。

n δ=min δ+2C =5mm

21C C n e --=?+=δδδ=5-0.5-2=2.5mm

2.2 封头壁厚的确定

根据塔径i D =1200mm ,取用标准椭圆形封头,可选用EHA 的标准椭圆形封头(JB/T 4746-2002),公称直径DN=1200mm ,曲面高度300mm ,直边高度25mm ,内表面积1.665m 2

,容积0.255m3,厚度6mm ,质量49kg 。

3、设备质量载荷计算

塔设备的操作质量kg m o /: e a m m m m m m m m ++++++=05040302010 塔设备的最大质量kg m /max :e a w m m m m m m m m ++++++=04030201max 塔设备的最小质量kg m /min :e a m m m m m m m +++++=04030201min 2.0 3.1 塔体质量1o m 单位长度筒体的质量:

]1200)101200[(1085.7785.0])2[(4

226221-+???=-+=

?=-i n i m D D s m δρπ

ρ

=148.5kg/m

由工艺部分计算可知塔高H=10.55m ,取裙座高度h=1.55m ; 筒体质量:1110.55148.5m m H m =?=?=1566.7kg 裙座质量:31 1.5148.5m m h m =?=?=222.75kg

由前面可知一个封头质量G=77kg ,则有封头质量:=2m 77×2=98kg

?1o m =1231566.7222.7598m m m ++=++=1887.5kg

3.2 塔段内件质量

2o m

查数据可知筛板塔质量 2/65m kg q N =;由工艺部分计算可知塔盘数为N=21块

?2220.78521 1.2654

o i N m ND q π

=

=???=1542 kg

3.3 保温层质量

3o

保温材料密度为 =2ρ300kg/m 3

,厚度为 =s δ100mm 筒体部分保温层的质量:

222])2()22[(4

ρδδδπ

H D D s i s n i +-++=220.785[1.41 1.4]10.5530069.8kg ?-??=

封头部分保温层的质量:直边部分+曲面部分

直边部分:kg 166.0300025.0]4.141.1[785.022=??-?

曲面部分近似计算为:内表面积×厚度×密度 ? 1.665×0.1×300=50kg

? 封头部分质量=2×(0.166+50)=100.23kg

所以,3o m =69.8+100.23=170kg

3.4 平台、扶梯质量

4o m

本设计用5个钢制平台,笼式扶梯,查资料可知刚直平台和笼式扶梯的单位质量分别为:2

/150m kg q p =,2/40m kg q F =。

4o m =

F F p n i n i H q nq D B D +?++-+++2

1

])22()222[(422δδδδπ

=2

2

0.785[3.22 1.42]0.5415040(9.45 1.55)?-???+?+=2632.4kg

3.5 操作时塔内物料质量

5o m

由工艺部分计算可知精馏段塔盘数为9,m h w 0633.0=,m h o 0083.0=,

31/04.826m kg L =ρ;

提馏段塔盘数为12,m h w 06.0'=,m h o 0086.0'=,3

2/18.931m kg L =ρ

?5o m =

)(])''()[(4

2122112

L L f L o w L o w i V h N h h N h D ρρρρπ

+++++=0.785×

21.2[(0.063390.0083)826.04(0.06120.0086)931.18]0.255(826.04931.18)

?++?++?+=1754.7kg.

3.6 附件质量

a

按经验取附件质量 a m =0.251o m =0.25×1887.5=471.9kg 3.7 充液质量 w m

w m =2220.785 1.210.55100020.25510004

i w f w D H V π

ρρ+=???+??=12435.7kg

3.8 偏心质量

e m

当塔设备的外侧挂有分离器、再沸器、冷凝器等附属设备时,可将其视为偏心载荷。本设计中将再沸器挂于塔上,所以再沸器构成塔的偏心质量,再沸器质量为2000kg ,偏心距为1000mm 。所以 e m =2000kg 。

3.9 操作质量、最小质量、最大质量

e a m m m m m m m m ++++++=05040302010

=1887.5+1542+170+2632.4+1754.7+471.9+2000=10458.5kg

e a m m m m m m m +++++=04030201min 2.0

=1887.5+0.2×1542+170+2632.4+471.9+2000=7470.2kg e a w m m m m m m m m ++++++=04030201max

=1887.5+1542+170+2632.4+12435.7+471.9+2000=21139.5kg

4、 风载荷和风弯距的计算

塔设备受风压作用时,塔体会发生弯曲变形。吃到塔设备迎风面上的风压值,随设备高度的增加而增加。为了计算简便,将风压值按塔设备的高度分为几段,假设每段风压值各自均匀分布于塔设备的应分面上。本设计中结合塔高,将风压值分为3段,请参考下图所示。

图一:塔设备的风压示意图

4.1 各段水平风力的计算

各段的水平风力可以用下式计算 6

2110-?=ei

i i o i i D l f q K K P 式中各符号的含义:i P -塔设备各计算段的水平风力;1K -空气动力系数,对于圆筒形设备1K =0.7;i K 2-风振系数,当H ≤20m 时,取i K 2=1.70,当H ≥20m 时,按下式计算

i K 2=i zi i f v /1φε+(ε-脉动增大系数;i v -第i 段的脉动影响系数;zi φ-第i 段振型系

数;i f 风压高度变化系数),本设计中H ≥20m ;o q -基本分压值,厂址建在厦门的市区,基本分压为300Pa ;i l -第i 段计算段长度;ei D -塔设备各计算段有效直径,当笼式扶梯与塔顶管线布置成180度时(本设计中按180度处理),

ei D =ps o si oi d K K D δδ2243+++++。

i K 2=i zi i f v /1φε+,通过查表近似估算处各段的i K 2值分别为1.06,1.06,1.21,1.8,1.8

对0-1段,6

21110-?=ei i i o i D l f q K K P

=0.7×1.06×300×0.54×0.55×(1210+200+400+127)×10-3

=128.06N

对1-2段 621210-?=ei i i o i D l f q K K P

=0.7×1.06×300×0.54×1×(1210+200+400+127)×10-3

=232.84N

对2-3段 6

21310-?=ei i i o i D l f q K K P

=0.7×1.21×300×0.54×1×(1210+200+400+300+127+2×100)×10-3

=334.39N

对3-4段 621410-?=ei i i o i D l f q K K P

=0.7×1.8×300×0.71×4×(1210+200+400+300+127+2×100)×10-3

=2616.17N

对4-5段 621510-?=ei

i i o i D l f q K K P =0.7×1.8×300×0.94×4×(1210+200+400+300+127+2×100)×10-3

=3463.66N

4.2 危险界面风弯距的计算

塔设备的危险接口应取在其较薄弱的部位,如:塔设备的底部0-0、裙座上人孔或较大管线出孔处的接口1-1、塔体与裙座连接焊缝处的截面2-2,本设计将计算这三处塔设备的风弯距。风弯距可以按下式进行计算:

++++++=+++++-)2

()2(221211i i i i i i i i i

I

I W

l

l l P l l P l P M ………. 塔底部的风弯距0-0:

)2

()2()2()2(254321543214321321211

0l l l l l P l

l l l P l l l P l l P l P M W

++++++++++++++=- =127416N.m

裙座上人孔或较大管线出孔处的界面1-1:

)2

()2()2(254325432432322

1

1l l l l P l

l l P l l P l P M W

+++++++++=- =118753N.m

塔体与裙座连接焊缝处的截面2-2

)2

()2(2543543433

2

2l l l P l

l P l P M W

+++++=- =93846N.m

5、 地震载荷和地震弯距计算

塔设备在地震波的作用下有三个方向的运动:水平方向振动、垂直方向振动和扭转,其中以水平方向振动危害较大。地震时使塔设备相对于地面运动的惯性力称为地震力。在一般计算中只考虑水平地震力对设备的作用。

5.1 地震载荷 5.1.1 水平地震载力

任意高度k h 处的集中品质k m 引起的基本振型水平地震力1k F /N 按下式计算:

g m C F k k z k 111ηα=

式中:z C -综合影响系数,取0.5;k m -距地面k h 处的集中品质;1α-对应于塔设备自振周期他T 1的地震影响系数α值,max 9

.0)

/(ααT T g =;1k η-基本振型参与系数,

1k η=∑∑=-n

i i i n i i i k h m h m h 1

31

5

.15

.1/)(

塔设备的自振周期 3

133.90i

e o D E H m H

T δ=(E =2.0×105

MPa ,H=10.55m)

=3

90.33100.80-?= 取地震烈度为9级可查得max α=0.9;场地土为II 近振,特征周期 g T =0.3 所以有 max 9

.0)

/(ααT T g ==(0.3/0.8)0.9×0.23=0.37 > 0.2max α。

塔设备各段质量可以近似的按下表中的处理 5.1.2 垂直地震力

塔设备的垂直地震力按下式计算:g m F eq v v

??=-max ,0

0α(max ,v α=0.65max α=0.585;

eq m =0.75=o m 7843.9kg) ,所以有:g m F eq v v

??=-max ,0

0α=44969.1N

任意质量i 处垂直地震力I

I v

F -按下式计算:I

I v

F -=

01

-=∑v

n

k k

k

i

i F h

m h m

表三:水平、垂直地震力(以上计算均由Excel 自动生成)

5.1.3 地震弯距

对于等直径、等壁厚塔设备的任意截面I-I 和底截面0-0底基本振型地震弯距分别按下式进行计算:

)41410(17585

.35.25.35

.211

h h H H H

g m C M o Z I

I E +-=

-α gH m C M o Z E 10013516α=- 同计算风弯距一样,对危险截面进行地震弯距的计算,

00001E E M M --==0.4570.50.3710458.59.8110.55?????=91512.2N.m

1111 3.5 2.5 3.511 2.5

8(10144)175Z o E E C m g

M M H H h h H

α--==

-+ = 3.5 2.5 3.52.5

80.50.3710458.59.81

(1010.551410.550.5540.55)17510.55?????-??+??=84806.8N .m

2222 3.5 2.5 3.5

11112.5

8(10144)175Z o E E C m g M M H H h h H

α--==

-+ = 3.5 2.5 3.52.5

80.50.3710458.59.81

(1010.551410.55141)17510.55?????-??+??=79402.8N.m

6、偏心载荷和偏心弯距的计算

由前面计算可知,2000e m kg =,mm e 1000=

?420009.81 1.9610e e M m ge N m ==??=??

7、最大弯距的计算

塔设备任意计算截面I-I 处的最大弯距I

I M -max

按下式进行计算

I

I M -max

=Max{e I

I W

M M +-,}25.0e I

I W

E I I M M M ++--

同前面计算,本设计将对危险截面进行计算,如下表所示

表四:求最大弯距

8、塔体危险截面强度和稳定性校核

8.1 圆筒轴向应力

圆筒任意计算截面I-I 处的轴向应力分别按下式进行计算。由于内压和外压引起的轴向应力1σ: )4/(1ei i pD δσ=

由于重力和垂直地震力引起的轴向应力2δ:ei

i I

I V

I

I o

D F g m δπδ--±=

2(其中I

I V

F -仅在

最大弯距为地震弯距参与组合时计入此项)。最大弯距引起的轴向应力3δ:

ei

i I

I D M δπδ2

max

34-=

8.2 圆筒稳定性校核

圆筒许用轴向应力cr ][σ按下式确定: cr ][σ}][,{t K KB Min σ= 圆筒最大组合拉应力按下二式进行校核: 内压塔器:2δ+3

δ≤cr ][σ;外压塔器:1σ+2δ+3δ≤cr ][σ

具体轴向应力求法和校核如下表所示:

表五:轴向应力的求取及校核

9、 裙座的强度和稳定性校核

塔设备常采用裙座支承,并根据承载的不同,分为圆筒形和圆锥形两种。由于圆筒形裙座制造方便,被广泛采用。但需要配置较多的地脚螺栓和具有足够大承载面积的基础环,以防止由于风载荷或地震载荷所引起的弯距而造成翻到。若经应力校核不能满足,只能选用圆锥形裙座支承。

圆筒形裙座轴向应力校核首先选取裙座的危险截面。危险截面的位置,一般取裙座底截面或裙座检查孔和较大管线引出孔截面处。然后按裙座有效厚度验算危险截面的应力。

9.1 裙座底截面的组合应力

裙座底截面的组合应力按下式进行校核

}][,{0

00

0max

t s sb

v o

sb

K KB Min A F g m Z M σ≤++--(0

0-v

F 仅在最大弯距为地震弯距参与组

合时计入此项;sb A -裙座底部截面积,s D A is sb δπ=;sb Z -裙座圆筒和锥壳的底部截面系数,s is sb D Z δπ

2

4

=

。)

由上计算可知:

裙座有效厚度、裙座筒体内径、0-0截面处最大弯距和操作质量分别为:mm es 5.2=δ,

mm D is 1200=,0

0max

-M =142966.2N.m ,00o m -=10458.5N.m

0-0截面积和截面系数分别为:

s D A is sb δπ==3.14×1200×2.5=94202m m ,

==

s is sb D Z δπ

2

4

0.785×12002×2.5=2.826×1063mm

裙座许用应力:Min {KB ,t

s K ][σ}=Min{140.4,135.6}=135.6MPa

?00max 6

14296620010458.59.8161.482.826109420

o sb sb M m g MPa Z A -?+=+=

s K ][σ} ?满足条件,材料安全

9.2 裙座检查孔和较大管线引出孔截面处组合应力

裙座检查孔和较大管线引出孔h -h 截面处组合应力按下式进行校核

}][,{max t s sm

h

h o sm

h

h K KB Min A g m Z M σ≤+-- 和

}9.0.....{3.0max s sm

h

h sm e h

h W KB Min A g

m Z M M σ≤++--

本设计中检查孔加强管长度、加强管水平方向的最大宽度、加强管厚度和裙座内径分别为:mm l m 100=,mm b m 300=,mm m 3=δ,mm D im 1200=

?mm l A m m m 600310022=??==δ,

]6005.2)6300[(25.2120014.3])2[(-?+-??=-+-=∑m es m m es im sm A b D A δδδπ

=909094202

m m

3

522221090474.2)2/300()2/1200(1005.22)2/()2/(2mm b D l Z m im m es m ?=-??=-=δ)2/(785.02

2

m es im m es im sm Z D b D Z --=∑δδ

=0.785×12002

×2.52

-2×(300×1200×2.5/2-51090474.2?)=610746.6?3

mm

}9.0.....{s KB Min σ=Min{140.4, 211.5}=140.4MPa

1-1截面处最大弯距、风弯距、以上操作质量和最大质量分别为

11max -M =134095.05N.m ,=-11W M 118753N.m ,=-11o m 9856kg ,=-1

1max m 10103kg

?

1111max 134.09598569.81

30.51{,[]}6.7469090

t o s sm sm M m g Min KB K Z A σ--?+=+=< 1111max 0.30.31187.53101039.81

63.71{.....0.9}140.4

6.7469090

W e s sm sm M M m g Min KB Z A σ--+??+=+=<=

10、塔设备压力试验时的应力校核

10.1 圆筒应力

试验压力引起的周向应力:ei

ei i T T D g H p δδγσ2)

)(/(++=

,本设计采用水压试验,所

以γ=0.001kg/cm 3

, T p =1.25p =0.0055MPa

?MPa T 25.625

.22)

5.21200)(81.9/2490001.00055.0(=?+?+=

σ

试验压力引起的轴向应力1T σ:MPa D p ei i T T 66.05

.241200

0055.041=??==

δσ 2-2截面处的最大质量和风弯距分别为:2

2-T m =10103kg ,2293846W M N m -=?6

重力引起的轴向应力2T σ:222

101039.818.26441200 2.5

T T i ei m g MPa D σδ-?===?? 弯距引起的轴向应力:

2232

4(0.3)0.3938.46196007.10.7851200 1.2 2.5

W e T i ei M M MPa D σπδ-+?+===??? 10.2 应力校核

16.02T MPa σ=

液压试验时:1230.668.267.10.9T T T s K σσσσ?-+=-+< 238.267.115.36[]T T cr σσσ+=+=< 从上计算可知,材料安全。

11、基础环设计

裙座外径: mm D D es is os 12062=+=δ 基础环外径:mm D D is ob 1500300=+= 基础环内径:mm D D is ib 900300=-=

基础环伸出宽度:mm D D b os ob 1472/)(=-= 相邻俩筋板最大外侧间距:mm l 160=

基础环面积:262

2

1013.1)(785.0mm D D A ib ob b ?=-= 基础环截面系数:38441088.232)

(mm D D D Z ob

ib ob b ?=-=

π

水压试验时压应力:00max 156

142966.210458.59.810.722.2810 1.1310

o b b b M m g MPa Z A σ-?=+=+=?? 操作时压应力:

00max 2

56

0.30.31274161960021139.59.81

0.442.2810 1.1310W e b b b M M m g MPa Z A σ-+?+?=+=+=??

混凝土基础上的最大压力:,max 12{,}0.72b b b Max MPa σσσ==

由919.0/=l b ,2,max 15558.5b b σ=,2

,max 18432b l σ=可以查得对X 轴和Y 轴的弯距分别

为2,max 0.1372131.5X b M b N m σ==?,2

,max 0.08911386.3Y b M b N m σ==? 计算力矩:{,}2131.5s X Y M Max M M N m ==?

有筋板时基础环厚度:10.64b mm δ=== 取b δ=12mm

12、螺栓计算

最大拉应力:

00min 156

127416196007470.29.81

0.452.8810 1.1310W e B b b M M m g MPa

Z A σ-++?=-=-=??000002

0.25E W e B b b

M M M m g

Z A σ--++=-

56

91512.20.251274161960010458.59.81

0.412.8810 1.1310MPa +?+?=

-=??

基础环中螺栓承受的最大拉应力:12{,}0.450B B B Max MPa σσσ==> 所以塔必须设置地脚螺栓,取地脚螺栓为6个。

地脚螺栓螺纹小径:12330.1d C mm =

==

(其中bt ][σ=147MPa ),故6-M42地脚螺栓满足要求。

五、结构设计

在板式塔内沿塔高装置了若干层塔盘,液体靠重力作用由塔顶逐盘流向塔底,并在各块塔盘面上形成流动的液层;气体则靠压强差推动,由塔底向上一次穿过各塔盘上的液层而升至塔顶。气液两相在各塔盘上直接接触完成热量和质量的传递,两者组成沿塔高呈阶梯式变化。

塔盘是板式塔内气、液接触的主要元件。塔盘要有一定的刚,以维持水平,使塔盘上的液层深度相对均匀;塔盘与塔壁之间应有一定的密封性,以避免气、液短路;塔盘应便于制造、安装、维修,并且成本要低。 本设计中塔盘设计如下图所示:

表六:塔结构设计

六、参考文献

1 蔡纪宁, 张秋翔. 化工设备机械基础课程设计指导书. 北京: 化学工业出版社, 2005

2 董大勤. 化工设备机械基础. 北京: 化学工业出版社, 2003

3 陈国理. 压力容器及化工设备. 广州: 华南理工大学出版社, 1995

4 夏颂祺, 丁伯民. 钢架. 北京: 化学工业出版社, 2004

5 丁伯民, 黄正林. 化工容器. 北京: 化学工业出版社, 2003

七、结束语

本次设计历时一周,通过广泛查阅资料、详细计算,终于完成了甲苯-苯的精馏设计的机械设计部分。

在设计过程中,我将所学知识是交融在一起的,尤其是“工程制图”和“机械基础”,其余还需要熟练的应用计算机如对word的操作、对AutoCAD等的应用。对于我而言,才刚刚学完了基础专业课程,对许多知识没有深刻的理解和掌握,需要学的东西还很多很多。除了学习和牢固掌握专业知识外,还要不断培养应用计算机的能力,以及专业知识的应用能力。

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

丙酮水连续精馏塔设计说明书吴熠

课程设计报告书丙酮水连续精馏浮阀塔的设计学院化学与化工学院 专业化学工程与工艺 学生姓名吴熠 学生学号 指导教师江燕斌 课程编号 课程学分 起始日期

目录 \ "" \ \ \

第部分设计任务书 设计题目:丙酮水连续精馏浮阀塔的设计 设计条件 在常压操作的连续精馏浮阀塔内分离丙酮水混合物。生产能力和产品的质量要求如下: 任务要求(工艺参数): .塔顶产品(丙酮):, (质量分率) .塔顶丙酮回收率:η=0.99(质量分率) .原料中丙酮含量:质量分率(*) .原料处理量:根据、、返算进料、、、 .精馏方式:直接蒸汽加热 操作条件: ①常压精馏 ②进料热状态q=1 ③回流比R=3R min ④加热蒸汽直接加热蒸汽的绝对压强 冷却水进口温度℃、出口温度℃,热损失以计 ⑤单板压降≯ 设计任务 .确定双组份系统精馏过程的流程,辅助设备,测量仪表等,并绘出工艺流程示意图,表明所需的设备、管线及有关观测或控制所必需的仪表和装置。 .计算冷凝器和再沸器热负荷。塔的工艺设计:热量和物料衡算,确定操作回流比,选定板型,确定塔径,塔板数、塔高及进料位置 .塔的结构设计:选择塔板的结构型式、确定塔的结构尺寸;进行塔板流体力学性能校核(包括塔板压降,液泛校核及雾沫夹带量校核等)。 .作出塔的负荷性能图,计算塔的操作弹性。 .塔的附属设备选型,计算全套装置所用的蒸汽量和冷却水用量,和塔顶冷凝器、塔底蒸馏釜的换热面积,原料预热器的换热面积与泵的选型,各接管尺寸的确定。

第部分设计方案及工艺流程图 设计方案 本设计任务为分离丙酮水二元混合物。对于该非理想二元混合物的分离,应使用连续精馏。含丙酮(质量分数)的原料由进料泵输送至高位槽。通过进料调节阀调节进料流量,经与釜液进行热交换温度升至泡点后进入精馏塔进料板。塔顶上升蒸汽使用冷凝器,冷凝液在泡点一部分回流至塔内,其余部分经产品冷却后送至储罐。该物系属于易分离物系(标况下,丙酮的沸点°),塔釜为直接蒸汽加热,釜液出料后与进料换热,充分利用余热。 工艺流程图

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。 设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况 自选 ; 回流比 自选; 单板压降 ≤; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1. 原料液及塔顶、塔底产品的摩尔分率 乙醇的摩尔质量 A M =46.07kg/kmol 水的摩尔质量 B M =18.02kg/kmol F x =18.002 .1864.007.4636.007 .4636.0=+= D x =64.002.1818.007.4682.007 .4682.0=+= W x =024.002 .1894.007.4606.007 .4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =×+×=23.07kg/kmol D M =×+×=35.97kg/kmol W M =×+×=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.231000 2000=???kmol/h 总物料衡算 =W D + 水物料衡算 ×=+W

年产5.4万吨丙烯精馏塔的工艺设计

年产5.4万吨丙烯精馏塔 的工艺设计

目录 摘要............................................................. I 第1章绪论.. (2) 1.1丙烯的性质 (2) 1.1.1 丙烯的物理性质 (2) 1.1.2 丙烯的化学性质 (2) 1.2丙烯的发展前景 (2) 1.3丙烯的生产技术进展 (3) 1.3.1 概况 (3) 1.3.2 丙烯的来源 (3) 1.3.3 丙烯的生产方法 (3) 1.3.4 丙烯生产新技术现状及发展趋势 (4) 第2章丙烯精馏塔的物料衡算及热量衡算 (4) 2.2.1 确定关键组分 (5) 2.2.2计算每小时塔顶产量 (5) 2.2.4物料衡算计算结果见表2.5 (7) 2.3塔温的确定 (8) 2.3.1 确定进料温度 (8) 2.3.2 确定塔顶温度 (8) 2.3.3 确定塔釜温度 (8) 第3章精馏塔板数及塔径的计算 (10) 3.1塔板数的计算 (10) 3.1.1 最小回流比的计算 (10) 3.1.2 计算最少理论板数 (11) 3.1.3 塔板数和实际回流比的确定 (11) 3.2确定进料位置 (11) 3.3全塔热量衡算 (12)

3.3.1 冷凝器的热量衡算 (12) 3.3.2 再沸器的热量衡算 (13) 3.3.3 全塔热量衡算 (13) 3.4板间距离的选定和塔径的确定 (14) 3.4.1 计算混合液塔顶、塔釜、进料的密度及气体的密度 (14) 3.4.2 求液体及气体的体积流量 (16) 3.4.3 初选板间距及塔径的估算 (17) 3.5浮阀塔塔板结构尺寸确定 (18) 3.5.1塔板布置 (18) 3.5.2 溢流堰及降液管设计计算 (19) 3.6塔高的计算 (21) 第四章流体力学计算及塔板负荷性能图 (22) 4.1水利学计算 (22) 4.1.1 塔板总压力降的计算 (22) 4.1.2 雾沫夹带 (23) 4.1.3 淹塔情况校核 (26) 4.2浮阀塔的负荷性能图 (27) 4.2.1 雾沫夹带线 (27) 4.2.2 液泛线 (28) 4.2.3 降液管超负荷线 (29) 4.2.4泄露线 (29) 4.2.5 液相下限线 (30) 4.2.6 操作点 (30) 总论 (32) 致谢 (33) 参考文献 (35) 附录 (38)

分离乙醇水精馏塔设计含经典工艺流程图和塔设备图

分离乙醇-水的精馏塔设计设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容:

1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算; 5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。

一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为 水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740 原料乙醇组成 xD0.7788 塔顶易挥发组分回收率90% 平均摩尔质量 MF = 由于生产能力50000吨/年,. 则 qn,F 所以,qn,D 2)塔板数的确定:

精馏塔设计

精馏塔设计 目录 § 1 设计任务书 (1) § 1.1 设计条件 (1) § 2 概述 (1) § 2.1 塔型选择 (1) § 2.2 精馏塔操作条件的选择 (3) § 2.3 再沸器选择 (4) § 2.4 工艺流程 (4) § 2.5 处理能力及产品质量 (4) § 3 工艺设计 (5) § 3.1 系统物料衡算热量衡算 (5) § 3.2 单元设备计算 (9) § 4 管路设计及泵的选择 (28) § 4.1 进料管线管径 (28) § 4.2 原料泵P-101的选择 (31) § 5 辅助设备的设计和选型 (32)

§ 5.1 贮罐………………………………………………………………………………… 32 § 5.2 换热设备…………………………………………………………………………… 34 § 6 控制方案…………………………………………………………………………………… 34 附录1~………………………………………………………………………………………… 35 参考文献………………………………………………………………………………………… 37 后 记 (38) §1 设计任务书 §1.1 设计条件 工艺条件:饱和液体进料,进料量丙烯含量x f =65%(摩尔百分数) 塔顶丙烯含量D x =98%,釜液丙烯含量w x ≤2%,总板效率为0.6。 操作条件:建议塔顶压力1.62MPa (表压) 安装地点:大连 §2 概述 蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

化工原理课程设计说明书-板式精馏塔设计

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书(一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R min 4.单板压降不大于 (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 p(mmHg) i 2.组分的液相密度ρ(kg/m3) 3.组分的表面张力σ(mN/m) 4.液体粘度μ(mPas) 常数

二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为 kg/kmol 和kmol =+= 6 .112/39.011.78/61.011 .78/61.0F x 2.平均摩尔质量 3.料液及塔顶底产品的摩尔流率 依题给条件:一年以330天,一天以24小时计,有: h kmol 62.5824 330989 .010*******=???= D ,

精馏塔的设计(毕业设计)

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

分离乙醇水精馏塔设计(含经典实用工艺流程图和塔设备图).doc

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容: 1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算;

5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分 数,下同),其余为水;产品的乙醇含量不得低于90%;塔 顶易挥发组分回收率为99%,生产能力为50000吨/年90% 的乙醇产品;每年按330天计,每天24小时连续运行。塔顶 压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽 压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书 (一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为98.5%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R 4.单板压降不大于0.7kPa min (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为77.31kpa的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3 ) 3.组分的表面张力σ(mN/m ) 4.液体粘度μ(mPa ?s )

5.Antoine常数 二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为78.11 kg/kmol和112.6kg/kmol

精馏塔设计图(参考版)

仅供参考 ∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料12345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10 111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

乙醇-水精馏塔设计说明

符号说明:英文字母 Aa---- 塔板的开孔区面积,m2 A f---- 降液管的截面积, m2 A T----塔的截面积 m C----负荷因子无因次 C20----表面力为20mN/m的负荷因子 d o----阀孔直径 D----塔径 e v----液沫夹带量 kg液/kg气 E T----总板效率 R----回流比 R min----最小回流比 M----平均摩尔质量 kg/kmol t m----平均温度℃ g----重力加速度 9.81m/s2 F----阀孔气相动能因子 kg1/2/(s.m1/2) h l----进口堰与降液管间的水平距离 m h c----与干板压降相当的液柱高度 m h f----塔板上鼓层高度 m h L----板上清液层高度 m h1----与板上液层阻力相当的液注高度 m ho----降液管底隙高度 m h ow----堰上液层高度 m h W----溢流堰高度 m h P----与克服表面力的压降相当的液注高度m H-----浮阀塔高度 m H B----塔底空间高度 m H d----降液管清液层高度 m H D----塔顶空间高度 m H F----进料板处塔板间距 m H T·----人孔处塔板间距 m H T----塔板间距 m l W----堰长 m Ls----液体体积流量 m3/s N----阀孔数目 P----操作压力 KPa △P---压力降 KPa △Pp---气体通过每层筛的压降 KPa N T----理论板层数 u----空塔气速 m/s V s----气体体积流量 m3/s W c----边缘无效区宽度 m W d----弓形降液管宽度 m W s ----破沫区宽度 m 希腊字母 θ----液体在降液管停留的时间 s υ----粘度 mPa.s ρ----密度 kg/m3 σ----表面力N/m φ----开孔率无因次 X`----质量分率无因次 下标 Max---- 最大的 Min ---- 最小的 L---- 液相的 V---- 气相的 m----精馏段 n-----提馏段 D----塔顶 F-----进料板 W----塔釜

板式精馏塔设计方案

板式精馏塔设计方案 一、设计方案确定 1.1 精馏流程 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。 塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇-水溶液,不属于此类。故总结上述,设计时选择的是浮阀塔板。 1.2设计方案论证及确定 1.2.1 生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇—水溶液系统,年工作日300d,每天工作24h。 1.2.2 选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下: (1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

精馏塔的设计详解-共21页

目录 一.前言 (3) 二.塔设备任务书 (4) 三.塔设备已知条件 (5) 四.塔设备设计计算 (6) 1、选择塔体和裙座的材料 (6) 2、塔体和封头壁厚的计算 (6) 3、设备质量载荷计算 (7) 4、风载荷与风弯距计算 (9) 5、地震载荷与地震弯距计算 (12) 6、偏心载荷与偏心弯距计算 (13) 7、最大弯距计算 (14) 8、塔体危险截面强度和稳定性校核 (14) 9、裙座强度和稳定性校核 (16) 10、塔设备压力试验时的应力校核 (18) 11、基础环设计 (18) 12、地脚螺栓设计 (19) 五.塔设备结构设计 (20) 六.参考文献 (21) 七.结束语 (21)

前言 苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。 甲苯是有机化合物,属芳香烃,分子式为C6H5CH3。在常温下呈液体状,无色、易燃。它的沸点为110.8℃,凝固点为-95℃,密度为0.866克/厘米3。甲苯不溶于水,但溶于乙醇和苯的溶剂中。甲苯容易发生氯化,生成苯—氯甲烷或苯三氯甲烷,它们都是工业上很好的溶剂;它还容易硝化,生成对硝基甲苯或邻硝基甲苯,它们都是染料的原料;它还容易磺化,生成邻甲苯磺酸或对甲苯磺酸,它们是做染料或制糖精的原料。甲苯的蒸汽与空气混合形成爆炸性物质,因此它可以制造梯思梯炸药。甲苯与苯的性质很相似,是工业上应用很广的原料。但其蒸汽有毒,可以通过呼吸道对人体造成危害,使用和生产时要防止它进入呼吸器官。 苯和甲苯都是重要的基本有机化工原料。工业上常用精馏方法将他们分离。精馏是分离液体混合物最早实现工业化的典型单元操作,广泛应用于化工,石油,医药,冶金及环境保护等领域。它是通过加热造成汽液两相体系,利用混合物中各组分挥发度的差别实现组分的分离与提纯的目的。 实现精馏操作的主要设备是精馏塔。精馏塔主要有板式塔和填料塔。板式塔的核心部件为塔板,其功能是使气液两相保持密切而又充分的接触。塔板的结构主要由气体通道、溢流堰和降液管。本设计主要是对板式塔的设计。

精馏塔工艺设计

一、苯-氯苯板式精馅塔的工艺设计任务书 (一)设计题目 设计一座苯-氯苯连续精饰塔,要求年产纯度为%的苯36432吨,塔底镭出液中含苯1%,原料液中含苯为61% (以上均为质量百分数)。 (二)操作条件 1?塔顶压强4kPa (表压)2.进料热状况:饱和蒸汽进料 3.回流比:R=2R ttia 4.单板压降不大于 (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精懈塔工艺条件图的绘制 4.塔的工艺计算结果汇总一览表

5.对本设计的评述或对有关问题的分析与讨论(四)基础数据

1.组分的饱和蒸汽压p; (mmHg) 2?组分的液相密度卩(kg/m5) 3.组分的表面张力er (mN/m) 4?液体粘度U (mPas) 常数

二、苯-氯苯板式精憎塔的工艺计算书(精馆段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精饰塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精饰流程为原料液经预热器加热后到指定的温度后,送入精懈塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(饰出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为kg/kmol和kmol 0. 61/78. 11 x P = --------------------------------------- = 0.61/78. 11 + 0. 39/112.6 2.平均摩尔质量 3.料液及塔顶底产品的縻尔流率 依题给条件:一年以330天,一天以24小时计,有:

相关主题
文本预览
相关文档 最新文档