当前位置:文档之家› 圆锥曲线知识点例题练习含答案

圆锥曲线知识点例题练习含答案

圆锥曲线知识点例题练习含答案
圆锥曲线知识点例题练习含答案

圆锥曲线

一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:

中心在原点,焦点在x 轴上

中心在原点,焦点在y 轴上

标准方程

)0(122

22>>=+b a b

y a x )0(12

2

22>>=+b a b x a y 图 形

顶 点 ),0(),,0()0,(),0,(2121b B b B a A a A -- )

,0(),,0()0,(),0,(2121a B a B b A b A -- 对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2

焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F -

焦 距 )0(2||21>=c c F F 222b a c -=

离心率

)10(<<=

e a

c

e (离心率越大,椭圆越扁) 通 径 2

2b a

(过焦点且垂直于对称轴的直线夹在椭圆内的线段)

3.常用结论:(1)椭圆)0(12222>>=+b a b

y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ?的周长=

(2)设椭圆)0(122

22>>=+b a b

y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ

二、双曲线:

x

O F 1 F 2 P y A 2 B 2 B 1

x

O F 1

F 2 P

y A 2

A 1

B 1

B 2 A 1

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;

(2)双曲线的标准方程、图象及几何性质:

中心在原点,焦点在x 轴上

中心在原点,焦点在y 轴上

标准 方程

)0,0(122

22>>=-b a b

y a x )0,0(122

22>>=-b a b

x a y 图 形

顶 点 )0,(),0,(21a A a A -

),0(),,0(21a B a B -

对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2

焦 点 )0,(),0,(21c F c F -

),0(),,0(21c F c F -

焦 距 )0(2||21>=c c F F 222

b a c

+=

离心率 )1(>=

e a

c

e (离心率越大,开口越大) 渐近线 x a

b y ±

= x b

a y ±

= 通 径

22b a

(3)双曲线的渐近线: ①求双曲线12

2

22

=-b

y a x

的渐近线,可令其右边的1为0,即得022

2

2

=-b

y a x ,

因式分解得到0x y a b ±=。 ②与双曲线122

22=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ;

(4)等轴双曲线为222t y x =-2x

O

F 1

P B 2

B 1

F 2

x

O F 1 F 2

P

y

A 2 A 1

y

(4)常用结论:(1)双曲线)0,0(12222

>>=-b a b

y a x 的两个焦点为21,F F ,过1F 的直线交双曲线的同一支于B A ,两点,则2ABF ?的周长=

(2)设双曲线)0,0(12222

>>=-b a b

y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的

直线交双曲线于Q P ,两点,则Q P ,的坐标分别是 =||PQ

三、抛物线:

(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。 其中:定点为抛物线的焦点,定直线叫做准线。 (2)抛物线的标准方程、图象及几何性质:0>p

焦点在x 轴上, 开口向右

焦点在x 轴上, 开口向左

焦点在y 轴上, 开口向上

焦点在y 轴上, 开口向下

标准 方程

px y 22=

px y 22-=

py x 22=

py x 22-=

图 形

顶 点 )0,0(O

对称轴 x 轴

y 轴

焦 点 )0,2

(p

F )0,2

(p F -

)2

,0(p F

)2

,0(p F -

离心率 1=e

准 线 2p x -

=

2

p x =

2

p y -

=

2

p y =

通 径 p 2

焦半径 2

||||0p x PF +

= 2

||||0p y PF +

= 焦点弦

焦准距

p

O F

P

y l

x

O

F P

y l

x

O

F P y l

x

x O

F

P

y l

四、弦长公式: |

|14)(1||1||2212212212A k x x x x k x x k AB ??

+=-+?+=-+= 其中,?,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程 的判别式和2x 的系数

求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出A

B x x -

=+21,A

C

x x =

21;(3)代入弦长公式计算。 法(二)若是联立两方程,消去x,得关于y 的一元二次方程,02=++C By Ay 则相应的

弦长公式是:|

|)1(14)()1(1||)1(1||2212212212A k y y y y k y y k AB ?

?+=-+?+=-+=

注意(1)上面用到了关系式|

|4)(||2122121A x x x x x x ?

=

-+=-和 |

|4)(2122121A y y y y y y ?=

-+=- 注意(2)求与弦长有关的三角形面积,往往先求弦长,再求这边上的高(点到直线的距离),但若三角形被过顶点的一条线段分成两个三角形,且线段的长度为定值,求面积一般用分割法

五、弦的中点坐标的求法

法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出A

B

x x -=+21;(3)设中点),(00y x M ,由中点坐标公式得2

2

10x x x +=

;再把0x x =代入直线方程求出0y y =。 法(二):用点差法,设),(11y x A ,),(22y x B ,中点),(00y x M ,由点在曲线上,线段的中点坐标公式,过A 、B 两点斜率公式,列出5个方程,通过相减,代入等变形,求出00,y x 。

六、求离心率的常用方法:法一,分别求出a,c ,再代入公式

法二、建立a,b,c 满足的关系,消去b,再化为关于e 的方程,最后解方程求e (求e 时,要注意椭圆离心率取值范围是0﹤e ﹤1,而双曲线离心率取值范围是e ﹥1)

例1:设点P 是圆224x y +=上的任一点,定点D 的坐标为(8,0),若点M 满足

2PM MD =.当点P 在圆上运动时,求点M 的轨迹方程.

解 设点M 的坐标为(),x y ,点P 的坐标为()00,x y ,由2PM MD =, 得()()00,28,x x y y x y --=--,即0316x x =-,03y y =.

因为点P ()00,x y 在圆224x y +=上,所以22004x y +=.即()()2

2

31634x y -+=,

即2

216439x y ??

-+= ??

?,这就是动点M 的轨迹方程.

例2:已知椭圆的两个焦点为(-2,0),(2,0)且过点53

(,)22

-,求椭圆的标准方程

解法1 因为椭圆的焦点在x 轴上,所以设它的标准方程为22

221(0)x y a b a b

+=>>,

由椭圆的定义可知:2222

53532(20(202102222a =++--+-+--=)())() 10a ∴=又2

2

2

2,6c b a c =∴=-=所以所求的标准方程为 22

1106

x y +=

解法2

2

2

2

2

2,4c b a c a =∴=-=-,所以可设所求的方程为222214x y a a +=-,将点53

(,)

22

-代人解得:10a = 所以所求的标准方程为

22

1106

x y += 例3.

例4.

高二圆锥曲线练习题1

1、F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段

2、已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )

(A)1162522=+y x (B))0(1162522≠=+y y x (C)125

162

2

=+y x (D))0(125162

2≠=+y y x

3、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )

A .13

B .33

C .

1

2

D .

32

4、设椭圆1C 的离心率为

5

13

,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )

A .2222143x y -=

B .22221135x y -=

C .2222134x y -=

D .22

2211312x y -=

5、设双曲线()22

2109

x y a a -

=>的渐近线方程为320x y ±=,则a 的值为( ). (A )4 (B )3 (C )2 (D )1

6、双曲线8222=-y x 的实轴长是( )

(A )2 (B ) 22 (C ) 4 (D )42

7、双曲线24x -212y =1的焦点到渐近线的距离为( ) A .3.2 C 3.1

8、以双曲线22

1916

x y -

=的右焦点为圆心,且与其渐近线相切的圆的方程是( )

A .221090x y x +-+=

B .2210160x y x +-+=

C .2210160x y x +++=

D .221090x y x +++=

9、、过椭圆22

22x y a b

+=1(a >b >0)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若

∠1F 2PF 60=°,则椭圆的离心率为( ) A .

22 B .33

C .12

D .13

10. “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 11、写出满足下列条件的椭圆的标准方程:

(1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); .

(3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3

1; (4)离心率为

2

3

,经过点(2,0); 12、与椭圆且短有相同的焦点,y x 14

92

2=+轴长为2的椭圆方程是: 13、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为

2

2

.过1F 的直线l 交C 于,A B 两点,且2ABF ?的周长为16,那么C 的方程为:

14、已知12F F ,为椭圆

22

1259

x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .

15、 已知1F 、2F 是椭圆C :22

221x y a b

+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥,

若12PF F △的面积是9,则b = .

16、求心在原点,焦点在坐标轴上,且经过P ( 4,3- ),Q ( 3,22 )两点的椭圆方程。

圆锥曲线练习题2

1.抛物线x y 102

=的焦点到准线的距离是( )

A .

25 B .5 C .2

15 D .10 2.若抛物线2

8y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

A .(7,14)

B .(14,14)

C .(7,14)±

D .(7,214)-±

3.以椭圆

22

1169

x y +=的顶点为顶点,离心率为2的双曲线方程( ) A .

1481622=-y x B .127922=-y x C .1481622=-y x 或22

1927

y x -= D .以上都不对 4.以坐标轴为对称轴,以原点为顶点且过圆09622

2

=++-+y x y x 的圆心的抛物线的方程是( )

A .2

3x y =或2

3x y -= B .23x y =

C .x y 92

-=或2

3x y = D .2

3x y -=或x y 92

=

5.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )

A .12(,44

±

B .12(,84±

C .12(,)44

D .12

(,84 6.椭圆124

492

2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( ) A .20 B .22 C .28 D .24

7.若点A 的坐标为(3,2),F 是抛物线x y 22

=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )

A .()0,0

B .??

?

??1,21 C .()

2,1 D .()2,2 8.与椭圆14

22

=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .12

22

=-y x

9.若椭圆2

2

1x my +=的离心率为

3

2

,则它的长半轴长为_______________. 10.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为______________。 11.抛物线x y 62

=的准线方程为___.

12.椭圆552

2

=+ky x 的一个焦点是)2,0(,那么=k 。

13.椭圆

22189x y k +=+的离心率为1

2

,则k 的值为____________。 14.双曲线2

2

88kx ky -=的一个焦点为(0,3),则k 的值为__________。

15.若直线2=-y x 与抛物线x y 42

=交于A 、B 两点,则线段AB 的中点坐标是______。

16.k 为何值时,直线2y kx =+和曲线22

236x y +=有两个公共点?有一个公共点?

没有公共点?

17.在抛物线2

4y x =上求一点,使这点到直线45y x =-的距离最短。

18.双曲线与椭圆

136

272

2=+y x 有相同焦点,且经过点15,4),求其方程。

19.设12,F F 是双曲线

116

92

2=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求△12F PF 的面积。

高二圆锥曲线练习题

1、F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( D ) (A)椭圆 (B)直线 (C)圆 (D)线段

2、已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( B )

(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125

162

2≠=+y y x

3、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( D )

A .13

B .3

C .

1

2

D 3 4、设椭圆1C 的离心率为

5

13

,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( A )

A .2222143x y -=

B .22221135x y -=

C .2222134x y -=

D .22

2211312x y -=

5、设双曲线()22

2109

x y a a -

=>的渐近线方程为320x y ±=,则a 的值为( C ). (A )4 (B )3 (C )2 (D )1

6、双曲线8222=-y x 的实轴长是(C )

(A )2 (B ) 22 (C ) 4 (D )42

7、双曲线24x -212y =1的焦点到渐近线的距离为( A ) A .3.2 C 3.1

8、以双曲线22

1916

x y -

=的右焦点为圆心,且与其渐近线相切的圆的方程是( A ) A .221090x y x +-+=

B .2210160x y x +-+=

C .2210160x y x +++=

D .221090x y x +++=

9、、过椭圆22

22x y a b

+=1(a >b >0)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若

∠1F 2PF 60=°,则椭圆的离心率为( B ) A .

22 B .3 C .12 D .13

10. “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆的 ( C ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件

解析:将方程2

2

1mx ny +=转化为 22

111x y m n

+

=, 根据椭圆的定义,要使焦点在y 轴上必须满足110,0,m n

>>所以11n m >,

11、写出满足下列条件的椭圆的标准方程:

(1)长轴与短轴的和为18,焦距为6; )

1162522=+y x 或125162

2=+y x ; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); 13

62

2=+y x . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31;

192

2=+y x 或181922=+y x ; (4)离心率为23,经过点(2,0);

142

2=+y x 或116

422=+y x . 12、与椭圆

且短有相同的焦点,y x 14

92

2=+轴长为2的椭圆方程是:1622=+y x 13、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为

2

2

.过1F 的直线l 交C 于,A B 两点,且2ABF ?的周长为16,那么C 的方程为:(22

1168

x y +=) 14、已知12F F ,为椭圆

22

1259

x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若

2212F A F B +=,则AB = 8 .

15、 已知1F 、2F 是椭圆C :22

221x y a b

+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥,

若12PF F △的面积是9,则b = 3 .

16、求心在原点,焦点在坐标轴上,且经过P ( 4,3- ),Q ( 3,22 )两点的椭圆方程。

解:设椭圆方程为122

22=+b

y a x ,将P ,Q 两点坐标代入,解得15,2022==b a

115

202

2=+y x 为所求。 圆锥曲线练习题2

1.抛物线x y 102

=的焦点到准线的距离是( B )

A .

25 B .5 C .2

15 D .10 2.若抛物线2

8y x =上一点P 到其焦点的距离为9,则点P 的坐标为( C )。

A .(7,14)

B .(14,14)

C .(7,214)±

D .(7,14)-±

3.以椭圆

116

252

2=+y x 的顶点为顶点,离心率为2的双曲线方程( C ) A .

1481622=-y x B .12792

2=-y x C .

1481622=-y x 或127

92

2=-y x D .以上都不对 4.21,F F 是椭圆17

92

2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( C )

A .7

B .

47 C .2

7

D .257

5.以坐标轴为对称轴,以原点为顶点且过圆09622

2

=++-+y x y x 的圆心的抛物线的方程是( D )

A .2

3x y =或2

3x y -= B .2

3x y =

C .x y 92

-=或2

3x y = D .2

3x y -=或x y 92

=

6.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( B )

A .12(,44

±

B .12(,)84±

C .12(44

D .12

(,84 7.椭圆124

492

2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( D ) A .20 B .22 C .28 D .24

8.若点A 的坐标为(3,2),F 是抛物线x y 22

=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( D )

A .()0,0

B .??

?

??1,21 C .()

2,1 D .()2,2 9.与椭圆14

22

=+y x 共焦点且过点(2,1)Q 的双曲线方程是( A ) A .1222=-y x B .1422=-y x C .13322=-y x D .12

22

=-y x 10.若椭圆2

2

1x my +=的离心率为

3

2

,则它的长半轴长为_______1,2或 ________. 11.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为______22

1205

x y -=±_________。 12.抛物线x y 62

=的准线方程为_3

2

x =-

____. 13.椭圆552

2

=+ky x 的一个焦点是)2,0(,那么=k 1 。

14.椭圆

22189x y k +=+的离心率为12,则k 的值为___5

4,4

-或___________。 15.双曲线2

2

88kx ky -=的一个焦点为(0,3),则k 的值为________1-______。

16.若直线2=-y x 与抛物线x y 42

=交于A 、B 两点,则线段AB 的中点坐标是__(4,2)____。

17.k 为何值时,直线2y kx =+和曲线22

236x y +=有两个公共点?有一个公共点?

没有公共点?

解:由22

2

236

y kx x y =+??

+=?,得2223(2)6x kx ++=,即22

(23)1260k x kx +++=

2

2

2

14424(23)7248k k k ?=-+=-

当2

72480k ?=->,即6633k k >

<-或时,直线和曲线有两个公共点; 当2

72480k ?=-=,即6633

k k =

=-或 当2

72480k ?=-<,即6633

k -

<< 18.在抛物线2

4y x =上求一点,使这点到直线45y x =-的距离最短。

解:设点2

(,4)P t t ,距离为d ,22445

17

17

t t d --==

当12t =

时,d 取得最小值,此时1

(,1)2

P 为所求的点。 19.双曲线与椭圆

136272

2=+y x 有相同焦点,且经过点15,4),求其方程。 解:椭圆

2213627y x +=的焦点为(0,3),3c ±=,设双曲线方程为22

22

19y x a a -=- 过点15,4),则

22

161519a a

-=-,得24,36a =或,而2

9a <, 2

4a ∴=,双曲线方程为22

145

y x -=。

20.设12,F F 是双曲线

116

92

2=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求△12F PF 的面积。 2.解:双曲线

116

92

2=-y x 的3,5,a c ==不妨设12PF PF >,则1226PF PF a -== 22201212122cos 60F F PF PF PF PF =+-?,而12210F F c ==

得222

12121212()100PF PF PF PF PF PF PF PF +-?=-+?=

012121

64,sin 601632

PF PF S PF PF ?==

?=

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

圆锥曲线知识点总结版

圆锥 曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为: 22 221x y a b +=(0a b >>)(焦点在x 轴上)或 122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位 置,只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原

点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a =叫椭圆的离心率。∵0a c >>,∴ 01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线; ③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。 (2)双曲线的性质

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

高考数学之圆锥曲线常见习题及解析(经典版)

高考数学 圆锥曲线常见习题及解析 (经典版)

椭圆 一、选择题: 1. 已知椭圆方程22143x y +=,双曲线22 221(0,0)x y a b a b -=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为 A.2 B.3 C. 2 D. 3 2.双曲线22 221(0,0)x y a b a b -=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第 一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) A .5 B .2 C .3 D .2 【答案】B 【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a = ,2:b l y x a =-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即121 2 OP F F c ==, 即22200x y c +=,又00b y x a =,代入得222 00()b x x c a +=,解得00,x a y b ==,即(,)P a b 。所以 1PF b k a c = +,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b b a c a ?-=-+,即2222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线 的离心率2e =,所以选B. 3.已知双曲线()0,012222>>=-b a b y a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342 =的焦 点重合,则该双曲线的离心率等于 A .2 B .3 C .2 D .2 3

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线经典小题教学文案

圆锥曲线经典小题 一、选择题 1.已知双曲线)0,0(1:2222>>=-b a b y a x C 的离心率为,25则C 的渐近线方程为( ) A .x y 41±= B .x y 31±= C .x y 2 1±= D .x y ±= 2.已知,40π θ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22 222=-θθx y C ( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 3.椭圆14 22 =+y x 的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ( ) A .23 B .3 C .2 7 D .4 4.已知双曲线1422 2=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A .5 B .24 C .3 D .5 5.设1F 和2F 为双曲线)0,0(122 22>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为( ) A .23 B .2 C .2 5 D .3 6.已知双曲线12 2 2=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=?MF MF 则点M 到x 轴的距离为( ) A .3 4 B .3 5 C .332 D .3 7.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为( ) A .2 B .3 C . 213+ D .215+ 8.已知双曲线,122=-y x 点21,F F 为其两个焦点,点P 为双曲线上一点,若,21PF PF ⊥ 则||1PF ||2PF +的值为( )

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的距离,F ?,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b (双曲线为虚轴) 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

圆锥曲线的综合经典例题(有答案)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横 坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程. 然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

相关主题
文本预览
相关文档 最新文档