当前位置:文档之家› 聚氨酯

聚氨酯

聚氨酯
聚氨酯

聚氨酯

聚氨酯的工业生产主要是由多元有机异氰酸酯和各中氢给予体化合物(通常如含端羟基的多元醇化合物)反应制备。选择不同数目的官能基团和不同类型的官能基,采用不同的合成工艺,能制备出性能各异、表现形式各种各样的聚氨酯产品:泡沫塑料,弹性橡胶,油漆、涂料,合成纤维、合成皮革、胶黏剂等。应用范围从航空飞行器到工农业生产,从文体娱乐

器械到人们日常的衣食住行。

异氰酸酯与水反应可生成二氧化碳,水因此被用作为最廉价的化学发泡剂,但该反应放

热量大且会产生脲基。

异氰酸酯与羧酸反应的反应活性较低,远低于伯醇或水与异氰酸酯间的反应活性,在正

常的生产条件下很少能参与反应。

异氰酸酯与胺的反应,胺类化合物大多都呈现一定的碱性,反应速度远快于异氰酸基与羟基的反应速度,即胺类化合物与异氰酸酯的反应速度要比其他含活泼氢化合物高得多。

异氰酸酯与脲基、胺酯基等的反应,能在生成的聚合物中提供一定支链结构,改善了聚

氨酯制品的力学性能。

异氰酸酯的自聚反应,异氰酸酯二聚体的生成反应仅局限于芳香族异氰酸酯,而异氰酸酯三聚体在芳香族和脂肪族异氰酸酯中都可以由反应制备。三聚体的碳氮原子六节环结构热稳定性好,使得聚氨酯具备更好的耐热性能,可用于硬质泡沫塑料的制备。

异氰酸酯的自缩聚反应,二异氰酸酯在加热和有机磷催化剂的存在下发生自缩聚反应生成碳化二亚胺,可用于制备抗水解稳定剂;制备液化MDI;提高聚氨酯材料的耐水解能力。

屏蔽型异氰酸酯衍生物

特种化学结构的异氰酸酯同一分子结构中既有异氰酸基团又有可供进行聚合反应的乙

烯双键。

重要的异氰酸酯及制备

甲苯二异氰酸酯(TDI)

二苯基甲烷二异氰酸酯(MDI)和多苯基甲烷多异氰酸酯(PAPI是MDI低聚体,又称聚

合MDI、粗品MDI)

MDI的优点:1 体系熟化速度快;

2 使用MDI较TDI安全,蒸汽压低,在通风良好的情况下对人体损害性小;

纺织加捻器等制品的生产。

六亚甲基二异氰酸酯(HDI)

甲基环己基二异氰酸酯(俗称氢化TDI,HTDI)化学结构与甲苯二异氰酸酯(TDI)相似,对光的作用稳定,不会产生黄变的生色团。

4,4,-二环己基甲烷二异氰酸酯(俗称氢化MDI,H12MDI),具备非黄变性,主要用于聚氨酯涂料、弹性体、织物涂层等场合。

异佛尔酮二异氰酸酯(IPDI),有良好的互溶性,反应活性低,使用时需要提高反应温度或添加适当的催化剂,合成路线较长,难度大,其具备特殊性质,合成的聚氨酯材料不产生黄变,具有优异的抗紫外光、耐天候老化性、较长的热稳定性以及良好的力学性能和优异的弹性等。主要用于高档涂料,耐候、耐低温、高弹性聚氨酯树脂,高档皮革涂饰剂。

对苯二异氰酸酯(PPDI)能在分子结构中产生致密性很高的硬链段区,具有极高的内聚力,使聚氨酯聚合物产生极好的相分离,从而使生成的聚氨酯比传统聚氨酯具有更高的耐磨性,更好的力学性能,更优秀的耐温、耐溶剂、耐水性能以及十分突出的回弹性能。是制备高性能注浇型和热塑型聚氨酯弹性体的重要异氰酸酯。

相对于聚酯多元醇在聚氨酯制品的生产中,尤其是在聚氨酯软质泡沫塑料的生产中显示出更加优越的加工性能,制品具有良好的手感特性及价格优势。

主要合成原料:聚合反应的主体;起始剂(控制生成的聚醚多元醇分子量的大小;利用起始剂所含活泼氢原子数的不同,合成不同官能度的聚醚多元醇;赋予合成聚醚多元醇以各

种特殊性能);催化剂

特种聚醚多元醇:

1 高活性聚醚多元醇:伯羟基类高活性聚醚多元醇;端氨基类高活性聚醚多元醇。

2 低不饱和度聚醚多元醇

3 阻燃型聚醚多元醇

4 接枝型聚醚多元醇

5 芳胺及芳(杂)环聚醚多元醇

1 蓖麻油、木焦油类聚醇化合物;

2 淀粉基聚醚多元醇;

3 植物油基聚醚多元醇。

聚酯多元醇

制备的聚氨酯材料具有优异的力学性能,突出的耐油、耐化学品等特性,被广泛用于聚

氨酯橡胶、微孔弹性体、涂料、黏合剂等相关产品。

聚己内酯多元醇(PCL)特点:不会产生低分子化合物,杂质少,含水量低;制备的聚氨酯产品除了具备传统聚酯基聚氨酯材料的高机械强度,优异的耐磨性、耐油等性能外,同时还兼备了聚醚基聚氨酯产品优越的耐水性和低温柔顺性;具有一定的自然分解能力。特别适用于制备高性能的聚氨酯纤维、涂料和弹性体等。

聚碳酸酯多元醇(PCDL)制备的PU材料具有良好的力学性能,优异的抗氧化、耐磨、耐化学品、耐热等性能,耐水解稳定性和耐老化性能极为优越。

最常用的有机锡催化剂是二丁基锡二月桂酸酯和辛酸亚锡

三聚化反应催化剂

表面活性剂在泡沫的形成过程中,影响着原料各组分的互溶、乳化,影响着气泡核化、生成、分散及稳定,对泡沫体的结构,泡孔的大小,开、闭孔率的高低有着重要作用。

发泡剂制备聚氨酯泡沫塑料使用的发泡剂主要有两类,即水和低沸点化合物。

低沸点化合物:

1 一氟三氯甲烷(CFC-11)毒性低,不易燃,与聚醚多元醇组分互溶性优良,沸点低

且适中;

2 二氯甲烷(MEC)原料易得,合成简单,价格低廉,泡沫体除回弹性稍有降低,其

他性能均和CFC-11制备的泡沫性能相似;

3 全水发泡技术:在配方中增加使用新型软化剂;在高水量配方中降低异氰酸酯指数;

氢氧化铝水合物无毒,安全性好;

三聚氰胺低毒

三(氯乙基)磷酸酯(TCEP)阻燃性能优异并具有优良的抗低温和抗紫外线性。

三(1-氯-2-丙基)磷酸酯(TCPP)对水和碱的反应性较低。

三(1,3-二氯-2-丙基)磷酸酯(TDCPP)

甲基磷酸二甲酯(DMMP)

扩链剂

扩链剂在聚氨酯的合成中能使聚氨酯反应体系迅速地进行扩链和交联;具有能与反应体系进行化学反应的特性基团;引入特性基团结构。

按化学结构基本可分为醇类化合物和胺类化合物。

扩链剂的配比问题:聚氨酯合成的原料基本都是两官能团的,所以只有NCO的数量与OH(或NH2)为1:1或接近1:1时,聚氨酯的分子量才能扩大。但事实上聚氨酯还会有一些副反应:NCO之间会发生自聚,NCO与氨基甲酸酯键继续反应生成脲基甲酸酯。副反应可以增大聚氨酯的官能度,提高产品的强度,所以这是为什么我们扩链系数一般会选择0.95

的原因。

脱模剂

聚氨酯常见技术指标:硬度;拉伸强度、M100、M200、M300;撕裂强度;伸长率;

弹性;永久压缩变形;磨耗;内生热;压缩模量。

聚氨酯橡胶

按基础原料成分分类

聚酯型——以乙二酸等二元酸与乙二醇、丙二醇、丁二醇、一缩二乙二醇等反应生成的端羟

C、CM系列;Vulkollan; Millathane。

C-PUR

C-PUR的主要优点:1 加工方式简单、方便、易于自动化、连续化生产;

2 C-PUR的耐磨性能极佳;

3 C-PUR配方的可调性大,硬度变化范围广;

4 C-PUR具有优异的力学性能;

5 C-PUR的耐油性能优越;

6 C-PUR耐氧、耐臭氧性能突出;

7 C-PUR的负荷能力高。

C-PUR存在的缺点及待改进:1 原料成本高;

T-PUR

主要的T-PUR:聚氨酯类、聚苯乙烯类、聚烯烃类、聚酯类和其他材料。

T-PUR完全摆脱了传统橡胶工业的多工序、多人力、生产程序繁杂、劳动强度大的加工方式,可以使用普通塑料的加工方式,采用注射、挤出、压延等极为简便的方式生产出橡胶弹性制品,材料性能优异,加工方式更加简便、快捷。

T-PUR制备中主要使用聚醇、二异氰酸酯和扩链剂(固化剂)。

T-PUR的制备方法:间歇法和输送带式连续法。

个聚氨酯基本概念

读懂70个聚氨酯基本概念 1、羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 2、当量:一个官能团所占的平均分子量。 3、异氰酸根含量:分子中异氰酸根的含量 4、异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 5、扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 6、硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大 7、软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 8、一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 9、预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。10、半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 11、反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 12、发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(IF)。 13、发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 14、凝胶反应:一般即指氨基甲酸酯的形成反应。 15、凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 16、乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 17、扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 18、低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。 19、氨酯级溶剂:生产聚氨酯选用溶剂要考虑溶解力、挥发速度,但生产聚氨酯所用的溶剂,应着重考虑到聚氨酯中重NC0基。不能选用与NCO基起反应的醇、醚醇娄等溶剂。溶剂中还不能含水、醇等杂质,不能含有碱类物质,这些都会使聚氨酯变质。酯类溶剂不允许含有水分,也不得含有游离酸和醇,它会与NCO基反应。聚氨酯所用的酯类溶剂,应采用纯度高的“氨酯级溶剂”。即将溶剂与过量异氰酸酯反应,再用二丁胺测定未反应的异氰酸酯量,检验其是否合用。原则是消耗异氰酸酯多者不适用,因为它表明了酯中所含水、醇、酸三者会消耗异氰酸酯的总值,如果以消耗leqNCO基所需要溶剂的克数表示,数值大者稳定性好。异氰酸酯当量低于2500以下的不用作聚氨酯溶剂。溶剂的极性对生成树脂的反应影响很大。极性越大,反应越慢,如甲苯与甲乙酮相差24倍,此溶剂分子极性大,能与醇的羟基形成氢键而使反应缓慢。聚氯酯溶剂选用芳烃溶剂较好,它们的反应速度比酯类、酮类快,如二甲苯。在双纽分聚氨酯施工时,用酯类和酮类溶剂可延长其使用期.在生产涂料时,选片前面提到的“氨酯级溶剂”,对贮存的稳定件有利。酯类溶剂溶解力强,挥发速度适中,低毒而使用较多,环己酮也多使用,烃类溶剂固溶解能力低,较少单独使用,多与其他溶剂并用。 20、物理发泡剂:物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的。 21、化学发泡剂:化学发泡剂是那些经加热分解后能释放出二氧化碳和氮气等气体,并在聚

聚氨酯最新应用进展

聚氨酯最新应用进展 近年来,聚氨酯行业在新能源(太阳能、风能等)、交通运输(汽车、高铁)、节能(建筑行业)、日用品(服装、鞋、玩具)、医用材料及生物基材料等方面的 应用取得很大进展,并产生了比较的经济效益。 一、新能源 1、巴斯夫在太阳能电池板、风电叶片制造、LED、防护、隔热保温等方面 的应用获得很大发展; 2、外壳为聚氨酯的LED梨灯 3、聚氨酯复合材料电线杆 加拿大复合材料产品技术公司Resin System Inc.推出牌号为RStandard 的电线杆,采用拜耳科技的聚氨酯复合原料生产,这些电线杆经历了德克萨斯 州的一场龙卷风袭击及斯堪的纳维亚冬日的恶劣气候依然矗立,而传统材料制 成的电线杆早已倒下一片。这些新型电线杆优势颇多:比木质电线杆更环保、 更结实耐用(一般情况下使用寿命长达125年,在气候多变得地区寿命至少也有65年),还可以节约成本,并提高国家电网的安全性。此外,这些电线杆表面 还能防钉扎,涂鸦痕迹也更容易清除。并且,这种电线杆采用缕空设计,大大 降低了运输、按照及储存成本,其重量是混凝土电线杆的1/10,钢筋电线杆的 1/4,木质电线杆的1/2。 4、生物基聚氨酯硬泡打造风力涡轮片 美国Malama Compasites公司采用植物基树脂生产聚氨酯硬泡,并从大豆、蓖麻、麻风树及海藻中提炼多元醇来生产用作涡轮机叶片的核心材料,这些材 料比石油基材料更环保,具有坚固、质量轻、价格低等优点。使用生物基聚氨 酯硬泡打造的核心材料能减轻叶片重量、提高叶片转速、简化安装过程。此外,这些材料还能减少齿轮系统的摩擦,延长使用寿命,使叶片保持平衡,并最终 提高整个风力涡轮机的工作效率。

聚氨酯相关 个基本概念

聚氨酯相关70个基本概念 1、羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 2、当量:一个官能团所占的平均分子量。 3、异氰酸根含量:分子中异氰酸根的含量 4、异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 5、扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 6、硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大。 7、软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 8、一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 9、预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。10、半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 11、反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 )。 12、发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(I F 13、发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 14、凝胶反应:一般即指氨基甲酸酯的形成反应。 15、凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 16、乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 17、扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 18、低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。

微生物生理生化实验培养基配方

配方1(用于细菌葡萄糖发酵---半固体穿刺培养): 蛋白胨2g,NaCl5g,K2HPO40.2g,1%溴酚蓝3ml,葡萄糖10g,琼脂8g,水1000ml。115度灭菌20分钟。 小提示:先将蛋白胨和NaCl溶于热水,调pH至7.4(这时总体积接近1000ml),再加入1%溴酚蓝3ml,再加入糖,溶解均匀后分装。 配方2(用于细菌乳糖发酵---半固体穿刺培养): 蛋白胨2g,NaCl5g,K2HPO40.2g,1%溴酚蓝3ml,乳糖10g,琼脂8g,水1000ml。115度灭菌20分钟。 小提示:先将蛋白胨和NaCl溶于热水,调pH至7.4(这时总体积接近1000ml),再加入1%溴酚蓝3ml,再加入乳糖,溶解均匀后分装。 配方3:MR与VP试验-------请实验员准备 蛋白胨5g,葡萄糖5g,NaCl5g,水1000ml,调pH至7.2-7.4左右,115度灭菌20分钟。甲基红试剂(需新配) 40%KOH,-萘酚(需新配) 配方4:柠檬酸盐利用试验步骤(液体-直接观察现象)-------请实验员准备 NaCl5g,MgSO4.7H2O0.2g,磷酸氢二铵1g,K2HPO41g,柠檬酸钠2g,水1000ml,调pH至6.8-7.0左右后加入1%溴酚蓝10ml。

1%溴酚蓝:称取0.08g溴酚蓝溶于0.5ml95%乙醇中,再加水至总体积到10ml。 以上成分加热溶解后,调pH至6.8,然后加入指示剂,摇匀。制成后为黄绿色,分装试管,121度灭菌20分钟。 配方5:淀粉酶实验 0.2%淀粉2g,蛋白胨1g,1.5%琼脂20g,调pH7.0至7.2,水1000ml。 小提示:可先将琼脂放入水中加热,待完全溶解后,加淀粉。混匀后高压灭菌。 检测用卢戈氏碘液 过氧化氢酶试验 过氧化氢溶液 配方6:吲哚试验------- 胰蛋白胨10g,NaCl5g,水1000ml,调pH至7.2-7.4左右,121度灭菌20分钟。 检测用乙醚及吲哚试剂 配方7:H2S试验:柠檬酸铁铵半固体培养基 1000ml蛋白胨10g,氯化钠5g,Na2S2O3.5H2O0.5g,柠檬酸铁铵0.5g,琼脂8g,pH7.2,121度灭菌20分钟。 配方8:明胶液化实验(穿刺培养)-----不做 明胶15g,牛肉膏0.5g,蛋白胨1g,氯化钠0.5g,水100mL,将明胶加入肉汤中,水浴加热溶解,调pH7.2-7.4,分装试管,115度高压灭菌20min,取出迅速冷却,使其凝固。

以生物质为原料制备聚氨酯泡沫塑料的研究进展

第41卷第5期2007年9月 生 物 质 化 学 工 程B iomass Che m ical Eng i n eering V o.l 41N o .5Sep .2007 以生物质为原料制备聚氨酯泡沫塑料的研究进展 收稿日期:2006-11-02 作者简介:张猛(1982-),男,河南周口人,硕士生,从事生物质材料的研究与开发 *通讯作者:周永红,研究员,博士生导师,从事生物质化学转化与应用研究。 张猛,李书龙,周永红 * (中国林业科学研究院林产化学工业研究所;国家林业局林产化学工程重点开放性实验室,江苏南京210042)摘 要:主要介绍了目前国内外利用淀粉、松香、植物油、纤维素、木质素等生物质原料用于合成聚氨酯泡沫塑料的研究进展。以生物质替代石化原料,可以改善聚氨酯泡沫塑料生物降解性等性能,可降低产品生产成本,提高市场竞争力。关键词:生物质;聚氨酯泡沫塑料;进展;生物降解 中图分类号:TQ91 文献标识码:A 文章编号:1673-5854(2007)05-0052-05 Researc h Progress of Pol yuret ha ne Foa m s fro m B i o m ass Z HANG M eng ,LI Shu -long ,Z HOU Yong -hong (Institute o f Chem ica l Industry o f Fo rest Products ,CAF;K ey and O pen L ab .on F orest Che m ical Eng i nee ri ng ,SFA,N anji ng 210042,Ch i na ) Abstrac t :Th is paper m a i nly i ntroduced t he research and deve l op m ent o f po l yurethane foa m s ,based on starch ,rosin ,p lant o i,l li gnin and ce llulose bo t h a t home and abroad .T he po l yure t hane foa m s properties such as b i odeg radab ili ty cou l d be i m prov ed by substituti on of petrochem ical m ateria l s w ith b i om ass .It also could reduce producti on cost and raise m arket competiti ve pow er .K ey word s :b i o m ass ;po l yure t hane foa m s ;progress ;b i odegradability 聚氨酯树脂是一类用途广泛、性能优良的高分子合成材料,因其性能优异、产品形态多样,已成为当今世界重点发展的六大合成材料之一,目前世界总产量已超过1000万吨,我国2005年产量达300多万吨。其中,聚氨酯泡沫塑料是聚氨酯合成材料的主要品种,占50%以上,广泛地应用于各种绝热、防震、隔音、轻质结构件和座椅靠垫、包装等方面,成为现代塑料工业中应用广泛、发展较快的品种之一。 聚氨酯(P UR)是由异氰酸酯(MD I 、TD I)与多元醇(聚酯、聚醚多元醇)反应而制成的一种具有氨基甲酸酯链段重复结构单元的聚合物。目前生产聚酯、聚醚多元醇的原料均是毒性和腐蚀性较强的石油化工产品。这些化石资源的大量使用,引起了日益严重的环境问题,如导致全球气温变暖、损害臭氧层、破坏生态圈碳平衡、释放有害物质、引起酸雨等自然灾害。开发和寻找新的替代资源发展能源和化学品已成为人类社会在新世纪必须加以解决的重大课题。 目前制备聚氨酯材料所利用的生物质资源主要有蔗糖及淀粉、纤维素及木质素、植物油、松脂等。按原理可分为两类,一类是把生物质制成多元醇作为聚氨酯泡沫塑料的主要原料;另一类是 以生物质作为填料来改性聚氨酯泡沫塑料,同时降低生产成本。 1 蔗糖、淀粉多元醇 糖类及其衍生物在制造聚氨酯泡沫塑料方面起着非常重要的作用。蔗糖利用较早,且来源丰富、价格低廉。有8个反应羟基的蔗糖具有为生产硬质聚氨酯泡沫体所需高交联度的必要官能度;蔗糖的双环结构给硬质聚氨酯泡沫塑料提供良好的热稳定性和外型稳定性。蔗糖的高质量和高纯度使它成为一种理想的聚氨酯原料 [1] 。 淀粉属多糖类化合物,具有良好吸湿、降解和成本低廉等优点,用于对聚氨酯泡沫塑料改性,无疑能赋予新的性质。按照结构的不同,淀粉可分为支链淀粉和直链淀粉两大类,其中用于制备可

NDI基聚氨酯弹性体项目计划书

NDI基聚氨酯弹性体项目 计划书 投资分析/实施方案

NDI基聚氨酯弹性体项目计划书 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。 该NDI基聚氨酯弹性体项目计划总投资7060.70万元,其中:固定资产投资5286.42万元,占项目总投资的74.87%;流动资金1774.28万元,占项目总投资的25.13%。 达产年营业收入15665.00万元,总成本费用12168.59万元,税金及附加136.60万元,利润总额3496.41万元,利税总额4115.27万元,税后净利润2622.31万元,达产年纳税总额1492.96万元;达产年投资利润率49.52%,投资利税率58.28%,投资回报率37.14%,全部投资回收期4.19年,提供就业职位250个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供

报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ......

聚氨酯树脂及其涂料_

含氟聚合物及其涂料 201606001具有良好机械性能和热性能的微孔透气膨胀型聚四氟乙烯复合物:US20160075914[美国专利公开]/美国:W.L.Gore &Associates,Inc.(Dutta,Anit 等).-2016.03.17.-18页.-2014/14484392(2014.09.12) 涉及了多孔透气膨胀型聚四氟乙烯(PTFE )复合物 的制备。该复合物在微观结构上的纤维及其结节包覆了聚合物,既保持微孔结构又增强了其机械性能。聚合物的用量为复合物总量的3%~25%。聚合物的耐温性能赋予复合物在温度≤300℃条件下的收缩率≤10%,透气性测试(按日本工业标准Gurley )结果显示为≤500s 。 201606002一种低VOC 高固体分氟聚物及其涂料的制备:WO201640525[国际专利申请]/美国:Honeywell International Inc.(Jiang,Wanchao 等).-2016.03.17.-49 页.-US2014/62047959(2014.09.09) 本专利旨在涂装过程中减少VOC 排放。涂料中含有VOC 类化合物以及至少一种氟聚物。该氟聚物由3种单体经共聚反应制得。第一种单体为氢化氟烯烃类单体,第二种单体为乙烯基酯,第三种单体为乙烯基醚,且至少部分上述乙烯基醚单体为羟基乙烯基醚。涂料中的氟聚物含量≥70%,VOC 类化合物含量<30%。 聚氨酯树脂及其涂料 201606003由棉籽和卡兰贾树油制备的环境友好型聚氨酯涂料及其性能研究[刊,英]/Gaikwad,Mandar S.等//Progress in Organic Coatings.-2015,86.-164~172 采用环氧化植物油和聚(乙二醇)(PEG),通过缩聚 反应合成了一系列新型聚酯多元醇。从自然资源即卡兰贾树(水黄皮)、棉籽(木本棉)获得的植物油,经环境友好的工艺环氧化后,进一步与PEG 反应,制备多元醇。PEG 的相对分子质量为200~600g/mol 。制得的聚酯多 元醇采用光谱分析进行表征。环境友好型聚氨酯由二戊烯合成的聚酯多元醇和取代传统二甲苯的绿色溶剂 等组分制得。该聚氨酯具有不同的理化性能和热性能。本研究还评估了其涂膜性能,如光泽、硬度、冲击性能、附着力和柔韧性,结果表明,该聚氨酯适用于工业涂料的制备。 201606004用于功能性聚氨酯复合材料的生物基石墨纳米粒子锚定的二氧化硅纳米粒子杂化材料及其合成方法[刊,英]/Gaddam,Rohit Ranganathan 等//Progress in Organic Coatings.-2015,87.-45~51 采用生物基石墨纳米粒子锚定的二氧化硅纳米粒 子杂化材料,以简易方法制备了功能性聚氨酯涂层。即将3-氨丙基三乙氧基硅烷与二氧化硅纳米粒子反应,使粒子表面带上氨基基团,然后进一步与樟脑煅烧获得的羧基封端的石墨纳米粒子反应。通过电子显微图像和其他光谱技术证实了杂化结构的生成。红外光谱测量结果显示,碳-二氧化硅纳米杂化结构通过酰胺键成功建立。合成的杂化材料按不同质量分数分散于聚醚多元醇中,然后与二异氰酸酯反应,制得聚氨酯纳米复合材料。碳-二氧化硅纳米杂化材料中未反应的氨基基团的引入有利于脲键的生成,能使杂化材料在聚合物基料中形成稳定的分散体。由于纳米微粒的引入,制得的聚氨酯复合材料具有特殊的物理-化学性能,而且,该复合材料还具有形状恢复能力。研究指出,在60℃下,涂膜的这种形状恢复能力与纳米材料含量的增加具有对应关系。研究还指出,将纯的和引入1.5%碳-二氧化硅纳米杂化材料的两种聚氨酯复合材料进行比较,发现室温下储存模量由183MPa 提高至432MPa 。 201606005环保型水性聚氨酯涂料的研究进展[刊,英]/Noreen,Aqdas 等//Korean Journal of Chemical Engineer? ing.-2016,33(2).-388~400 环保型水性聚氨酯涂料(WPU )由于其较溶剂型涂 料更低的VOC 排放,得到广泛的应用。而且,WPU 具有优异的低温柔韧性、pH 稳定性、耐水性、耐溶剂性、耐候性、机械性能等。本文综述了WPU 涂料的最新研究进展以及在涂料行业中的新应用。UV 固化WPU 涂料由于其卓越的机械性能和快速固化性能在环保涂料品种中占据重要地位; 超支化聚氨酯树脂的官能度高,具有良好的综合性能,如溶解性高、活性强、流变性能好,而

常用细菌培养基配方

常用抗生素 氨苄青霉素(ampicillin)(100mg/ml) 溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 羧苄青霉素(carbenicillin)(50mg/ml) 溶解0.5g羧苄青霉素二钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 甲氧西林(methicillin)(100mg/ml) 溶解1g甲氧西林钠于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以37.5ug/ml终浓度与100ug/ml氨苄青霉素一起添加于生长培养基。 卡那霉素(kanamycin)(10mg/ml) 溶解100mg卡那霉素于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 氯霉素(chloramphenicol)(25mg/ml) 溶解250mg氯霉素足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以12.5ug/ml~25ug/ml的终浓度添加于生长培养基。 链霉素(streptomycin)(50mg/ml) 溶解0.5g链霉素硫酸盐于足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 萘啶酮酸(nalidixic acid)(5mg/ml) 溶解50mg萘啶酮酸钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以15ug/ml的终浓度添加于生长培养基。 四环素(tetracyyline)(10mg/ml) 溶解100mg四环素盐酸盐于足量的水中,或者将无碱的四环素溶于无水乙醇,定容至10ml。分装成小份用铝箔包裹装液管以免溶液见光,于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 常用培养基 LB培养基 将下列组分溶解在0.9L水中: 蛋白胨10g 酵母提取物5g 氯化钠10g 如果需要用1N NaOH(~1ml)调整pH至7.0,再补足水至1L。注:琼脂平板需添加琼脂粉12g/L,上层琼脂平板添加琼脂粉7g/L。(实验室一般都不调PH) SOB培养基 将下列组分溶解在0.9L水中: 蛋白胨20g 酵母提取物5g 氯化钠0.5g 1 mol/L 氯化钾2.5ml

MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究 【中文摘要】随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进

行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG 作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。通过FT-IR

硬质聚氨酯泡沫塑料(新版)

硬质聚氨酯泡沫塑料(新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0651

硬质聚氨酯泡沫塑料(新版) 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受

到限制。 1.硬质聚氨酯泡沫塑料的主要性能 硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1各种绝热材料性能 项目 聚氨酯硬质泡沫塑料 聚苯乙烯 泡沫玻璃 聚氯乙然泡沫 软木 密度/kg·m-3 50 50

微生物培养基配制

微生物培养基配制 培养基是指人工配制的、适合于微生物生长繁殖或累积代谢产物所需的各种营养物的混合基质。 配制培养基是进行微生物检验工作的基础,甚至是任何与微生物有关工作的基础。 注意事項–灭菌锅的使用 ①加水盖过底部铁板—②放入东西—③关门—④調整溫度時間—⑤关紧泄压阀 灭菌結束後,等压力降回零時才可打開門 進入灭菌锅之物品,蓋子不可關太緊或太鬆 拿滅菌後物品請記得帶耐熱手套 培养基中的主要成分及其作用: 营养物质:N源、C源、无机盐、生长因子、水 常用的N源:蛋白胨、牛肉膏、肉浸汁、酵母膏 常用的C源:糖、醇类物质(单糖:葡萄糖、果糖、半乳糖、甘露糖 双糖:蔗糖、麦芽糖、乳糖;多糖:淀粉、纤维素、菊糖;

醇类:甘露醇、卫茅醇、甘油) 水:用蒸馏水,不能用自来水凝固剂:琼脂、明胶、血清等 抑制剂: 1、作用:鉴定细菌、抑制杂菌的生长繁殖,增加待检菌的检出率 2、种类: 盐类:氯化钠、氯化锂、氰化钾、亚碲酸钾(钠)、亚硒酸钠等 染色剂类:煌绿、蔷薇酸、结晶紫、孔雀绿、孟加拉红、玫瑰红 胆盐类:猪(牛、羊)胆盐、混合胆盐、三号胆盐、去氧胆酸盐、胆石酸盐 抗菌素:青霉素、链霉素、杆菌肽、多粘菌素 指示剂 1、作用:用于指示鉴别细菌可否利用分解糖醇类物质和含氮化合物,产酸产碱的能力。

2、常用的指示剂:酚红、溴甲酚紫、中性红、中国蓝、甲基红、复红、伊红、美蓝、孔雀绿等。 培养基的类型: ●根据培养基的物理状态来区分: 1、液体培养基:主要用于增菌培养、鉴别性培养 2、固体培养基:用作微生物的分离、鉴定、检验杂菌、计数、保藏、生物测定 3、半固体培养基:观察微生物的动力,有时用来保藏菌种 4、脱水(商品)培荞基:脱水培养基也称为商品培养基、预制干燥培养基。 ●将各种营养成分按比例配制完全,制成脱水的干粉状,装 瓶出售;使用时只需按比例加人定量的水溶化、灭菌便可。 ●根据培养基的用途来区分: 增殖培养基选择培养基鉴别培养基 1、增殖培养基:在普通培养基中加入 一些某种微生物特别喜欢的营养物质,以增加这种微生物

NDI基聚氨酯弹性体项目规划设计方案 (1)

NDI基聚氨酯弹性体项目规划设计方案 规划设计/投资方案/产业运营

报告说明— 该NDI基聚氨酯弹性体项目计划总投资14960.58万元,其中:固定资产投资12764.92万元,占项目总投资的85.32%;流动资金2195.66万元,占项目总投资的14.68%。 达产年营业收入16593.00万元,总成本费用13039.58万元,税金及附加245.60万元,利润总额3553.42万元,利税总额4289.15万元,税后净利润2665.07万元,达产年纳税总额1624.09万元;达产年投资利润率23.75%,投资利税率28.67%,投资回报率17.81%,全部投资回收期7.11年,提供就业职位337个。 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。

目录 第一章基本情况 第二章承办单位概况 第三章项目必要性分析第四章建设内容 第五章项目选址研究 第六章土建方案说明 第七章项目工艺先进性第八章项目环境分析 第九章项目安全管理 第十章风险应对评估 第十一章项目节能情况分析第十二章实施安排方案 第十三章项目投资方案分析第十四章项目盈利能力分析第十五章项目评价 第十六章项目招投标方案

第一章基本情况 一、项目提出的理由 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。 二、项目概况 (一)项目名称 NDI基聚氨酯弹性体项目 (二)项目选址 xxx临港经济技术开发区 所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。 (三)项目用地规模 项目总用地面积46696.67平方米(折合约70.01亩)。 (四)项目用地控制指标

常用培养基配方

常用培养基配方(微生物学与微生物检验学部分) 渤海大学生物与食品科学学院 2006年3月

目录 01糖发酵管 02 ONPG培养基 03西蒙氏柠檬酸盐培养基 04缓冲葡萄糖蛋白胨水(MR和VP试验用) 05克氏柠檬酸盐培养基 06丙二酸钠培养基 07葡葡糖铵培养基 08Hugh-Leifson培养基(O/F试验用) 09 马尿酸钠培养基 10营养明胶 11苯丙氨酸培养基 12 氨基酸脱羧酶试验培养基 13蛋白胨水(靛基质试验用) 14 硫酸亚铁琼脂(硫化氢试验用) 15 尿素琼脂 16 氰化钾(KCN)培养基 17 氧化酶试验 18 硝酸盐培养基 19 细胞色素氧化酶试验 20 过氧化氢酶试验 21 过氧化物酶试验 22 磷酸盐缓冲液 23明胶磷酸盐缓冲液 24 乳酸-苯酚溶液 25 肉浸液肉汤 26肉浸液琼脂 27牛肉(或牛心)消化汤 28血消化汤 29豆粉琼脂 30血琼脂 31营养琼脂 32营养肉汤 33 乳糖胆盐发酵管 34乳糖发酵管 35 EC肉汤 36 缓冲蛋白胨水(BP) 37 氯化镁孔雀绿增菌液(MM) 38 四硫磺酸钠煌绿增菌液(TTB) 39 四硫磺酸钠煌绿增菌液(换用方法) 40 亚硒酸盐胱氨酸增菌液(SC) 41 GN增菌液

42 肠道菌增菌肉汤 43 亚硫酸铋琼脂(BS) 44 DHL琼脂 45 HE琼脂 46 SS琼脂 47 WS琼脂 48 麦康凯琼脂 49 伊红美蓝琼脂(EMB) 50三糖铁琼脂(TSI) 51 三糖铁琼脂(换用方法) 52 克氏双糖铁琼脂(KI) 53 克氏双糖铁琼脂(换用方法) 54 葡萄糖半固体发酵管 55 5%乳糖发酵管 56 CAYE培养基 57 Honda氏产毒肉汤 58 Elek氏培养基(毒素测定用) 59 氯化镁孔雀绿羧苄青霉素培养基 60 胰蛋白胨水 61 Rustigian氏尿素培养液 62 氯化钠结晶紫增菌液 63 氯化钠蔗糖琼脂 64 嗜盐菌选择性琼脂 65 3.5%氯化钠三糖铁琼脂 66 氯化钠血琼脂 67 3.5%氯化钠生化试验培养基 68 改良磷酸盐缓冲液(小肠结肠炎耶尔森氏菌专用) 69 CIN-1培养基 70 嗜盐性试验培养基 71 改良Y培养基 72 改良克氏双糖 73 快速硫化氢(H2S)试验琼脂 74 DNA酶甲基绿琼脂(DTA) 75 Cary-Blair氏运送培养基 76 Skirrow氏培养基 77 TTC琼脂 78 甘氨酸培养基 79 改良磷酸盐缓冲液 80 氯化镁孔雀绿肉汤 81 胰酪胨大豆肉汤 82 Baird-Parker氏培养基 83 7.5%氯化钠肉汤 84 匹克氏肉汤 85 甘露醇卵黄多粘菌素琼脂

聚氨酯基互穿网络聚合物

收稿日期:2003-05-01 作者简介:王结良,男,硕士研究生,从事高性能复合材料的研究(E-mail:Wang -jie-l@hotmai)。梁国正,导师(T el:029-*******,E-mail :lgz hen g @nw pu .edu .cn )。 聚氨酯基互穿网络聚合物 王结良,梁国正,赵 雯,吕生华,何 洋 (西北工业大学化学工程系, 陕西西安710072) 摘要:在37篇文献的基础上对聚氨酯进行互穿网络改性的最新研究进展进行了综述;比较了用聚丙烯酸酯、聚苯乙烯、聚硅氧烷、环氧树脂、乙烯基树脂等对聚氨酯互穿网络改性的效果。指出了各种互穿体系的特性,并在此基础上展望了聚氨酯互穿网络聚合物的发展趋势。 关键词:聚氨酯;互穿聚合物网络;聚丙烯酸酯;聚苯乙烯;聚硅氧烷;环氧树脂;乙烯基树脂中图分类号:T M 215;T Q 323.8 文献标识码:A 文章编号:1009-9239(2003)04-0033-05 Interpenetrating polymer networks based on polyurethane WAN G Jie -laing ,LIANG Guo -zheng ,ZHAO Wen ,LU ?? Sheng -hua ,HE Yang (Dep artment of Chemical E ngineering ,N orthw ester n P oly technical Univ ersity ,X i 'an 710072,China )Abstract :Advances in polyurethane (PU )modification by interpenetrating po lymer netw or ks (IPN) are review ed w ith 37references .IPN based o n PU in this paper include PU /poly methancry late ,PU /po lysilx ane,PI/po lysty rene,PU /vinylester r esin,PU /unsaturated po lyester,PU/epo xy and so on.Keywords :polyurethane;IPN ;PSiO;PM A;PS;V E;EP 1 前言 聚氨酯(poly ur ethane,PU)是最常用的高分子材料之一。相对于其它高分子材料,它具有很多优点,如物理机械性能好,性能可调节范围广、成型工艺性能好等,但也存在着高温性能差等缺点。为了改善其不足,进一步拓宽聚氨酯的应用领域,各国学者对聚氨酯进行了一系列的改性研究,如纳米粒子共混改性[1] 、聚合物共混改性[2,3] 、熔融共混改性[4] 、纤维增强改性等[5]。其中对聚氨酯进行互穿网络改性已成为聚氨酯改性研究的一大热点。 2 改性机理 互穿网络聚合物(Interpenetrating Poly mer Net-w ork ,IPN )是指由两种或两种以上聚合物相互贯穿而形成的聚合物网络体系,参与互穿的聚合物之间并未发生化学反应,而是相互交叉渗透,机械缠结,起到“强迫互溶”和“协同效应”的作用。这种网络间的缠绕可明显地改善体系的分散性、界面亲和性,从而提高 相稳定性,实现聚合物性能互补,达到改性的目的。互穿网络已成为改善聚合物材料性能的一种有效的方法。聚氨酯预聚体易于与其它单体或聚合物混合,进 行互不干扰的平行反应,得到性能优良的聚氨酯互穿网络,成为目前研究最为广泛的一类互穿网络聚合物体系。 3 研究现状 3.1 聚氨酯/聚丙烯酸酯 聚丙烯酸酯(PM A )具有良好的综合力学性能,与聚氨酯形成互穿网络可提高聚氨酯的拉伸强度和断裂伸长率,改善聚氨酯的力学性能。 Anzlovar A 等人[6] 以带有羧基官能团的聚氨酯预聚体和带有叔胺基官能团的聚甲基丙烯酸酯 (PM A )预聚体为原料制得了聚氨酯/聚甲基丙烯酸酯半互穿聚合物网络。研究表明,网络的微相结构取决于官能团的浓度,官能团之间的物理相互作用有利于杨氏模量的提高,随着官能团数量的增大,产物表现出典型高聚物的性能。这可能与产物的互穿程度有关,高的官能团浓度使得两种网络间有较多的连接点。Desai S 等人[7]用同步聚合法形成聚甲基丙烯酸甲酯/聚氨酯互穿网络聚合物,在体系中加入2%的

几种培养基的配方

一. 土壤样品的采集 第一种: 选择植被群落具有代表性的固定样方,除去地面植被和地表覆盖物,每样方采用土壤剖面法和多点混合取样法采样,将土样混匀,用四分法弃去多余样品,取500g装入灭菌信封, 带回实验室后立即进行土壤微生物分离(4℃保存)、计数。 第二种: 在小区内机械抽取 6 株样木,距树干基部0.5 m 呈梅花形分布挖取根系周围0~20 cm、20~40 cm 和40~60 cm 土样,分层充分混合后作为非根际土壤样品。同时采集各层直径小于0.2~0.5 cm 细根上粘附的土壤,分层充分混合作为根际土壤。供微生物分析的鲜土样装入已消毒过的密封塑料袋,带入实验室。 二. 三大类土壤微生物分离与数量测定 1. 细菌的分离与数量测定 (1)以平板表面涂抹法计数。称取土壤鲜样10g在无菌条件下用无菌水配成不同浓度梯度悬浮液,取稀释度为10-3,10-4,10-5,10-6,10-7土壤悬浮液各50μL,接种于盛有灭菌的牛肉膏蛋白胨琼脂培养基的培养皿中,用无菌刮刀涂抹均匀。每个浓度3个重复,恒温(28 ℃) 培养3d,选取每皿菌落数为15-150的1个稀释度统计菌落数,按下列公式计算细菌数量: 菌数(cfu/ g) = (菌落平均数×稀释倍数)÷干土% (Ⅰ) 牛肉膏蛋白胨琼脂培养基,配方如下: 牛肉膏3.0 g 琼脂18 g 蛋白胨5.0 g 蒸馏水1000mL pH7.0 —7.2 2. 真菌的分离与数量测定 以平板表面涂抹法计数。即称取土壤鲜样10 g ,在无菌条件下用无菌水配成不同浓度梯度悬浮液,取稀释度为10-2,10-3,10-4的土壤悬浮液各50μL,接种于盛有灭菌的马丁- 孟加拉红培养基的培养皿中,用无菌刮刀涂抹均匀。每个浓度3个重复,恒温(25 ℃) 培养5~7 d,选取每皿菌落数为15~150 的1个稀释度统计菌落数计算真菌数量公式同公式(Ⅰ)。 马丁- 孟加拉红培养基,配方如下: 葡萄糖10.0 g MgSO4.7H2O 1.0 g KH2PO41.0 g 琼脂15 g 蛋白胨 5.0 g 孟加拉红(Rose Bangal) 每升加1%溶液0.33mL 1% 链霉素3 mL 蒸馏水1000 mL pH自然 临用前再加入1% 链霉素3 mL

生物基水性聚氨酯树脂的合成及表征

第 47 卷 第 4 期2018 年 4 月 Vol.47 No.4 Apr .2018化工技术与开发 Technology & Development of Chemical Industry 收稿日期:2018-02-12生物基水性聚氨酯树脂的合成及表征 梁永标,鲍 亮,郭玉良,卢 仕,李成祥,杨成华(广东德美精细化工集团股份有限公司,广东 顺德 528303) 摘 要:采用自乳化的工艺,以二聚酸、1,6-己二醇合成生物基二聚酸聚酯二醇,再配合常规聚己二酸丁二醇酯、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)为主要原料,制备了一系列稳定的生物基水性聚氨酯乳液。研究了合成二聚酸聚酯二醇的反应温度和反应条件,以及不同二聚酸聚酯二醇含量对水性聚氨酯乳液粒径、黏度、干膜吸水率、干膜延伸率、干膜拉伸强度等性能的影响。 关键词:生物基;二聚酸;二聚酸聚酯二醇;水性聚氨酯 中图分类号:TQ 630.4+3 文献标识码:A 文章编号:1671-9905(2018)04-0036-04 二聚酸属于天然可再生资源,可通过油酸、亚油酸、亚麻酸等不饱和脂肪酸[1-2] 经Diels-Alder反应制得,并可由分子蒸馏技术提纯而达到高纯度。在所有二元羧酸中,二聚酸的分子结构最为独特,主链较长,含有36个碳原子和2个大的烷基支链,而且完全由生物质转化而来[3-4]。随着人们环保安全意识的增强,环保法规要求亦日趋严格,二聚酸凭借其良好的可生物降解性和低廉的价格,正逐步取代传统的石化产品而在高分子材料领域获得广泛的应用[5-6]。 以聚酯多元醇为原料的水性聚氨酯树脂,具有良好的力学性能与手感,广泛应用于真皮、合成革的涂饰领域[7-8]。但由于酯键容易水解,影响到树脂的存储稳定性,因此聚酯型水性聚氨酯往往有保质期短、耐水解性差的缺点。 本研究以二聚酸和1,6-己二醇为原料,合成了一种相对分子质量为2000的二聚酸聚酯二醇。以二聚酸为原料,引入聚氨酯分子,在一定程度上可以改善水性聚氨酯产品的耐水性能,从而扩大水性聚氨酯的使用范围,延长产品保质期。 1 实验部分 1.1 实验原料 二聚酸(纯度99%)、1,6-己二醇(分析纯)、聚己二酸丁二醇酯(PBA,分子量2000),异佛尔酮二异氰酸酯(IPDI,试剂级)、二羟甲基丙酸(DMPA,工 业级)、三乙胺(TEA,AR)、乙二胺(EDA,AR)、丙酮(AR)、二月桂酸二丁基锡(DBTDL,AR)。 1.2 实验仪器 98-2型恒温电动搅拌器,SDF400实验用高速分散机,EQUINX55型红外光谱仪,Nano ZS90粒度测试仪,DHG-9075A型电热恒温鼓风干燥箱,电子天平DHG-9140A型,XBD-40000型微电脑拉力试验机,卡尔费休水分测定仪。 1.3 实验步骤 1.3.1 二聚酸聚酯二醇的制备 采用直接酯化法制备二聚酸1,6-己二醇酯二醇。将二聚酸和1,6-己二醇按摩尔比1/1.15的配比混合后,加入500mL配有搅拌器、温度计、分水器和回流冷凝器的四口圆底烧瓶中,然后加入固体总质量0.3%的催化剂二月桂酸二丁基锡,通氮气保护。油浴加热升温,于160℃开始出水,保温2h左右。缓慢升温至197℃反应,当分馏柱头不再出水时撤去分馏柱。继续反应到后期基本无水生成时,冷却物料,加催化剂二月桂酸二丁基锡,继续升温至220℃反应,直至酸值降到1.5 mgKOH·g-1以下,降温至130℃,于2.66kPa下减压排醇,直至测定羟值为56 mgKOH·g-1。降温冷却至室温,得二聚酸聚酯二醇产品。 1.3.2 水性聚氨酯的制备 制备水性聚氨酯树脂的方法很多,本研究采

相关主题
文本预览
相关文档 最新文档