当前位置:文档之家› WiFi模块选型参考

WiFi模块选型参考

WiFi模块选型参考

WiFi模块选型参考

经常会碰到一些关于wifi模块的咨询,很多刚接触wifi模块的设计人员或者用户,只知道提wifi模块,很难提具体的模块要求!希望通过文章的介绍,会做到有的放矢!咨询时一定要搞清楚自己希望使用什幺主芯片/要什幺接口/采用多少伏供电/需要大概的模块尺寸/天线的处理方式等问题。

?随着无线网络的不断兴起和发展,目前wifi模块的应用领域相当广泛!

?但是毕竟wifi模块毕竟是一高频性质的产品,它不象普通的消费类电子产品,生产设计的时候会有一些莫名其妙的现象和问题,让一些没有高频设计经验的工程师费劲心思,有相关经验的从业人员,往往也是需要借助昂贵的设备来协助分析!

?对于wifi部分的处理,有直接把wifi部分layout到PCB主板上去的设计,这种设计,需要勇气和技术,因为本身模块的价格不高,主板对应的产品价格不菲,当有wifi部分产生的问题,调试更换比较麻烦,直接报废可惜;所以很多设计都愿意采用模块化的wifi部分,这样可以直接让wifi部分模块化,处理起来方便,而且模块可以直接拆卸,对于产品的设计风险和具体的耗损也有很大帮助。

?具体的硬件设计时,对于WiFi模块的主要考虑以下方面::

?1、通信接口:USB或SDIO及PCIE;

?2、供电方式:3V3是比较常用,也有5V供电;

?3、天线的处理:有PCB板载;通过I-pex座子外接;结合主板自行设计;?4、模块的具体尺寸,方便实际的集成;

?5、工作的频段:ISM2.4G、ISM5.8G、BT的版本和wifi的带宽;

商务应用模块--工作总结文档

商务应用模块--工作总结文档Business application module -- work summary docume nt

商务应用模块--工作总结文档 小泰温馨提示:工作总结是将一个时间段的工作进行一次全面系统的总检查、总评价、总分析,并分析不足。通过总结,可以把零散的、肤浅的感性认识上升为系统、深刻的理性认识,从而得出科学的结论,以便改正缺点,吸取经验教训,指引下一步工作顺利展开。本文档根据工作总结的书写内容要求,带有自我性、回顾性、客观性和经验性的特点全面复盘,具有实践指导意义。便于学习和使用,本文下载后内容可随意调整修改及打印。 输入名称部门输入时间年度输入工作内容工作总 结一年的时间很快过去了,在一年里,我在公司领导及同事们的关心与帮助下圆满的完成了各项工作,现将工作开展情况汇报如下: 主要工作: 1、输入内容 2、输入内容 3、输入内容 主要取得了以下成绩: 1、输入内容 2、输入内容

些方面还存在着不足。比如输入不足之处。在新的一年里,我将输入决心。 范例员工工作总结一年的时间很快过去了,在一年里,我在公司领导及同事们的关心与帮助下圆满的完成了各项工作,现将工作开展情况汇报如下: 主要工作: 一、负责将集装箱产品出口到外国。 二、与客户进行日常的邮件联系。 主要取得了以下成绩: 一、完成了100p圆筒、100p彩虹、60p共91个集装箱的出口到美国,14个托盘的100p彩虹出口到日本,10个托盘的60p和100彩虹到台湾,及2400套圆筒和600套60p (replacement)到美国。 二、通过与客户进行日常的邮件联系这项工作,使我原本欠缺的英语写作及口语得到了很大的提高,并学到了好多与客户交流的技巧及业务上的知识。

变频器主电路选型

通用变频器综合设计 1、设计一个采用二极管整流桥和IGBT的交-直-交电压型变频器主电路,并选择主要元器件的参数。 输入电压范围: 380~480V(正负10%),输出功率11kw(当输出电压为380V时),功率因数75 ?,采用三相SVM PWM,fs=1~15kHz。 .0 cos= (1)选择整流桥和IGBT(EUPEC或三菱均可),根据三菱或EUPEC网站上的程序,计算整流桥和IGBT模块的结温、使用寿命:计算做热Ta=40o C的Rthc-a,选择自冷或风冷情况下的变频器的散热器。(2)Udmax=800V,选择电解电容的耐压和容量,计算电解电容的寿命,自己查资料,如EPCOS、CDE(无感电容)、BHC等。 2、设计上述变频器的保护方案(原理框图,各环节的设计依据,电路框图,主要参数) (1)选择三个输出交流侧霍尔电流传感器的过电流、过载保护方案,设计相应的保护电路(HL传感器,电流放大滤波通道,A/D转换参考电压为5V)。 (2)设计IGBT直通保护和输出短路保护(相间,对地),可选择用带保护的驱动IC实现。 (3)直流侧的电阻能耗制动电路,给出一种软件或硬件控制方案。(制动点的选择) (4)直流侧过电压保护的硬件电路

根据题目要求,本系统主电路可用三相二极管不可控桥式整流电路、中间直流环节和三相IGBT桥式逆变电路三部分组成,实现交-直-交电压型变频器的功能,其拓扑结构如图1所示。 图 1 交—直—交电压型变频器拓扑结构 AC-DC-AC主电路主要包括:整流电路、滤波电路、制动电路以及逆变电路。整流侧采用三相不可控二极管整流桥将交流电整流为直流电,这样功率因数接近于1。由于不控整流出来的电压是脉动的,需要经过滤波电路后供给逆变电路,所以直流侧电容起稳压和滤波的作用。因为考虑到电动机的回馈能量,防止直流侧电压升高,加入能耗制动电路,逆变桥采用三相桥式结构。图中,在直流侧电容前接入了一个与限流电阻相并联的开关,这是由于电容的电容量很大,当合闸突加电压时电容相当于短路,将产生很大的充电电流可能会损坏整流二极管,为了限制充电电流,可以采用限流电阻和延时开关组成的预充电电路对电容进行充电,当电源合闸后延时开关延时数秒,此时通过电阻对电容充电,当电容电压升高到一定值后,闭合开关将限流电阻短路,避免正常运行时的附加损耗。 一、整流逆变元件参数及热设计 1.1 主电路元件选择及其参数 1.1.1 整流二极管的选型

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册 一、模块简介 该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01: 1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm 2.2Mbps,传输速率高 3.功耗低,等待模式时电流消耗仅22uA 4.多频点(125个),满足多点通信及跳频通信需求 5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线) 6.工作原理简介: 发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD按照时序由SPI 口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD 从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。 接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ 变低,以便通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。 二、模块电气特性 参数数值单位 供电电压5V 最大发射功率0dBm 最大数据传输率2Mbps 电流消耗(发射模式,0dBm)11.3mA 电流消耗(接收模式,2Mbps)12.3mA 电流消耗(掉电模式)900nA 温度范围-40~+85℃ 三、模块引脚说明 管脚符号功能方向 1GND电源地 2IRQ中断输出O 3MISO SPI输出O 4MOSI SPI输入I 5SCK SPI时钟I 6NC空 7NC空 8CSN芯片片选信号I 9CE工作模式选择I 10+5V电源

xx公司模块化建设安装工作总结

xx公司模块化建设安装工作总结 模块化建设集成应用了成熟适用新技术,形成电气一次、二次系统、土建各专业标准化技术方案,实现了设计标准化,提升工程技术水平、提升节能环保水平。变电站实现了初步设计、设备采购、施工图设计等环节有效衔接,将有效提高智能变电站建设全过程精益化管理和建设效率。设计达到施工图深度,技术和装备实现集成和工厂化调试,应用预制装备结构,可实现建筑材料工厂化加工、现场机械化施工,减少现场湿作业、接线和调试工作量,提高工程建设安全质量、工艺水平,提高现场施工质量和效率。20xx年,xx公司根据继续深化推进坚强智能电网建设,全面推行变电站模块化建设,强化工程建设全过程精益管理,进一步提高工程质量、效率、效益的工作要求,积极推进智能变电站模块化建设管理工作。 主要开展了一下工作: 1. 组织xx110kVxx变模块化设计 110kVxx变为xx公司2017包工程,变电站位于xx市xx县,是110GIS全户外变电站。变电站可研阶段未采用模块化方案,后根据xx基建部18号文的要求,变电站被列为xx公司模块化变电站建设8个示范工程之一。 20xx年3月15~18日期间,在xx公司模块化建设小组集中指导下,110kVxx变根据要求更改可研方案为模块化方案,选用模块化

通用设计110-A1-1模块化全户外GIS方案,并根据该方案调整土建、一次、二次方案及技经造价。随后,根据模块化建设要求,进行110kVxx变模块化初步设计,完成设计说明书编制、图纸绘制以及造价分析。 该工程完全应用xx公司110-A1-1户外方案的变电一次、土建部分,大部分应用110-A1-1户外方案的变电二次部分。变电一次、土建部分应用率为100%,变电二次应用率为99%。 2. 参与xx公司模块化建设研究课题组相关工作 20xx年度xx地区110kV模块化智能变电站建设项目,结合十三五期间xx地区电网的发展规划特点,课题组从电气主接线的主变容量规模、无功补偿配置、高低侧配电装置接线形式上,在通用设计方案上进行了相似方案的比选,同时结合各变电站的站址规划和负荷等级特点,分析了单层建筑和多层建筑就占地面积、建筑面积、施工难度、用钢量等指标的差异性,最终优选出110-A1-1户外方案和110-A2-6全户内通用设计方案作为2016年xx通用设计应用库选用方案。 xx公司建设部根据xx公司基建部模块化示范工程技术方案第一阶段研究会议、以及模块化示范工程技术方案第二阶段研究会议的要求,组织xx电力设计院相关设计人员全程参与模块化建设研究课题组模块化方案探讨、示范项目审查及模块化课题研究,进行了上述两个方案的初步设计图纸和施工图纸绘制工作,并在该通用设计应用库建立后,修订和补充通用设计方案辅助部分。

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

Wifi模块使用说明

Wifi模块使用说明 供电范围6-16V 接口: VCC 5V供电端(电压必须是5V,可以做电源输出)TXD 接单片机的RXD RXD 接单片机的TXD GND接单片机的GND 默认波特率9600 wifi无线名称:TOLNK 密码:12345678 web页面地址:http://192.168.10.1 视频地址:http://192.168.10.1:8080 (可以使用chrome或者Firefox浏览器直接访问摄像头)

使用方法 1,将模块供电,电源要求6.5-16V之间 2,供电正常之后,用手机或者笔记本搜索wifi网络搜索到TOLNK之后,连接TOLNK,密码为12345678 3,电脑软件接收视频 运行MJPG.exe 软件 然后点击“连接”按钮即可 摄像头上面有一个灯,如果没有亮灯,就说明摄像头连接异常。只有摄像头上的灯是亮的才可以使用无线视频。

连接电脑wifi,名称为TOLNK ,密码为12345678 设置参数 打开浏览器,输入http://192.168.10.1,登陆用户和密码都是admin

修改系统设置: 无线网类型AP 和Infra AP是将wifi模块当路由器使用,这样手机和电脑就可以直接连接wifi模块了。 Infra 是将wifi模块当基础设备使用,用于连接别的路由器。 两个用途: 如果你要将wifi模块当路由器使用,方便你的手机和电脑连接,那么请注意以下设置: 无线网类型必须是AP。 无线网名称可以任意。 无线网密钥就是你的手机和电脑连接wifi模块时,需要的密码。 无线网络IP,就是你建议不要修改。 别的选项无需修改,保存参数,然后重启wifi模块。 如果你想将wifi模块连接到别的路由器使用,那么请注意以下设置: 无线网类型必须是Infra。 无线网名称必须填写需要连接的路由器名称(任何一个符合都不能出错,大小写也不能出错)。无线网名称必须填写需要连接的路由器密码(任何一个符合都不能出错,大小写也不能出错)。无线网络IP,修改为0.0.0.0。让他自动获取 别的选项无需修改,保存参数,然后重启wifi模块。

薪酬福利模块年度工作总结

默默奉献,平凡岗位见成绩 我是人力资源部的一名普通员工,能够成为XX人,伴随着公司一起成长与发展,何等之幸 福。能够再次有机会获得优秀员工提名,何等之激动。回顾过去近一年的工作,感慨万千,有挑灯夜战的艰辛和疲惫,也有出色完成工作时收获的欣喜。现就本年度我个人及我们的薪酬绩效团队完成的工作汇报如下: (一)薪酬核算与福利 1、工时与考勤管理 (1)规范了工时管理:依据公司的实际情况,结合行业淡旺季特点,对生产及辅助人员采取制 和综合工时制,并按照规定在咼新区劳动局完成2014年度非标工时审批备案。使得生产线米用 倒班制的合法性有了政策依据,让生产排班能够灵活适应生产任务提高了人工的利用率。 (2)考勤:1月份考勤系统在同步试运行2个月的前提下正式上线,平稳从人工计算考勤过渡到考勤系统电子化。平均每月1898人次考勤计算未因数据并行与试行而造成任何差错,数据准确率达99.8%以上。11月份,结合公司一年来考勤实施中遇到的问题点,优化并修订了《员工考勤制度》。 (3)系统优化和E-HR信息化建设:①休假计算规则及初始化导入系统,规范了年休假的管理。 ②考勤机由原来的依“卡”考勤,替换成“面部”、“指纹”考勤,全厂考勤信息采集共计3288 人次;③建立并优化了员工转正、奖惩、异动及用工等系统审批流程,初步实现审批无纸化。 2、六险一金福利 (1)社保与公积金的开户建账、缴纳等工作:2014年度社保全年增加2718人次,平均每月227 人次;减少总计1533人次,平均每月128人次,开办金融社保卡信息采集1513人,办理住房公积金汇缴月均1020人次,公积金黄山卡开办778张。 2014年各月社会保险缴纳费用情况表 (2)各种保险事件处理:养老、医疗关系转移528例,办理失业备案28例,申报男职工补贴6 例,工伤保险待遇申报10例,意外伤害险待遇申报8例。 (3)劳动年检:按照劳动部门的要求,每年进行劳动年检和保险稽查,对于公司劳动工资、劳

现代功率模块及器件应用技术

现代功率模块及器件应用技术(1)-IGBT和MOSFET功率模块 0 引言 最近20年来,功率器件及其封装技术的迅猛发展,导致了电力电子技术领域的巨大变化。当今的市场要求电力电子装置要具有宽广的应用范围、量体裁衣的解决方案、集成化、智能化、更小的体积和重量、效率更高的芯片、更加优质价廉、更长的寿命和更短的产品开发周期。在过去的数年中已有众多的研发成果不断提供新的、经济安全的解决方案,从而将功率模块大量地引入到一系列的工业和消费领域中。 因此,有必要就功率模块的应用技术,如选型、驱动、保护、冷却、并联和串联以及软开关电路等,进行一次全面的系列介绍。 1 IGBT和MOSFET功率模块 1.1 应用范围 如图1所示,当前众多的电力电子电路可由功率MOSFET或IGBT来实现。从上世纪80年代开始,它们先后出现于市场。与传统的晶闸管相比,它们具有一系列的优点,如可关断的特性(包括在短路状态下)、不需要缓冲网络、控制单元简单、开关时间短、开关损耗低等。

图1 功率半导体的应用范围 现在,电力电子技术不断地渗透到新的应用领域中,这首先归功于IGBT和功率MOSFET的迅速发展。同时,它们的应用在其现有的领域内也在不断地深化。数年前,高耐压双极型功率晶体管还被广泛地应用着。而现在只能在少数例外情况下发现它的踪影,其位置已几乎完全被IGBT所取代。 在电流达数十A或以上的应用中,功率MOSFET及IGBT大多为含有硅芯片的绝缘式功率模块。这些模块含有一个或数个晶体管单元,以及和晶体管相匹配的二极管(续流二极管),某些情况下还含有无源元件和智能部分。 虽然功率模块存在仅能单面冷却的缺点,但它还是被广泛地应用于大功率电力电子技术中,与同期问世的平板式IGBT/二极管器件一争高低。尽管平板式器件在双面冷却的条件下可以多散发约30%的热损耗,但功率模块仍然受到用户广泛的欢迎。其原因除了安装简易外,还在于模块的芯片和散热器之间的绝缘、其内部多个不同元器件的可组合性、以及由于大批量生产而导致的低成本。 在当今的市场上,尽管各种有竞争性的功率器件都在不断地发展,但是IGBT模块却稳稳胜出,它的功率范围也在不断延伸。目前生产的IGBT模块已具有了65kV、4.6kV、3.3kV和2.5kV的正向阻断电压。以此为基础,MW 级的、电压至6kV的变流器(采用IGBT串联的电路)已经出现。 另一方面,MOSFET则被应用于越来越高的频率范围。今天,使用合适的电路拓扑与封装技术,已经可以在500kHz 以上实现较大的电流。 IGBT和MOSFET模块已经成为集成电子系统的基本器件,同时也正在成为集成机电系统的基本器件。 1.2 结构和基本功能 下面所述的功率MOSFET和IGBT均指n沟道增强型,因为,它代表了构成功率模块的晶体管的主流。 在一个正向的驱动电压作用下,一块p导通型的硅材料会形成一个导电的沟道。这时,导电的载流子为电子(多子)。在驱动电压消失后,该器件处于截止状态(自截止)。 在大多数情况下,人们采用图2和图4所示的垂直式结构。在这里,栅极和源极(MOSFET)或发射极(IGBT)均位于芯片上表面,而芯片底面则构成了漏极(MOSFET)或集电极(IGBT)。负载电流在沟道之外垂直通过芯片。 在图2所示的功率MOSFET和图4所示的IGBT具有平面式栅极结构,也就是说,在导通状态下,导电沟道是横向的(水平的)。 平面栅极(在现代高密度晶体管中更发展为双重扩散栅极)仍是目前功率MOSFET和IGBT中占统治地位的栅极结构。 平面式MOSFET和IGBT结构是从微电子技术移植而来的,其漏极或集电极由n+(MOSFET)或p+(IGBT)井区构成,位于芯片表面。负载电流水平地流经芯片。借助于一个氧化层,n区可以与衬底相互隔离,从而有可能将多个相互绝缘的MOSFET或IGBT与其他结构一起集成于一个芯片之上。 由于平面式晶体管的电流密度仅能达到垂直式结构的30%,因而明显地需要更多的安装面积,所以,它们主要被用在复杂的单芯片电路中。 从构造上来看,功率MOSFET(图2)以及IGBT(图4)由众多的硅微单元组成。每cm2芯片上的单元数可达8.2×105(最新的耐压为60V的MOSFET)以及1×105(高耐压IGBT)。 图2、图4显示了MOSFET和IGBT具有相似的控制区结构。 n-区在截止状态下构成空间电荷区。p导通井区被植入其内,它在边缘地带的掺杂浓度较低(p-),而在中心地带则较高(p+)。

esp8266-12wifi模块用户手册v1.0

ESP8266 WiFi模块用户手册

目录 术语和缩写错误!未定义书签。 1. 产品简介 ......................................................... 错误!未定义书签。 . 概述 ......................................................... 错误!未定义书签。 产品特性 ................................................. 错误!未定义书签。 模块封装 ................................................. 错误!未定义书签。 模块基本参数 ............................................. 错误!未定义书签。 . 硬件介绍 ..................................................... 错误!未定义书签。 . 功耗 ......................................................... 错误!未定义书签。 . 射频指标 ..................................................... 错误!未定义书签。 . 尺寸 ......................................................... 错误!未定义书签。 . WiFi 天线 .................................................... 错误!未定义书签。 . 推荐炉温曲线 ................................................. 错误!未定义书签。 2. 功能描述 ......................................................... 错误!未定义书签。 . 主要功能 ..................................................... 错误!未定义书签。 . 工作模式 ..................................................... 错误!未定义书签。 . 应用领域 ..................................................... 错误!未定义书签。 . AiCloud ...................................................... 错误!未定义书签。 3. 全功能测试版介绍 ................................................. 错误!未定义书签。 . 测试步骤 ..................................................... 错误!未定义书签。 . 基础AT指令 .................................................. 错误!未定义书签。 测试AT ..................................................... 错误!未定义书签。 . WiFi功能AT指令.............................................. 错误!未定义书签。 选择WiFi应用模式:AT+CWMODE ................................. 错误!未定义书签。 列出当前可用接入点:AT+CWLAP ............................... 错误!未定义书签。 加入接入点:AT+CWJAP .......................................... 错误!未定义书签。 退出接入点:AT+CWQAP .......................................... 错误!未定义书签。 设置AP模式下的参数:AT+CWSAP .............................. 错误!未定义书签。 . TCPIP AT指令................................................. 错误!未定义书签。 建立TCP/UDP连接:AT+CIPSTART ............................. 错误!未定义书签。 获得TCP/UDP连接状态:AT+CIPSTATUS ........................ 错误!未定义书签。 启动多连接:AT+CIPMUX ..................................... 错误!未定义书签。 发送数据:AT+CIPSEND ...................................... 错误!未定义书签。 关闭TCP/UDP连接:AT+CIPCLOSE ............................. 错误!未定义书签。 获取本地IP地址:AT+CIFSR ................................. 错误!未定义书签。 配置为服务器: ........................................... 错误!未定义书签。 选择TCPIP应用模式:AT+CIPMODE ............................ 错误!未定义书签。 设置服务器主动断开的超时时间:AT+CIPSTO ................... 错误!未定义书签。 设置波特率:AT+CIOBAUD................................... 错误!未定义书签。 4. 产品试用 ......................................................... 错误!未定义书签。

【范文】软件系统项目工作总结

软件系统项目工作总结 自2月份开始,我一直在跟进xx银行w-xxND1S2.0项目的测试工作,至此为止已近6个月时间,从公司内部系统测试、验收测试,再到UAT测试,以及投产前的系统压力测试等等。从开始到项目即将结束,一步步走过来。本次项目中,我作为测试环节的主力人员之一,仅对此项目中测试工作进行总结。 一、项目测试进度控制。项目的测试进度主要是按照项目计划进行的,完全按照项目组计划要求完成测试任务、提交测试类相关文档,包括测试案例的完善、制定测试计划、执行测试、缺陷跟踪以及BUG回归测试等。协调项目的内部测试工作,本此项目中测试小组一共组织了四轮次系统全面测试工作,认真配合项目工作,共同保证项目质量。项目测试的问题跟踪及处理采用每日进行修改问题回归测试工作,每日同步更新问题跟踪单的模式,按照规划时间完成系统更新测试。 二、项目组内部成员关系处理。在项目工作的这几个月里大家相处融洽,项目组内部共同探讨解决问题的方法,向各模块负责人学习模块功能处理方式,向业务人员了解系统中涉及的业务知识点,两者结合起来进行模块功能测试。鉴于之前辖内对公交易系统和中行对公项目的经验,也向项目组提出了一些完善性意见。

三、协调用户测试方面。用户验收测试是项目测试工作的重要组成部分之一,是项目验收阶段的最终把关阶段,业务人员结合日常业务处理情况对系统进行的尝试性使用过程。本次项目客户测试方面也是我个人觉得不够安全感一个主要方面,客户测试介入力度太小,尽管我们已经很多次电话催促业务人员测试,每次联系相关业务人员进行测试,他们来到项目组开发现场测试,也仅仅一两个小时时间,简单的进行验证操作即可。xx银行利用两批系统培训的时间安排了两次分行集中测试,也算给项目进行了一次全面的测试,从中也暴露出不少系统存在的问题,目前项目组均已解决。[莲~山] 四、测试成效方面。中信X-FUNDS2.0系统测试中,共记录问题及客户新增需求825个,其中BUG数量512个、系统完善类问题225个,新增需求类问题88个。组织了四轮次内部系统全面测试工作,兼顾日常系统更新测试工作,最大限度的进行了内部质量把关。配合外包公司一同进行系统压力测试及稳定性测试,测试结果符合客户要求。现中信X-FUNDS2.0系统临近投产实施工作,测试组还将继续配合配合项目投产工作及投产后的补丁更新测试工作。 四、个人得失方面。作为此次项目测试的负责人,对于日常的测试流程、测试任务分配、测试执行、缺陷跟踪、协调内部测试及协调客户测试方面能力均得到了进一步提高,

功率模块选型设计

功率模块选型设计 对于一个具体的应用来说,选择功率模块时需要考虑其在任何静态、动态、过载(如短路)的运行情况下: ①器件耐压; ②在实际的冷却条件下,电流的承受力; ③最适合的开关频率; ④安全工作区(SOC)限制; ⑤散热条件与最高运行温度限制; ⑥封装和安装方式 ⑦成本和技术风险 (1)器件耐压设计=(+)K2 =(1.15*600+200)*1.1 =979(V) (1) 式中: ——过电压系数 ——安全系数 ——额定直流电压 ——关断即将结束时的尖峰电压 考虑到回馈制动,电压波动,开关过程引起的电压尖峰等因素,通常选择功率管器件耐压都是母线电压的一倍,故IGBT的电压额定值选用1200V。 (2)器件的电流选择

在电力电子设备中,选择功率管模块时,通常先计算通过功率管的最大电流值,然后根据该设备的特点,考虑到过载、电压波动、开关尖峰、温度等因素考虑一倍的安全余量来选择相应的功率管。 流过IGBT的最大电流为: = =300××1.2×1×1.5 =763.56(A) (2) 式中: ——电流尖峰系数 ——温度降额系数 ——过载系数 ——牵引电动机峰值电流 IGBT的电流额定值选用=800A (3)合适的开关频率 功率管的损耗主要由通态损耗和开关损耗组成,不同的开关频率,通态损耗和开关损耗所占的比例不同。而决定功率管通态损耗的饱和压降和决定开关损耗的开关时间(,)又是一对矛盾,因此应根据不同的开关频率来选择不同特征的功率管。 在低频如<10kHz时,通态损耗是主要的,这需要选择低饱和压降型功率管;当≥15kHz时,开关损耗是主要的,通态损耗占的比例比较小。

ESP8266-01 WiFi模块用户手册V1.0

ESP8266 WiFi模块用户手册V1.0

目录 术语和缩写 (4) 1.产品简介 (5) 1.1.概述 (5) 1.1.1产品特性 (5) 1.1.2模块封装 (6) 1.1.3模块基本参数 (7) 1.2.硬件介绍 (8) 1.3.功耗 (11) 1.4.射频指标 (12) 1.5.尺寸 (13) 1.6.WiFi 天线 (14) 1.7.推荐炉温曲线 (14) 2.功能描述 (15) 2.1.主要功能 (15) 2.2.工作模式 (15) 2.3.应用领域 (15) 2.4.AiCloud (15) 3.全功能测试版介绍 (16) 3.1.测试步骤 (17) 3.2.基础AT指令 (20) 3.2.1 测试AT (20) 3.3.WiFi功能AT指令 (20) 3.3.1 选择WiFi应用模式:AT+CWMODE (20) 3.3.2列出当前可用接入点:AT+CWLAP (21) 3.3.3 加入接入点:AT+CWJAP (21) 3.3.4 退出接入点:AT+CWQAP (22) 3.3.5设置AP模式下的参数:AT+CWSAP (22) 3.4.TCPIP AT指令 (23) 3.4.1建立TCP/UDP连接:AT+CIPSTART (23) 3.4.2获得TCP/UDP连接状态:AT+CIPSTATUS (23) 3.4.3启动多连接:AT+CIPMUX (24) 3.4.4发送数据:AT+CIPSEND (25) 3.4.5关闭TCP/UDP连接:AT+CIPCLOSE (25) 3.4.6获取本地IP地址:AT+CIFSR (26) 3.4.7配置为服务器: (27) 3.4.8选择TCPIP应用模式:AT+CIPMODE (30) 3.4.9设置服务器主动断开的超时时间:AT+CIPSTO (30) 3.4.10设置波特率:AT+CIOBAUD (30) 4.产品试用 (31)

最新软件系统项目工作总结

最新软件系统项目工作总结自2月份开始,我一直在跟进xx银行项目的测试工作,至此为止已近6个月时间,从公司内部系统测试、验收测试,再到uat测试,以及投产前的系统压力测试等等。从开始到项目即将结束,一步步走过来。本次项目中,我作为测试环节的主力人员之一,仅对此项目中测试工作进行总结。 一、项目测试进度控制。项目的测试进度主要是按照项目计划进行的,完全按照项目组计划要求完成测试任务、提交测试类相关文档,包括测试案例的完善、制定测试计划、执行测试、缺陷跟踪以及bug回归测试等。协调项目的内部测试工作,本此项目中测试小组一共组织了四轮次系统全面测试工作,认真配合项目工作,共同保证项目质量。项目测试的问题跟踪及处理采用每日进行修改问题回归测试工作,每日同步更新问题跟踪单的模式,按照规划时间完成系统更新测试。 二、项目组内部成员关系处理。在项目工作的这几个月里大家相处融洽,项目组内部共同探讨解决问题的方法,向各模块负责人学习模块功能处理方式,向业务人员了解系统中涉及的业务知识点,两者结合起来进行模块功能测试。鉴于之前辖内对公交易系统和中行对公项目的经验,也向项目组提出了一些完善性意见。 三、协调用户测试方面。用户验收测试是项目测试工作

的重要组成部分之一,是项目验收阶段的最终把关阶段,业务人员结合日常业务处理情况对系统进行的尝试性使用过程。本次项目客户测试方面也是我个人觉得不够安全感一个主要方面,客户测试介入力度太小,尽管我们已经很多次电话催促业务人员测试,每次联系相关业务人员进行测试,他们来到项目组开发现场测试,也仅仅一两个小时时间,简单的进行验证操作即可。xx银行利用两批系统培训的时间安排了两次分行集中测试,也算给项目进行了一次全面的测试,从中也暴露出不少系统存在的问题,目前项目组均已解决。最新软件系统项目工作总结 四、测试成效方面。中信系统测试中,共记录问题及客户新增需求825个,其中bug数量512个、系统完善类问题225个,新增需求类问题88个。组织了四轮次内部系统全面测试工作,兼顾日常系统更新测试工作,最大限度的进行了内部质量把关。配合外包公司一同进行系统压力测试及稳定性测试,测试结果符合客户要求。现中信系统临近投产实施工作,测试组还将继续配合配合项目投产工作及投产后的补丁更新测试工作。 四、个人得失方面。作为此次项目测试的负责人,对于日常的测试流程、测试任务分配、测试执行、缺陷跟踪、协调内部测试及协调客户测试方面能力均得到了进一步提高,理清了项目整个过程中测试小组的工作过程以及后期的项

USRC215wifi模块硬件设计手册

USR-C215 wifi模块硬件设计手册

目录 1. 产品概述 (3) 1.1产品简介 (3) 1.2引脚描述 (3) 1.3尺寸描述 (4) 1.4 开发套件 (5) 2.硬件参考设计 (6) 2.1典型应用硬件连接 (6) 2.2电源接口 (6) 2.3 UART接口 (7) 2.4复位控制和恢复出厂设置控制 (8) 2.5天线 (8) 3.免责声明 (9) 4.更新历史 (9) 附件1:评估板原理图 (9)

1.产品概述 1.1产品简介 USR-C215模块硬件上集成了MAC、基频芯片、射频收发单元、以及功率放大器;内置低功耗运行机制,可以有效实现模块的低功耗运行;支持WiFi协议以及TCP/IP协议,用户仅需简单配置,即可实现UART设备的联网功能。尺寸较小,易于组装在客户产品的硬件单板电路上,且模块可选择内置或外置天线的应用,方便客户多重选择。 1.2引脚描述 下图为USR-C215的引脚对应图: 图1 USR-C215 引脚图

表1 USR-C215模块管脚说明 注:在信号类型中,P表示电源,I表示输入,O表示输出,N表示不可用 管脚名称信号类型说明 1 GND P 电源地 2 VDD P 电源正极,3.3V 3 RELOAD I 拉低1-3秒是启动simplelink配置,3S以上是恢复出厂设置 4 RESET I 模块复位,低电平有效 5 UART_RX I 串口接收引脚 6 UART_TX O 串口发送引脚 7 PWR_SW N 悬空,不可用 8 WPS N 悬空,不可用 9 READY O 模块工作正常指示引脚,低有效,可外接LED 10 nLINK O 模块WiFi连接指示引脚,低有效,可外接LED 1.3尺寸描述 外形尺寸为22.0*13.5mm,误差为±0.2mm.引脚尺寸如图2 图2 外形尺寸图

智能功率模块项目工作总结汇报

智能功率模块项目工作总结汇报 规划设计 / 投资分析

第一章项目总体情况说明 一、经营环境分析 1、当前,新一轮科技革命和产业变革与我国加快转变经济发展方式形成历史性交汇,国际产业分工格局正在重塑。必须紧紧抓住这一重大历史机遇,按照“四个全面”战略布局要求,实施制造强国战略,加强统筹规划和前瞻部署,力争通过三个十年的努力,到新中国成立一百年时,把我国建设成为引领世界制造业发展的制造强国,为实现中华民族伟大复兴的中国梦打下坚实基础。当前,我国制造业发展面临着稳增长和调结构的双重困境、发达国家和新兴经济体的双重挤压、低成本优势快速递减和新竞争优势尚未形成的两难局面。在这一“爬坡过坎”的关键时期,《中国制造2025》出台,既立足当前,面向制造业转型升级、提质增效,提出了九大战略任务、五项重点工程和若干重大政策举措;又着眼长远,着眼应对新一轮科技革命和产业变革,围绕先进制造和高端装备制造,前瞻部署了重点突破的十大战略领域,描绘了未来30年建设制造强国的宏伟蓝图和梯次推进的路线图。经过几十年的快速发展,我国制造业规模跃居世界第一位,建立起门类齐全、独立完整的制造体系,成为支撑我国经济社会发展的重要基石和促进世界经济发展的重要力量。持续的技术创新,大大提高了我国制造业的综合竞争力。载人航天、载人深潜、大型飞机、北斗卫星导航、超级计算机、高铁装备、百万千瓦级发电装备、万米深海石油钻

探设备等一批重大技术装备取得突破,形成了若干具有国际竞争力的优势产业和骨干企业,我国已具备了建设工业强国的基础和条件。 2、从经济发展的国内条件来看,推进经济结构转换的基本推动性因素仍需夯实,经济发展的不平衡、不协调、不可持续问题依然突出。首先,发达国家在科技创新领域的领先优势仍旧是显著的,我国的科技创新能力虽有显著增强,但总体竞争力仍落后于发达国家,总体上尚未形成创新驱动式的增长模式,创新驱动发展的制度环境仍需大力改善。其次,收入分配格局尚未发生根本性改变,居民收入分配差距较大,成为经济结构调整的重要制约因素。再有,经济发展与能源安全、资源供给、生态环境、自然灾害、气候变化等约束矛盾更加突出。过去,我国依靠大量劳动力与国内丰富的自然资源,以生产出口产品来带动经济的发展。然而,2008年国际金融危机后,全球经济遭遇沉重打击,以美国为首的发达国家金融体系受到严重冲击。同时,也直接削弱了全球市场对我国出口产品的需求,我国出口导向型经济结构不可持续,需求侧的三辆马车已不足以拉动中国经济的快速发展。改革将成为重新平衡中国国内经济结构、促进消费和扩大内需的必然选择。 3、“十三五”时期是我国全面建成小康社会的决胜阶段,也是战略性新兴产业大有可为的战略机遇期。我国创新驱动所需的体制机制环境更加完善,人才、技术、资本等要素配置持续优化,新兴消费升级加快,新兴产业投资需求旺盛,部分领域国际化拓展加速,产业体系渐趋完备,市场

功率模块封装结构及其技术

功率模块封装结构及其技术 摘要:本文从封装角度评估功率电子系统集成的重要性。文中概述了多种功率模块的封装结构形式及主要研发内容。另外还讨论了模块封装技术的一些新进展以及在功率电子系统集成中的地位和作用。 1 引言 功率(电源或电力)半导体器件现有两大集成系列,其一是单片功率或高压集成电路,英文缩略语为PIC或HI VC,电流、电压分别小于10A、700V的智能功率器件/电路采用单片集成的产品日益增多,但受功率高压大电流器件结构及制作工艺的特殊性,弹片集成的功率/高压电路产品能够处理的功率尚不足够大,一般适用于数十瓦的电子电路的集成;另一类是将功率器件、控制电路、驱动电路、接口电路、保护电路等芯片封装一体化,内部引线键合互连形成部分或完整功能的功率模块或系统功率集成,其结构包括多芯片混合IC封装以及智能功率模块IPM、功率电子模块PEBb、集成功率电子模块等。功率模块以为电子、功率电子、封装等技术为基础,按照最优化电路拓扑与系统结构原则,形成可以组合和更换的标准单元,解决模块的封装结构、模块内部芯片及其与基板的互连方式、各类封装(导热、填充、绝缘)的选择、植被的工艺流程的国内许多问题,使系统中各种元器件之间互连所产生的不利寄生参数少到最小,功率点楼的热量更易于向外散发,其间更能耐受环境应力的冲击,具有更大的电流承载能力,产品的整体性能、可能性、功率密度得到提高,满足功率管理、电源管理、功率控制系统应用的需求。 2 功率模块封装结构 功率模块的封装外形各式各样,新的封装形式日新月异,一般按管芯或芯片的组装工艺及安装固定方法的不同,主要分为压接结构、焊接结构、直接敷铜DBC基板结构,所采用的封装形式多为平面型以及,存在难以将功率芯片、控制芯片等多个不同工艺芯片平面型安装在同一基板上的问题。为开发高性能的产品,以混合IC封装技术为基础的多芯片模块MCM封装成为目前主流发展趋势,即重视工艺技术研究,更关注产品类型开发,不仅可将几个各类芯片安装在同一基板上,而且采用埋置、有源基板、叠层、嵌入式封装,在三维空间内将多个不同工艺的芯片互连,构成完整功能的模块。 压接式结构延用平板型或螺栓型封装的管芯压接互连技术,点接触靠内外部施加压力实现,解决热疲劳稳定性问题,可制作大电流、高集成度的功率模块,但对管芯、压块、底板等零部件平整度要求很高,否则不仅将增大模块的接触热阻,而且会损伤芯片,严重时芯片会撕裂,结构复杂、成本高、比较笨重,多用于晶闸管功率模块。焊接结构采用引线键合技术为主导的互连工艺,包括焊料凸点互连、金属柱互连平行板方式、凹陷阵列互连、沉积金属膜互连等技术,解决寄生参数、散热、可靠性问题,目前已提出多种实用技术方案。例如,合理结构和电路设计二次组装已封装元器件构成模块;或者功率电路采用芯片,控制、驱动电路采用已封装器件,构成高性能模块;多芯片组件构成功率智能模块。DBC基板结构便于将微电子控制芯片与高压大电流执行芯片密封在同一模块之中,可缩短或减少内部引线,具备更好的热疲劳稳定性和很高的封装集成度,DBC通道、整体引脚技术的应用有助于MCM的封装,整体引脚无需额外进行引脚焊接,基板上有更大的有效面积、更高的载流能力,整体引脚可在基板的所有四边实现,成为MCM功率半导体器件封装的重要手段,并为模块智能化创造了工艺条件。

相关主题
文本预览
相关文档 最新文档