当前位置:文档之家› 高中化学各物质熔沸点判断1

高中化学各物质熔沸点判断1

高中化学各物质熔沸点判断1
高中化学各物质熔沸点判断1

高中化学各物质熔沸点判断

癸巳年十月

在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下:

根据物质在相同条件下的状态不同

1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2

2. 由周期表看主族单质的熔、沸点

同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。

3. 同周期中的几个区域的熔点规律

①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。

②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。

金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。

4. 从晶体类型看熔、沸点规律

晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。

①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。

在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅

②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。

如KF>KCl>KBr>KI

③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4

<SnH4。ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH>CH3—CH3。ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸);ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH >HCOOH。ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低)

④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。

合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。

5. 某些物质熔沸点高、低的规律性

①同周期主族(短周期)金属熔点。如Li

②碱土金属氧化物的熔点均在2000℃以上,比其他族氧化物显著高,所以氧化镁、氧化铝是常用的耐火材料。

③卤化钠(离子型卤化物)熔点随卤素的非金属性渐弱而降低。如NaF>NaCl>NaBr>NaI。

通过查阅资料我们发现影响物质熔沸点的有关因素有:①化学键,分子间力(范德华力)、氢键;②晶体结构,有晶体类型、三维结构等,好象石墨跟金刚石就有点不一样;③晶体成分,例如分子筛的桂铝比;④杂质影响:一般纯物质的熔点等都比较高。但是,分子间力又与取向力、诱导力、色散力有关,所以物质的熔沸点的高低不是一句话可以讲清的。我们在中学阶段只需掌握以上的比较规律。

高中化学 物质熔沸点的比较素材 新人教版选修3

【比较物质的熔点、沸点的规律】 1.根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔 沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se >H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。

物质熔沸点高低的比较

物质熔、沸点高低的规律小结 熔点是固体将其物态由固态转变(熔化)为液态的温度。熔点是一种物质的一个物理性质,物质的熔点并不是固定不变的,有两个因素对熔点影响很大,一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况,如果压强变化,熔点也要发生变化;另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。沸点指液体饱和蒸气压与外界压强相同时的温度。外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,

高中化学常见物质性质总结

高中化学常见物质的物理性质归纳 1.颜色的规律 (1)常见物质颜色 以红色为基色的物质 红色:难溶于水的Cu,Cu2O,Fe2O3,HgO等 碱液中的酚酞酸液中甲基橙石蕊及pH试纸遇到较强酸时及品红溶液 橙红色:浓溴水甲基橙溶液氧化汞等 棕红色:Fe(OH)3固体 Fe(OH)3水溶胶体等 <2>以黄色为基色的物质 黄色:难溶于水的金碘化银磷酸银硫磺黄铁矿黄铜矿(CuFeS2)等 溶于水的FeCl3 甲基橙在碱液中钠离子焰色及TNT等 浅黄色:溴化银碳酦银硫沉淀硫在CS2中的溶液,还有黄磷 Na2O2 氟气 棕黄色:铜在氯气中燃烧生成CuCl2的烟 <3>以棕或褐色为基色的物质 碘水浅棕色碘酒棕褐色铁在氯气中燃烧生成FeCl3的烟等 <4>以蓝色为基色的物质 蓝色:新制Cu(OH)2固体胆矾硝酸铜溶液淀粉与碘变蓝石蕊试液碱变蓝 pH试纸与弱碱变蓝等 浅蓝色:臭氧液氧等 蓝色火焰:硫化氢一氧化碳的火焰甲烷,氢气火焰(蓝色易受干扰) <5>以绿色为基色的物质 浅绿色:Cu2(OH)2CO3,FeCl2,FeSO4*7H2O 绿色:浓CuCl2溶液 pH试纸在约pH=8时的颜色 深黑绿色:K2MnO4 黄绿色:Cl2及其CCl4的萃取液 <6>以紫色为基色的物质 KMnO4为深紫色其溶液为红紫色碘在CCl4萃取液碘蒸气中性pH试纸的颜色 K+离子的焰色(钴玻璃)等 <7>以黑色为基色的物质

黑色:碳粉活性碳木碳烟怠氧化铜四氧化三铁硫化亚铜(Cu2S) 硫化铅硫化汞硫化银硫化亚铁氧化银(Ag2O) 浅黑色:铁粉 棕黑色:二氧化锰 <8>白色物质 无色晶体的粉末或烟尘; 与水强烈反应的P2O5; 难溶于水和稀酸的:AgCl,BaSO3,PbSO4; 难溶于水的但易溶于稀酸:BaSO3,Ba3(PO4)2,BaCO3,CaCO3,Ca3(PO4)2,CaHPO4,Al(OH)3,Al2O3,ZnO,Zn(OH)2,ZnS,Fe(OH)2,Ag2SO3,CaSO3等; 微溶于水的:CaSO4,Ca(OH)2,PbCl2,MgCO3,Ag2SO4; 与水反应的氧化物:完全反应的:BaO,CaO,Na2O; 不完全反应的:MgO <9>灰色物质 石墨灰色鳞片状砷硒(有时灰红色)锗等 2.离子在水溶液或水合晶体的颜色 水合离子带色的: Fe2+:浅绿色; Cu2+:蓝色; Fe3+:浅紫色呈黄色因有[FeCl4(H2O)2] 2-; MnO4-:紫色 :血红色; :苯酚与FeCl3的反应形成的紫色 主族元素在水溶液中的离子(包括含氧酸根)无色 运用上述规律便于记忆溶液或结晶水合物的颜色 (3)主族金属单质颜色的特殊性 A的金属大多数是银白色 铯:带微黄色钡:带微黄色 铅:带蓝白色铋:带微红色

高中化学各物质熔沸点判断

高中化学各物质熔沸点 判断 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C ,Si ,Ge ,Sn 越向下,熔点越低,与金属族相似; 还有ⅢA 族的镓熔点比铟、铊低;ⅣA 族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长: 金刚石(C —C )>碳化硅(Si —C )>晶体硅 (Si —Si )。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF >KCl >KBr >KI ,ca*>KCl 。 ③ 分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点 反常地高,如:H 2O >H 2Te >H 2Se >H 2S )。

对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 5. 某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如 Li

高中化学物质熔沸点

2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA 族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-℃,26×105Pa)、沸点(℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-℃),近常温呈液态的镓(℃)铯(℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸);ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子

物质熔沸点的比较

物质熔沸点的比较 1、不同晶体类型的物体的熔沸点高低的一般顺序 原子晶体→离子晶体→分子晶体(金属晶体的熔沸点跨度大) 同一晶体类型的物质,晶体内部结构粒子间的作用越强,熔沸点越高。 2、原子晶体要比较其共价键的强弱,一般地说,原子半径越小,形成的共价键长越短,键能越大,其晶体熔沸点越高,如:金刚石→碳化硅→晶体硅。 3、离子晶体要比较离子键的强弱,一般地说,阴阳离子的电荷数越多,离子半径越小,则离之间的相互作用就越强,其离子晶体的熔沸点越高。如:MgO >Mgd 2 >Nad>Csd。 4、分子晶体组成和结构相似的物质,相对分子质量越大,熔沸点越高,如: O 2>N 2 ,HI>HBr>Hd;组成和结构不相似的物质,分子极性越大,其熔沸点越高, 如Co>N 2 ;在同分异构件,一般支链越多,其熔沸点越低,如沸点,正成烷>异成烷>新戌烷洁香烃及其衔生物的同分异构件,其熔沸点,高低顺序为:邻位>间位>对位化容物。 5、金属晶体中金属离子半径越小,离子电荷越多,其金属键越强,金属熔沸点就越高。 6、元素周期表中第IA族金属元素单质(金属晶体)的熔沸点,随原子序数的递增而降低;第VIA族卤素单质(分子晶体)的溶沸点随原子序数递增而升高。 1、HNO 3→AgNO 3 溶液法 ①检验方法:

表明存在cl 表明存在Br 表明存在I ②反应原理 反应①:Ag+d-=Agd↓反应②:Ag+Br-=AgBr↓反应③:Ag+I-=AgI↓ 2、氯水—CdH法 ①检验方法 加适量新朱子饱和氯水加Cll H 未知液混合液分层振荡振荡 橙红色表明有Br- 有机层 紫红色表明有I- ②原理: D 2+2Br-=Br 2 +2a- d 2+2I-=I 2 +2d-,因Br 2、 I 2 在ccl 4 中的溶解度大于在水中的溶解度。 3、检验食盐是否加碘(1:Io 3 )的方法①检验方法 变蓝:加碘盐 食盐 未变蓝:无碘盐 ②反应原理:IO 3-+SI-+6H+=3I 2 +3H 2 O(淀粉遇I 2 变蓝色) 常见的放热反应与吸热反应 一、放热反应 (1)燃烧都是放热反应;(2)中和反应都是放热反应;(3)化合反应都是放热反应;(4)置换风应多为放热反应;(5)生石灰与水的反应、铝热反应等。 二、吸热反应 (1)盐类的水解反应都是吸热反应;(2)弱电*质的电荷一般是吸热反应; (3)大多数分解反应都是吸热反应;(4)需要持续加热的反应,如:NH 4d与C a CoA 2 , 制NA 3,A 2 还原C a O,配制C 2 H 4 。 注意区别反应的热效应与反应的条件。 化学反应中的能量变化主要表现为放热和吸热,反应是放热还是吸热,主要取决于反应物,生成物所具有的总能量的相对大小,放热反应和吸热反应在一定条件下都能发生。反应开始时需要持续加热的反应可能是吸热反应,也可能是放

高中化学之物质的熔沸点知识点

高中化学之物质的熔沸点知识点 1、理解物质的物理性质 应用物质的熔沸点可以判断物质在常温(25℃时)下的状态,判断气体被液化的难易及液态物质的挥发性大小等。 物质的沸点相对较高者,则该物质较易被液化。如SO2(沸点-10℃)、NH3(-33.35℃)、Cl2(-34.5℃)被液化由易到难的顺 序是SO2、、NH3、Cl2。物质的沸点越低,则越容易挥发(气化), 如液溴(58.78℃)、苯(80.1℃)易挥发、浓硫酸(338℃)难挥发等。 2、推测物质的晶体类型 分子晶体是由较小的分子间作用力而形成,故熔点沸点较低;离子晶体是由离子间较强的离子键而形成,故熔点沸点一般较高;原子晶体是由原子间较强的共价键而形成,故溶点沸点较高。如白磷的熔点44.1℃、沸点280℃可推测验是分子晶体;NaCl的 溶点是801℃、沸点是1413℃可推测是离子晶体;晶体硅的熔点是1410℃、沸点是2355℃可推测是原子晶体等。 3、根据物质的沸点不同对混合物进行分离 如工业上所用的氮气,通常是利用氮气的沸点(-195.8℃)比氧气的沸点(-183℃)低而控制温度对液态空气加以分离制得;石油工业利用石油中各组分的沸点不同,利用控制加热的温度来分离各组分;酿酒工业利用酒精的沸点(78℃)比水的沸点(100℃)低而采用蒸馏的方法分离酒精和水等。

4.应用物质的沸点不同,通过控制反应温度来控制化学反应的 方向 ①高沸点的酸制备低沸点的酸。如用高沸点的H2SO4制备低 沸点的HCl,HF,HNO3等;用高沸点的H3PO4制备低沸点的HBr、HI等。 ②控制反应温度使一些特殊反应得以发生。如:Na+ KCl===NaCl+K,已知Na的沸点(882.9℃)高于K的沸点(774℃),故可以通过控制温度K呈气态,Na呈液态,应用化学平衡移动 原理,反应中不断将K的蒸气移离反应体系,则平衡向右移动,反应得以发生。 ③选择合适的物质做传热介质来控制加热的温度。如果需要100℃以下的温度,可选择水浴加热;如果需要100℃-200℃的温度,可选择油浴加热。 5.解释某些化学现象 ①如为什么有些液体混合时只能将其中一种液体滴入另一 种液体中,而不能反向滴加?这是因为有些液体混合时,会放出大量的热,为防止少量低沸点液体因沸腾而飞溅,应将高沸点的液体滴入低沸点的液体中并不断搅拌。如浓硫酸的稀释,应将浓硫酸慢慢加入水中,并不断搅拌;制乙烯时,应将浓硫酸慢慢滴入乙醇中,并不断搅拌;制硝基苯时,应将浓硫酸慢慢滴入浓硝酸中,并不断搅拌。 ②又如工业上利用电解法冶炼Mg时,为什么不选择MgO为 原料而是选择MgCl2为原料?这是因为MgO的熔点太高(2800℃),

高中化学选修3:物质结构与性质-知识点总结

选修三物质结构与性质总结 一.原子结构与性质. 1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度 越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子 层.原子由里向 外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述 .在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具 有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1. (3).掌握能级交错1-36号元素的核外电子排布式. ns<(n-2)f<(n-1)d

物质熔沸点大小的比较方法

物质熔沸点高低的比较方法 陕西吴亚南主编 物质熔沸点的大小比较通常出现在高考试题中,而关于物质熔沸点的大小比较方法介绍的却又较少,且不集中。现将有关规律一并总结如下。 一、先将物质分类:从物质的晶体类型上一般分为分子晶 体,离子晶体,原子晶体和金属晶体。不同物质类别熔沸点的比较方法不同。一般情况下:原子晶体﹥离子晶体﹥分子晶体 1、对于分子晶体: a、结构相似时,相对分子质量越大分子间作用力越强 其熔沸点越高。如:CH4﹤SiH4﹤GeH4;CH4﹤C2H6﹤C3H8﹤C4H10 b、能形成分子间氢键时熔沸点陡然增高。如:H2O﹥ H2Te﹥H2Se﹥H2S(能形成氢键的元素有N,O,F) c、当形成分子内氢键时熔沸点降低。如:邻羟基甲苯 的熔沸点低于对羟基甲苯 d、对于烃类物质碳原子数相同时支链越多熔沸点越 低。 e、都能形成氢键时要比氢键的数目和强弱。如:H2O ﹥NH3﹥HF

f、组成和结构不相同但相对分子质量相同或相近时极 性越大熔沸点越高。如:CO﹥N2;CH3OH﹥C2H6 g、芳香烃中临﹥间﹥对 2、对于离子晶体:a、要看离子半径的大小和离子所带电 荷的多少,离子半径越小,离子所带电荷越多则离子键越强晶格能越大熔沸点越高。如:NaCl﹤MgCl2<MgO 3、原子晶体:要看原子半径的大小,原子半径越小作用力 越大,熔沸点越高。如:金刚石﹥二氧化硅﹥碳化硅﹥单晶硅 4、金属晶体:比金属离子的半径和离子所带电荷的多少。 如Na﹤Mg﹤Al 二、也可从物质在常温常压下的状态去分析。 常温常压下固体﹥液体﹥气体(熔沸点)如:碘单质﹥水﹥硫化氢 三、易液化的气体沸点较高。 四、注意: 1、熔点高不一定沸点也高。如I2和Hg 2、MgO和Al2O3由于晶格类型不同,氧化镁的熔沸点 高于氧化铝。 3、同主族元素形成的单质熔沸点的变化不能一言概 论。(一般是金属部分从上至下熔沸点降低,非金属 部分从上至下升高,但都有特例)。

元素周期律熔沸点比较

首先,判断元素单质的熔沸点要先判断其单质的晶体类型,晶体类型不同,决定其熔沸点的 作用也不同。金属的熔沸点由金属键键能大小决定;分子晶体由分子间作用力的大小决定;离子晶体由离子键键能的大小决定;原子晶体由共价键键能的大小决定。 所以 第一主族的碱金属熔沸点是由金属键键能决定,在所带电荷相同的情况下,原子半径越小, 金属键键能越大,所以碱金属的熔沸点递变规律是:从上到下熔沸点依次降低。 第七主族的卤素,其单质是分子晶体,故熔沸点由分子间作用力决定,在分子构成相似的情况下,相对分子质量越大,分子间作用力也越大,所以卤素的熔沸点递变规律是:从上到下熔沸点依次升高。 用这样的方法去判断同主族元素的熔沸点递变规律就行了,因为理解才是最重要的。 同周期的话,不太好说了。 通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg Al的熔沸点,则由金属键键 能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:NaH2Te>H2Se>H2S 卤素:HF>HI>HBr>HCI。 同周期比较的话,是从左至右熔沸点依次升高,因为气态氢化物的热稳定性是这样递变的。 另外有时还要注意物质的类型,比如让你比较金刚石、钙、氯化氢的熔沸点,只要知道金刚 石是原子晶体,熔沸点最高,其次是金属钙,最后是分子晶体氯化氢。 还有原子晶体的:比较金刚石、晶体硅、碳化硅的熔沸点,那就要看共价键了,原子半径越小,共价键键能越大,故熔沸点:金刚石>碳化硅>晶体硅。

物质熔沸点比较

物质熔沸点比较 1、对于晶体类型不同的物质,一般来讲:原子晶体>离子晶体>分子晶体,金属晶体(除少数外)>分子晶体。金属晶体的熔点范围很广,一般不与其它晶体类型比较。 2、原子晶体:原子晶体原子间键长越短、键能越大,共价键越稳定,物质熔沸点越高,反之越低。如:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 3、离子晶体:离子晶体中阴、阳离子半径越小,电荷数越高,则离子键越强,熔沸点越高,反之越低。如KF>KCl>KBr>KI,CaO>KCl。 4、金属晶体:金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。5、分子晶体:分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(形成分子间氢键的分子晶体,熔沸点反常地高。如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3OCH3;形成分子内氢键的分子晶体,溶沸点降低。如:邻羟基苯甲醛<对羟基苯甲醛)(1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高,如熔沸点 CO>N2,CH3OH>CH3CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH >C17H33COOH; (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH (CH2)3 CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4 C(新)。芳香烃的异构体有两个取代基时,3 熔点按对、邻、间位降低。(沸点按邻、间、对位降低) 6、物质在相同条件下的不同状态,溶沸点:固体>液体>气体。如:熔点:S>Hg>O2

高中化学各物质熔沸点判断

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似; 还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3.从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。 对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH 4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。

物质熔沸点高低的比较

物质熔沸点高低的比较及应用 一、不同类型晶体熔沸点高低的比较 一般来说,原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体。例如:SiO2>NaCL>CO2(干冰)金属晶体的熔沸点有的很高,如钨、铂等;有的则很低,如汞、镓、铯等。 二、同类型晶体熔沸点高低的比较 同一晶体类型的物质,需要比较晶体内部结构粒子间的作用力,作用力越大,熔沸点越高。影响分子晶体熔沸点的是晶体分子中分子间的作用力,包括范德华力和氢键。 1.同属分子晶体 ①组成和结构相似的分子晶体,一般来说相对分子质量越大,分子间作用力越强,熔沸点越高。例如:I2>Br2>Cl2>F2。 ②组成和结构相似的分子晶体,如果分子之间存在氢键,则分子之间作用力增大,熔沸点出现反常。有氢键的熔沸点较高。例如,熔点:HI>HBr>HF>HCl;沸点:HF>HI>HBr>HCl。 ③相对分子质量相同的同分异构体,一般是支链越多,熔沸点越低。例如:正戊烷>异戊烷>新戊烷;互为同分异构体的芳香烃及其衍生物,其熔沸点高低的顺序是邻>间>对位化合物。 ④组成和结构不相似的分子晶体,分子的极性越大,熔沸点越高。例如:CO>N2。 ⑤还可以根据物质在相同的条件下状态的不同,熔沸点:固体>液体>气体。例如:S>Hg>O2。 2.同属原子晶体

原子晶体熔沸点的高低与共价键的强弱有关。一般来说,半径越小形成共价键的键长越短,键能就越大,晶体的熔沸点也就越高。例如:金刚石(C-C)>二氧化硅(Si-O)>碳化硅(Si-C)晶体硅(Si-Si)。 3.同属离子晶体 离子的半径越小,所带的电荷越多,则离子键越强,熔沸点越高。例如: MgO>MgCl2,NaCl>CsCl。 4.同属金属晶体 金属阳离子所带的电荷越多,离子半径越小,则金属键越强,高沸点越高。例如: Al>Mg>Na。 三、例题分析 例题1.下列各组物质熔点高低的比较,正确的是: A. 晶体硅>金刚石>碳化硅 B. CsCl>KCl>NaCl C. SiO2>CO2>He D. I2>Br2>He 解析:A中三种物质都是原子晶体半径C<Si,则熔点:金刚石>碳化硅>晶体硅,B中应为:NaCl>KCl>CsCl,因为离子的半径越小,离子键越强,熔沸点就越高。因此C、D 正确。 答案:C、D 例题2.下列物质性质的变化规律,与共价键的键能大小有关的是: A.F2、Cl2、Br2、I2的熔点、沸点逐渐升高 B.HF、HCl、HBr、HI的热稳定性依次减弱 C.金刚石的硬度、熔点、沸点都高于晶体硅 D.NaF、NaCl、NaBr、NaI的熔点依次降低 解析:F2、Cl2、Br2、I2形成的晶体属于分子晶体。它们的熔沸点高低决定于分子间的作·力,与共价键的键能无关,A错;HF、HCl、HBr、HI的分子内存在共价键,它们的热稳定性与它们内部存在的共价键的强弱有关,B正确;金刚石和晶体硅都是原子间通过共价键结合而成的原子晶体,其熔沸点的高低决定于共价键的键能,C正确;NaF、NaCl、NaBr、NaI都是由离子键形成的离子晶体,其内部没有共价键,D错。 答案:B、C 例题3.下图中每条折线表示周期表ⅥA~ⅦA中的某一族元素氢化物的沸点变化,每个小黑点代表一种氢化物,其中a点代表的是: A. H2S B. HCl C. PH3 D. SiH4 解析:NH3、H2O、HF分子间存在氢键,它们的沸点较高,即沸点高低关系为:NH3>PH3、H2O >H2S、HF>HCl,对应图中上三条折线。所以a点所在折线对应第IVA族元素的气态氢化物,且a点对应第三周期,所以a表示SiH4。 答案:D 例题4.下列各组物质中,按熔点由低到高顺序排列正确的是: A. O2 I2 Hg B. CO KCl SiO2 C. Na K Rb D. SiC NaCl SO2

高中化学各物质熔沸点判断复习进程

高中化学各物质熔沸 点判断

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似; 还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。 对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。

物质熔沸点的比较

物质熔沸点的比较 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 1.根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点一般是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 一般顺序:原子晶体>离子晶体>分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。 判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,要通过比较离子键的强弱,一般来说,阴阳离子所带的电荷数目越多,离子半径越小,则键能越大,其熔沸点越高。 如MgO>MgCl2>NaCl >CsCl。(一个相同,另一个元素不同) ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4 <GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH >CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH (油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl >CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:正戊烷>异戊烷>新戊烷。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:原子半径越小,金属键越强,熔沸点越高。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 5. 某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如LiNaCl>NaBr>NaI。 通过查阅资料我们发现影响物质熔沸点的有关因素有: ① 化学键,分子间力(范德华力)、氢键; ② ②晶体结构,有晶体类型、三维结构等,石墨跟金刚石就不一样; ③ ③杂质影响:一般纯物质的熔点等都比较高。但是,分子间力又与取向力、诱导力、色散力有关,所以 物质的熔沸点的高低不是一句话可以讲清的。我们在中学阶段只需掌握以上的比较规律。

物质熔沸点、粒子半径大小判断

高中化学物质熔沸点的判断 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2.同主族单质的熔、沸点 从上到下,金属单质的熔点逐渐降低;非金属单质熔点沸点逐渐升高。但碳族元素特殊,即C,Si,Ge,Sn 越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3.同周期中熔沸点规律 ①同周期通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg、Al的熔沸点,则由金属键键能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:NaH2Te>H2Se>H2S;卤素:HF>HI>HBr>HCl。 4.从晶体类型看熔、沸点规律 ⑴不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体 ⑵同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。 ①离子晶体:化学式与结构相似时,离子所带的电荷数越高,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。如KF>KCl>KBr>KI ②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。 ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH

高中化学各物质熔沸点判断

高中化学各物质熔沸点 判断 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似; 还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。 对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。

相关主题
文本预览
相关文档 最新文档