当前位置:文档之家› 臭氧催化氧化法在浓水COD治理方面的应用

臭氧催化氧化法在浓水COD治理方面的应用

臭氧催化氧化法在浓水COD治理方面的应用
臭氧催化氧化法在浓水COD治理方面的应用

Water Pollution and Treatment 水污染及处理, 2019, 7(4), 145-151

Published Online October 2019 in Hans. https://www.doczj.com/doc/7312043326.html,/journal/wpt

https://https://www.doczj.com/doc/7312043326.html,/10.12677/wpt.2019.74021

Application of Ozone Catalytic Oxidation

Process in Concentrated Water

COD Treatment

Zunjie Zhang, Wenqian Zhang, Mingfei Wang, Kaifang Duan, Xudong Li, Baozhu Zhang

Henan Xinlianxin Chemical Industry Group Co., Ltd., Xinxiang Henan

Received:July 17th, 2019; accepted: August 1st, 2019; published: August 8th, 2019

Abstract

In order to deal with the high salinity concentrated water produced by reverse osmosis, a new concentrated water COD treatment device using ozone catalytic oxidation method is built to de-compose COD substances in concentrated water by strong oxidative oxidation of ozone, and the results show that the device is running stably and the effluent COD indicator is qualified.

Keywords

Concentrated Water, COD, Ozone Catalytic Oxidation

臭氧催化氧化法在浓水COD治理方面的应用

张遵杰,张文千,王明飞,段开放,李旭东,张宝珠

河南心连心化学工业集团股份有限公司,河南新乡

收稿日期:2019年7月17日;录用日期:2019年8月1日;发布日期:2019年8月8日

摘要

某公司为处理反渗透产生的高盐度浓水,新建浓水COD治理装置,采用臭氧催化氧化法,利用臭氧的强氧化性氧化分解浓水中的COD物质,取得了良好的效果,结果表明,装置运行稳定,出水COD指标合格。

关键词

浓水,COD,臭氧催化氧化

张遵杰 等

Copyright ? 2019 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.doczj.com/doc/7312043326.html,/licenses/by/4.0/

1. 引言

近年来,随着废水排放量的剧增及外排水质要求的快速提升,传统的污水处理工艺已渐显劣势,其技术性、经济型、高效性及操作难度已难以适应国家污水处理要求[1]。高级氧化技术作为一种新型废水处理方法逐渐兴起,臭氧作为一种强氧化剂被广泛应用。在工业废水处理过程中,臭氧分解产生羟基自由基,通过该基团的强氧化性氧化废水中的有机物。但是研究发现,单一的采用O 3来处理工业废水,效果一般;实际应用中,多采用臭氧与其它工艺联合使用的方法,如臭氧/紫外线,臭氧/超声,臭氧/H 2O 2,臭氧催化氧化等方法。

某公司化工生产过程中反渗透产生的浓水,具有盐度高、COD 含量高的特点,采用一般的细菌生化法进行处理废水中的COD 效果较差;针对高盐废水COD 的处理,采用臭氧/H 2O 2结合臭氧催化氧化工艺来处理废水。臭氧是一种强氧化剂,能够与还原性物质快速反应,且没有二次污染[2] [3];臭氧催化氧化法处理范围广,高效且对反应条件无苛刻要求[4] [5],利用臭氧在催化剂表面产生的羟基自由基[6] [7],去氧化分解水中的低浓度、难处理COD 物质,达到深度去除COD 物质、降低出水色度等目的。

2. 简要工艺流程

浓水COD 处理简要工艺流程见图1。

Figure 1. Schematic diagram of concentrated water COD treatment process

图1. 浓水COD 处理流程示意图

来自二厂、四厂的反渗透浓水、四厂中水浓水进入原水调节池充分混合,通过原水提升泵进入高效沉淀池装置,一次经过混凝区、反应区、絮凝区、沉淀区、pH 调节区,去除总硬度、总碱度、浊度、悬浮物等,后经pH 调解,处理后的水进入中间水池,中间水池的水经过氧化塔供水泵加压进入催化氧化塔(4套,单套设计负荷75 m3/h),在塔内和臭氧在特殊催化剂、双氧水作用下反应,水中的COD 等有机物被氧化为CO 2和H 2O ,处理后的水进产品水池,合格的产品水由外输水泵送往二厂、四厂回用。

高效沉淀池中沉淀区底部经刮泥机排出的泥,由污泥回流泵加压一路回流至反应区,一路送离心机离心分离脱水,分离出来的水经输送泵送至原水池,产生的泥饼外运。

氧化塔内的气液混合物进气液分离器,后经尾气处理装置处理后经由尾气排放装置排入大气。

Open Access

张遵杰等3. 装置概况

浓水COD处理装置分为两个单元:硬度去除单元和HPOD(深度氧化技术)臭氧氧化单元。其中硬度去除单元主要目的是去除水中钙镁等离子,防止结垢,堵塞后续氧化塔内臭氧分布器喷头,包含原水调节池、高密度沉淀池、中间水池、预处理加药装置、污泥处理设施;HPOD臭氧氧化单元,主要目的是氧化水中有机物,降低COD,包含臭氧发生装置、浓水氧化处理装置。

3.1. 硬度去除单元

3.1.1. 原水调节池

为均衡水质、水量设置地下调节水池1座。各个工段送至浓水界区的浓水进入原水调节池充分混合,调节池设置COD检测仪器,用于检测混合水质的COD含量,调节池出水经过离心泵送至高效澄清池。

3.1.2. 预处理加药

新建预处理加药间一座,用于储存、制备向高效澄清池内投加的絮凝剂、助凝剂、酸、石灰。

预处理化学药剂投加及储存设备放置在加药间内。包括石灰筒仓、石灰溶解箱、辅助水箱、盐酸罐、絮凝剂罐、PAM一体化加药装置等设备。

所需的盐酸和FeCl3溶液由罐车配送,贮存于两个玻璃钢储罐内;石灰和PAM溶液购买固体药剂在现场配置。

絮凝剂加药:使用计量泵从絮凝剂加药设备向高效沉淀池混凝区内投加絮凝剂。絮凝剂选用液体聚合氯化铁,设计混凝池内絮凝剂投加量约20~40 mg/L,后混凝池内絮凝剂投加量约3~5 ppm。

助凝剂加药:使用计量泵向高效澄清池絮凝池内投加助凝剂。系统采用PAM作助凝剂,投加助凝剂增强混凝效果,提高沉淀效率。为避免对后续膜产生影响,絮凝池内投加量约0.1~0.5 ppm,浓度0.1‰。

石灰加药:设置石灰筒仓,储存干燥的石灰粉末,利用小型计量传送装置将石灰输送到石灰溶解箱配置石灰乳液,使用加药泵将石灰乳液投加到高效沉淀池混凝区;利用石灰去除水中硬度和碱度。混凝池内石灰投加浓度5%~10%。

酸加药:设置盐酸玻璃钢储罐,储存浓盐酸;利用盐酸计量泵在后混凝池中投加液体酸从而调节高效沉淀池出水PH值至中性。

3.1.3. 高效澄清池

原水调节池出水经原水泵提升至高效澄清池。高效澄清池分为混凝区、反应区、絮凝区、澄清区和PH调节区。

在高效澄清池工艺中,由于混合反应池和斜管填料的独特设计,从而使絮凝和沉淀的效果得到极大提高,此工艺在较高的斜管表面负荷下仍然能得到极好的出水水质。

混凝区:污水在高效澄清池的前部的混凝池中进行混凝反应,投加的铁盐作为混凝剂同污水中的污染物质反应形成絮凝体。混凝过程是整个浓水装置处理系统的关键,混凝过程会去除浓水中大部分悬浮颗粒、BOD或COD物质。

反应区:污水经过混凝反应后,进入反应池,通过投加石灰来去除以钙硬为主的水质硬度。

絮凝区:絮凝是一种物理机械过程,在搅拌过程中,絮凝体由于分子间的作用力不断地聚集增大从而利于沉淀[8]。投加的高分子助凝剂在絮凝过程中作为混凝剂的助凝剂,起到吸附架桥作从而提高絮凝效果。絮凝池内包含筒状导流筒,筒壁下方的十字旋流板,搅拌器等。

张遵杰等

澄清区:沉淀池包括进水区及扩展沉淀区、污泥回收区和斜管澄清区。污泥循环采用专门的污泥泵,污泥的回流可以避免过量投加药剂而导致后续的砂滤池的堵塞。污泥循环系数0.01~0.05,流量可调。斜管澄清区由如下部分构成:1套斜管、配套的支撑系统和澄清水收集系统。

后混凝区:在沉淀池的出水在进入滤池之前,通过重力流流入后混凝反应池。在池内投加酸以调节pH值和投加混凝剂以增强滤池的过滤效果。

中间水池:设一座中间水池,高密度沉淀池出水进入中间水池,再利用泵将水送到氧化塔内。

3.1.

4. 污泥处理设施

污泥处理系统包括污泥池及污泥脱水间。高效沉淀池的间歇排泥,首先进入污泥池,然后经污泥螺杆泵提升至离心脱水机脱水后外运。

来自高效澄清池的剩余污泥在污泥储存池内储存并混合,然后由进泥泵输送到离心机进行脱水。

3.2. HPOD (深度氧化技术)臭氧催化氧化单元

HPOD系统属于一种高级氧化技术,它是利用臭氧在催化剂表面产生的羟基自由基,去深度氧化分解水中的低浓度、难处理COD物质,达到深度去除COD物质、降低出水色度的目的。

HPOD系统主要由臭氧发生机组和HPOD反应组件组成,其中臭氧发生器采用纯氧源臭氧发生机组,HPOD反应组件由二级氧化室组成,第一级为多级逆流异相催化氧化室,第二级为气路循环催化氧化室,各级氧化室内装有高效催化剂。

HPOD系统主要由臭氧发生机组和HPOD反应机组构成。

3.2.1. 臭氧发生机组

臭氧发生机组主要由空气净化装置和臭氧发生器组成,本工程采用13 kg/hr纯氧源臭氧发生器机组2套。

3.2.2. HPOD反应机组

1) HPOD反应器

浓水经提升泵加压到0.15 MPa以后,进入到HPOD反应机组中的氧化塔反应器中,废水和H2O2从氧化塔上部进入,臭氧自塔下部通入,通过塔内曝气盘均匀分布,废水中的有机物在催化剂表面与臭氧产生的羟基自由基发生氧化还原反应而被矿化,达到深度除去COD的目的,氧化塔顶部尾气排入尾气破坏装置,处理达标后排放。由于臭氧溶于废水中具有一定的腐蚀性,氧化塔材质采用碳钢内衬PO (聚烯烃共聚物)。

在HPOD系统进水管路上安装压力变送器,系统进水压力检测数据进HPOD反应器PLC控制系统,用于反应器各水泵、各自控阀门的启停控制,并通过对进水出水的COD的检测,调节臭氧发生器的投加功率,即调节投加的臭氧发生量,在最低能耗的情况下确保出水水质稳定达标排放。

2) 尾气吸收装置

本套系统的臭氧尾气处理采用电加热催化装置进行臭氧破坏处理,以确保尾气中的臭氧浓度能够小于0.1 ppm。

4. 水质概况

根据表1数据可知,浓水经过高密池处理后,COD含量明显下降,碱度、硬度含量下降,COD含量变化及其去除率如图2、图3所示,由图可知,原水COD含量在70 mg/L左右,经过高密池、氧化塔处理后,COD含量下降到20 mg/L左右。

张遵杰等Table 1. Raw water and treated water quality analysis data

表1.原水及经过处理后的水质分析数据

日期

原水/高密池进水高密池产水/氧化塔进水水氧化塔

出水COD

高密池

COD去除率

氧化塔

COD去除率COD 硬度碱度COD 硬度碱度

2018.8.30 62 30.1 27 24.2 21 8.5 13.6 61.0% 43.8% 2018.9.3 90 26 18 44.7 20 11.2 23.1 50.3% 48.3% 2018.9.6 65 24 22.5 34.7 20 10.75 25 46.6% 28.0% 2018.9.10 67 24 29 24.1 20 8.5 20.8 64.0% 13.7% 2018.9.13 63 30.1 24.8 26.6 24 8.25 22 57.8% 17.3% 2018.9.17 73.3 30.1 22.5 35.4 24.1 7.5 18.6 51.7% 47.5% 2018.9.20 75.5 32.1 24 35.7 20 6 18.7 52.7% 47.6% 2018.9.24 77.3 30.1 23 35.7 22 7.5 18.7 53.8% 47.6% 2018.9.27 79 32 23.4 36 21 7.9 19.3 54.4% 46.4% 2018.10.1 72 28 25 33 25 6.7 25.6 54.2% 22.4% 2018.10.4 69.3 26.1 30.4 31.9 20.1 4.02 22.4 54.0% 29.8% 2018.10.8 73.3 20.1 25.6 29.6 25.1 12.1 21.6 59.6% 27.0% 2018.10.12 59 35 26 24 25.3 11.8 18.7 59.3% 38.8% 2018.10.15 53.2 36.2 27.6 24 26.1 9.04 23.4 54.9% 37.5% 2018.10.18 71.3 25.1 25.6 31.6 18.1 8.29 28 55.7% 11.4% 2018.10.22 88 24.1 20 30 25.2 8 24.3 65.9% 19.0% 2018.10.25 92.8 28.1 20 29 20 8 24.3 68.8% 16.2% 2018.10.28 89.2 32 25 30 22 7.9 25.4 66.4% 15.3% 2018.11.1 82.6 30.2 18 27.6 22.1 8.5 25 66.6% 9.4% 2018.11.5 86.8 31.2 25 26.2 22.1 8.25 20.6 69.8% 21.4% 2018.11.8 83.7 29.1 27 29.4 20.1 9.5 28.1 64.9% 4.4% 2018.11.12 75.6 24.1 3.75 24.1 18 1.25 20.7 68.1% 14.1% 2018.11.15 65.5 30.2 30 30.3 26.1 11 21 53.7% 30.7% 2018.11.18 67.5 29 25 31 24.2 10 20.6 54.1% 33.5% 2018.11.21 72 30 26.3 33.2 21.3 9.8 21.3 53.9% 35.8% 2018.11.24 88 29.6 30.2 38.1 20.5 10.4 30 56.7% 21.3% 2018.12.1 75 27.6 22 30.9 19 7.6 22.1 58.8% 28.5% 2018.12.10 62.2 68.3 2.5 28.7 27.1 1 13.6 53.9% 52.6% 2018.12.17 51.6 22.1 21.8 36.2 18.2 8.5 26.5 29.8% 26.8% 2018.12.24 53.6 21 15 29.6 16.1 5 27.7 44.8% 19.9% 2018.12.31 65.5 21.1 22.5 29.3 14.1 6.5 23.5 55.3% 19.8% 2019.1.7 64.2 24.5 34.5 48.2 18 5.5 22.8 24.9% 52.7% 2019.1.14 69.3 17.5 38.7 26.2 13.5 10.8 25.7 62.2% 15.3% 2019.1.21 65.1 17.1 14 36.8 15.1 12 22.5 43.5% 38.9% 2019.1.28 67.8 19.1 17.3 34.2 14.6 10.8 26.4 49.6% 22.8% 2019.2.7 62.6 22.1 16.5 30.8 16.1 11.5 23.4 50.8% 24.0%

张遵杰 等

Figure 2. COD content in raw water, high-density pool and oxidation tower treated water 图2. 原水、高密池产水、氧化塔出水COD 含量

Figure 3. COD removal rate of high density pool and oxidation tower 图3. 高密池、氧化塔COD 去除率

5. 结论

运行结果显示,浓水COD 装置出水水质稳定,目前浓水进水量300 m 3/h ,臭氧投加量160 Nm 3/h ,双氧水投加量30 kg/h ,石灰乳液投加量172 kg/h ,盐酸加入量0.45 kg/h ,混凝剂投加量11.25 kg/h ,助凝剂投加量1.1 kg/h ,,电耗690 kW/h ,岗位共配5人,每年运行365天,每天24 h ;四台催化氧化塔内的催化剂费用共220万,可保证运行5年。详细数据见表2。

Table 2.

Consumption and cost data 表2. 消耗及成本数据

序号 项目 投加量

单位 浓度 每小时消耗量

单位 单价 单位 成本(元/吨水)

1 电 690 kW ?h 0.6 元/kW ?h 1.380

2 混凝剂 15 mg/L 40% 11.25 kg/h 1.2 元/kg 0.045

3 助凝剂 1 mg/L 0.001 1.1 kg/h 15 元/kg 0.055

4 石灰 mg/L 172 kg/h 0.3

5 元/kg 0.201 5 31%盐酸 1.5 mg/L 0.45 kg/h 0.05 元/kg 0.000

6 催化剂 元/吨 0.170 7

氧气(0.3 MPa)

m 3/h

160

m 3/h

0.5

元/m 3

0.267

张遵杰等

Continued

8 污泥量 1.12 吨/h 150 元/吨0.560

9 人工费 5 人0.00057 人42000 元/年0.080

10 双氧水100 mg/L 30 kg/h 1.675 元/吨0.168

合计 2.92

经综合计算,浓水COD治理项目吨水成本为2.92元,每年运行费用为2.92 × 365 × 24 × 300 = 767.4万元;虽然该项目未产生直接经济效益,但是浓水COD治理的环保效益十分可观。

6. 展望

随着环保形势愈来愈严峻,外排水指标将越来越严格,对于可生化性较差的废水,采用细菌生化法无法进一步降低废水中的COD等含量;臭氧催化氧化技术的成功应用,可以进一步降低废水中COD等含量。但是,从该项目可知,臭氧氧化对于低浓度COD的废水,其COD去除率不高,较为单一的臭氧氧化技术存在运行成本高,处理效率低,污泥量大等缺点[9],因此臭氧高级氧化技术的发展研究主要有以下两个方面:

1) 研究如何减少药剂用量,降低药剂成本,减小污泥产量;

2) 研究新型高效催化剂,提高臭氧处理效率,针对低浓度COD废水,进一步降低出水COD浓度。

实际废水处理中,由于水质成分复杂,较为单一的氧化处理技术效果一般;因此,高效的复合高级氧化技术或者臭氧高级氧化与其它工艺联合使用,提高羟基自由基浓度,加快反应速率,降低反应成本是该技术发展的主要趋势[10]。

参考文献

[1]马龙, 王雅杰, 杨成. 废水高级氧化技术研究现状与发展[J]. 环境发展, 2016, 34(6): 52-55.

[2]鲍红贞. 浅谈高级氧化技术在水处理中的应用[J]. 环境科学, 2018(16): 119-120.

[3]李姗姗, 刘峻峰, 冯玉杰. 高级氧化法处理农药废水研究进展[J]. 环工业水处理, 2015, 35(8): 6-10.

[4]Ganiyu, S.O., Hullebusch, E.D.V., Cretin, M., et al. (2015) Coupling of Membrane Filtration and Advanced Oxidation

Processes for Removal of Pharmaceutical Residues: A Critical Review. Separation and Purification Technology, 156, 891-914.https://https://www.doczj.com/doc/7312043326.html,/10.1016/j.seppur.2015.09.059

[5]Oturan, M.A. and Aaron, J.J. (2014) Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and

Applications. A Review. Critical Reviews in Environmental Science and Technology, 44, 2577-2641.

https://https://www.doczj.com/doc/7312043326.html,/10.1080/10643389.2013.829765

[6]刘祖庆, 魏晓波, 王德喜. 臭氧高级氧化污水处理技术综述[J]. 广州化工, 2018, 46(17): 14-16.

[7]黄磊, 唐琪伟, 黄思远, 等. 臭氧氧化技术及其在水处理领域的发展[J]. 净水技术, 2018, 37(增刊1): 106-112.

[8]林永生. 高密度沉淀-沙碳过滤联合处理煤矿废水[J]. 建筑技术发, 2018, 45(5): 64-65.

[9]刘君, 丘敬贤, 黄安涛, 黄献. 高级氧化技术处理难降解有机废水[J]. 中国环保产业, 2019(2): 33-35.

[10]孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017,

68(5): 1743-1756.

知网检索的两种方式:

1. 打开知网首页:https://www.doczj.com/doc/7312043326.html,/,点击页面中“外文资源总库CNKI SCHOLAR”,跳转至:https://www.doczj.com/doc/7312043326.html,/new,

搜索框内直接输入文章标题,即可查询;

或点击“高级检索”,下拉列表框选择:[ISSN],输入期刊ISSN:2332-8010,即可查询。

2. 通过知网首页https://www.doczj.com/doc/7312043326.html,/顶部“旧版入口”进入知网旧版:https://www.doczj.com/doc/7312043326.html,/old/,左侧选择“国际文献总库”

进入,搜索框直接输入文章标题,即可查询。

投稿请点击:https://www.doczj.com/doc/7312043326.html,/Submission.aspx

期刊邮箱:wpt@https://www.doczj.com/doc/7312043326.html,

臭氧发生器在水处理几大领域的应用介绍

臭氧发生器在水处理几大领域的技术及应用 一、食品饮用水处理 臭氧化应用技术最广泛、最成功的领域是饮用水的处理。臭氧用于饮用水处理,除灭菌效果好,无二次污染外,还兼有脱色、除味,去除铁、锰、氧化分解有机物和助凝作用,有的报告指出,臭氧能够消杀水中一切对人体有害的物质。 饮用水的国际标准为细菌总个数、大肠菌群均为零,西方欧美等国都执行这一标准,所以自来水供水公司的臭氧水处理产品应用十分普遍。我国因处发展中,经济上相对落后,饮用水的国家卫生标准为细菌总个数为<100个,大肠菌群<3,而且大多采用漂白粉、加氯和近几年推广的二氧化氯及次氯酸钠发生设备消毒。因为氯消毒会产生氯的衍生物造成二次污染,其中三卤甲烷是直接致癌物质,在欧美的饮用水处理上已逐步淘汰。就目前的国内臭氧发生器价格来说,与二氧化氯、次氯酸钠价格差不多,甚至还低,只是人们的认识水平和设备更新缺乏资金,尚有一个过程。 一九九六年国家卫生部下文件,要求二次供水必须安装消毒设施,有些单位的自备井也必须在水质达标的情况下才允许使用,二次供水的消毒及处理产品,目前只有在二氧化氯、次氯酸钠和臭氧发生器设备中选用,臭氧水处理具有较强的竞争优势,应是一个成熟市场。近几年兴起的矿泉水、纯净水、瓶装水已是臭氧技术产品的必用市场,离开臭氧装备很难达标。 饮用水的处理在使用臭氧设备时,臭氧的投加量一般在1-3mg/L,接触时间10-15min 即可,可作为选型时根据用水量计算参考。《生活饮用水卫生标准》(GB 5749-2006)按照《食品企业通用卫生规范》(GB 14881—1994)的要求,食品生产用水(冰),必须符合《生活饮用水卫生标准》(GB 5749-2006)。 二、游泳池水处理 臭氧化技术用于游泳池水处理技术已十分成熟,欧美等国使用十分普遍,国际比赛游泳池几乎都是采用臭氧技术处理,我国的游泳用水标准要求细菌个数<1000个,大肠菌群<100个,浊度<5,目前主要采用加氯、漂白粉、硫酸铜等消杀手段,在水质达标的同时,又造成二次污染,造成使水质扎眼,刺激皮肤等恶果,特别是液氯使用中潜在威胁很大,一旦泄漏会造成大面积中毒污染,使用中使人提心吊胆。臭氧技术在水质达标的情况下,完全没有以上缺陷,臭氧化水还可消杀体菌以美容,更为经济的是使用中减少或取消了药物消耗,成本降低,水质保质期得以延长,是一笔不小的节约开支。 游泳池水的臭氧处理技术与饮用水处理基本相同,其普及应用有待于经济和认知水平的提高。需要掌握的是,使用臭氧后,室内游泳池基本不用药物辅助,露天游泳池在高温下可能会使部分藻类生长,这是因为臭氧虽然有灭藻功能,但藻类品种繁多,不可能全部杀灭,这种情况一般出现在太阳光强烈的持续高温天气,此时配用少许硫酸铜即可。

2020年臭氧催化氧化计算书

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 一、进水条件 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1pH 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。 二、相关简图 1.1催化氧化填料 催化剂主要特点如下:

(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下: 项目指标单位规格 外观指 标 吸水率% 45% -55% 粒径mm 条形3-6 堆积密度t/m30.45 -0.62 耐磨强度% ≥92% 压碎强度N/cm ≧110 碘值mg/g ≧550 活性金属含量% 3% -4% 性能指COD去除率% 40%-75%

臭氧联合氧化技术在污水处理方面的新进展

臭氧联合氧化技术在污水处理方面的新进展 贾瑞平,陈烨璞 (上海大学理学院化学系,上海200444) 【摘要]介绍了近年来国内外采用臭氧以及臭氧联合氧化技术在污水处理研究方面的新进展。在低剂量和短时间内臭氧难以完全矿化有机物,且分解生成的中间产物会阻止臭氧的进一步氧化。但以其他方法与臭氧联用,可大大促进臭氧分解,提高有机物的去除率。因此臭氧与过氧化氢、紫外线、超声波、光催化以及生物技术等多种手段联用于水处理已经成为目前研究的热点,并取得了显著的进步。 【关键词]臭氧;污水处理;高级氧化;生物处理;联合氧化 水是人类社会得以存在和发展的重要资源。随着人们对水的需求越来越多。污水处理后回用成为解决水资源短缺问题的有效途径。 臭氧是一种强氧化剂。用于污水处理可有效地消毒、除色、除臭、改善水味、去除有机物和降低COD等。因此,近年来臭氧及其与其他手段联合用于处理各种污水的技术获得了迅速的发展。笔者着重讨论了近年来臭氧联合氧化技术用于污水处理方面的新进展。l臭氧氧化法 臭氧是一种强氧化剂,氧化电势为2.07V,与有机物反应时速度快并且可就地生产,原料易得,使用方便,不产生二次污染。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余O3可自行分解为O2。 刘和义等对极难生物降解的呋吗唑酮模拟废水进行了臭氧化处理研究。当模拟废水中呋吗唑酮初始质量浓度为500mg/L,pH128,臭氧投加量2g/L时,BOD5/COD>03,可生化性显著高;臭氧投加量6g/L时,脱色率达100%,CODQ和TOC去除率分别达到95.9%和95.2%。水中有机物基本矿化。卢宁川等采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等采用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0~9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 Y.Chen等研究了臭氧氧化降解水溶液中的2-巯噻唑(2一MT)。当2一MT全部分解时,硫酸盐生成率和TOC去除率分别为24%和2.3%。在实验中,增加臭氧量,则硫酸盐生成率和TOC去除率最大值分别可达48%和16%。实验结果同时也表明,在2一MT的杂环结构中,N、S原子很难被氧化成硝酸盐和硫酸盐。所以2一MT臭氧化的产物还需进一步氧化。 2臭氧联合氧化法 2.1高级氧化技术 利用催化降解技术或光化学方法氧化降解污染物的过程通常称为高级氧化过程(AdvancedOxidationProcessAOP)。与其他传统水处理方法相比,高级氧化技术具有选择性小、反应速度快、可有效减少THMs的生成量、可将THMs的前体物彻底氧化为二氧化碳和水以及对TOC和COD去除效率高等优点。

臭氧冷却水处理

冷却塔循环冷却水专用臭氧处理系统 一、概述: 用臭氧处理循环冷却水在国外始于70年代末,当时,美国环保署发现使用氯消毒会产生多种致癌的氯化有机物,因而限制循环水使用氯消毒,这直接促进了臭氧在美国循环水处理中的的应用。臭氧作为水处理剂,具有操作简单,杀菌能力强,排污量少,既能节水节能,又不用调节水的pH值,不存在二次污染等优点,对循环水的缓蚀、阻垢、杀生等方面均有良好的效果。 我国卫生部门颁布的法规中对臭氧的杀菌作用作了明确的肯定:臭氧是一种广谱杀菌剂,它可杀灭细菌繁殖体和芽胞、病毒、真菌等,可破坏肉毒杆菌毒素。臭氧在水中的杀菌速度较氯快1000倍。而且臭氧使用后,会自己消失的无影无踪,变成氧气,不像其他化学消毒剂那样,还会有残留,这种化学消毒剂的残留,会对我们生活的环境造成很严重的污染。 1. 臭氧处理冷却塔循环水原理 (1)臭氧阻垢:循环冷却水系统中的水垢,是溶于水中的盐类物质由于不断蒸发浓缩而结晶析出形成水垢。一般认为,臭氧不具备分解水垢的能力,但DOE(美国能源部)和NASA(美国国家航空航天局)的研究表明,臭氧具有阻止水垢生成的能力,使用臭氧,水中的总溶解固体可达到1700mg/l,硬度可达到724mg/l(以CaCO3计)而

不结垢,这是常用阻垢剂所不能比拟的。其原因可能是微量硝酸的生成及臭氧具有使碳酸盐向重碳酸盐方向移动的能力。 (2)臭氧防腐蚀:通常认为臭氧是一种强氧化剂,因而具有腐蚀性,但研究及应用表明,臭氧具有防腐蚀性,臭氧抑制腐蚀的机理与铬酸盐缓蚀剂的机理大致相似,主要原因是由于臭氧分解后产生的活泼的原子氧与亚铁离子反应后,在阳极表面上形成一层含γ-Fe203的钝化膜,对金属具有良好的保护作用。NASA的研究表明,使用臭氧后,循环冷却系统中钢铁的腐蚀速度为标准要求的1/2~1/3。 (3)臭氧杀生:臭氧是最强的氧化型杀生剂,是公认的高效无污染杀生剂,在0.1ppm的浓度下,即可有效杀灭病毒及细菌,并能有效地控制循环水中微生物的生长,减轻生物污垢及其引起的垢下腐蚀。同时,能氧化垢层基质中的有机物成分,使垢层失去粘结剂变松脱落,从而起到除垢的作用。 二、工业冷却循环水现状 1、腐蚀——缩短设备寿命 众所周知,在使用化学药剂对工业循环水进行处理的过程中,药剂本身的强腐蚀性给工业机组带来不可避免的腐蚀,减少了设备的使用寿命。 《工业循环冷却水处理规范》(GB50050-2007)将碳钢设备的腐蚀速率设定为“应小于0.075mm/a”,将延长设备使用寿命1.67倍,降低设备折旧率,延长检修周期。

催化臭氧技术

一、水处理催化臭氧技术 催化臭氧技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。催化臭氧化按催化剂的相态分为均相催化臭氧化和多相催化臭氧化,在均相催化臭氧化技术中,催化剂分布均匀且催化活性高,作用机理清楚,易于研究和把握。但是,它的缺点也很明显,催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相催化臭氧化法利用固体催化剂在常压下加速液相(或气相)的氧化反应,催化剂以固态存在,易于与水分离,二次污染少,简化了处理流程,因而越来越引起人们的广泛重视。 1催化臭氧化 对于催化臭氧化技术,固体催化剂的选择是该技术是否具有高效氧化效能的关键。研究发现,多相催化剂主要有三种作用。 一是吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。 二是催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。 三是吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果[3]。在多 相催化臭氧化技术中涉及的催化剂主要是金属氧化物(Al 2O 3 、TiO 2 、MnO 2 等)、 负载于载体上的金属或金属氧化物(Cu/TiO 2 、Cu/Al 2 O 3 、TiO 2 /Al 2 O 3 等)以及具有 较大比表面积的孔材料。这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生。臭氧催化氧化过程的效率主要取决于催化剂及其表面性质、溶液的pH值,这些因素能影响催化剂表面活性位的性质和溶液中臭氧分解反应[4]。 1.1 (负载)金属催化剂 通过一定方式制备的金属催化剂能够促使水中臭氧分解, 产生具有极强氧

均相催化臭氧氧化设备处理染料废水技术

均相催化臭氧氧化设备处理染料废水技术 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处=理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

臭氧水处理技术及其应用

环保水处理工程就找“武汉格林环保" 臭氧水处理技术及其应用 高浓度污水,并存在大量难分解化学物质的条件下,仅依靠一个处理单元,或者通过单纯一种工艺,很难获得处理效果。而需要将稳定结构的长链分子切断,降解到容易生化处理的低分子,甚至直接分解,才能实现达标排放或者再生水回用。某公司在长期的水处理实践中,深刻感受到依靠高强度的氧化手段的必要性,并通过长期的技术引进、自主技术研发,已经完善了拥有独立知识产权的臭氧MB—AOP水处理技术。 臭氧MB—AOP是什么? 臭氧MB—AOP是是一种臭氧高级氧化法水处理技术。一种由氧、微纳米气泡、以及UV、过氧化氢、超声波、光触媒单项或并用构成的促进氧化水处理方法。 1、臭氧 臭氧是自古以来存在于地球大气中的一种气体。大气中的臭氧层遮挡着紫外线的照射,微量的臭氧杀菌消毒,净化着空气,是保护绿色地球的天使。

环保水处理工程就找“武汉格林环保" 臭氧是一种强氧化剂(氧化电位2.1V),氧化能力高于二氧化氯(氧化电位1.5V)、过氧化氢(氧化电位1.77V)等常用氧化剂。臭氧既可以直接与水中接触物质产生氧化反应,同时也可以与水反应,生成更具有氧化能量的OH-自由基等活性物质。2 (左边是微纳米气泡浮游于水中,在水中破裂。右为传统方法的混合气泡,上升很快,在水面破裂) H2O+O3=2.OH+O2 因此,臭氧具有极强的氧化降解水中有机物质、直接破坏细菌病毒细胞膜的杀菌消毒、氧化分解恶臭成分,去除异味作用。 2、微纳米气泡(MB=Microbubble) 微纳米气泡没有明确的定义。一般而言指的是气泡直径小于50μm 的水中超微细气泡。由于气泡直径与常见的气泡不同,而显示出以下特性: (1)上升速度。与通常气泡很快浮出水面不同,微纳米气泡上升速度慢,在水中滞留时间较长。

光催化臭氧氧化法

光催化臭氧氧化法(臭氧紫外线法) 此法是在投加臭氧的同时辅以紫外光照射,其效率大大高于单一紫外法和单一臭氧法。这一方法不是利用臭氧直接与有机物反应,而是利用臭氧在紫外线的照射下分解的活泼的次生氧化剂来氧化有机物。03/UV工艺机理的解释有目前有两种:Okabe认为,当03被紫外光照射时,首先产生游离氧自由基((O),然后,.O 与水反应产生.-OH.03一=hv(310nm)一,O。十OZO,+H2口-> 20H,而Glaze 等人则认为,031UV过程首先产生H202,然后H202在紫外光的照射下分解生成·OH.1目前这一工艺真实可靠的机理还有待进一步深入研究。 Prengle等人在实验中首先发现了03/UV系统可显著地加快有机物的降解速率。之后Glaze等人提出了03与UV之间的协同作用机理。臭氧在紫外光辐射下会分解产生活泼的轻基自由基,再由轻基自由基氧化有机物。因而它能氧化臭氧难以降解的有机物,如乙醛酸、丙二酸、乙酸等。其中紫外线起着促进污染物的分解,加快臭氧氧化的速度,缩短反应的时间的作用。此外,紫外线的辐射还能使有机物的键发生断裂而直接分解。研究证明03/UV比单独臭氧处理更有效,只有在酸性时,臭氧才是主要的氧化剂,中性及碱性时氧化是按自由基反应模式进行的,在03/UV , 03情形下,酚及TOC的去除率随pH值升高而升高,在一定的pH时,三种方法的处理效果为q/UV>03>UV o施银桃等以300 W高压汞灯为光源,研究了紫外光联合臭氧化、单纯臭氧氧化及单纯紫外光照处理400 mg/L的活性艳红K-2BP废水的可行性。结果表明:光催化臭氧化可加速有机物的矿化。在同样时间条件下,三者氧化能力由大至小为:UV/O3>单独O3>单独UV。光催化臭氧化染料过程中,TOC随反应时间的增大而逐渐减小,表明反应过程中有部分有机物逐渐矿化为无机物。TOC虽降低了,但最终TOC去除率仍大

分析催化臭氧氧化技术及部分组成说明

分析催化臭氧氧化技术及部分组成说明 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

臭氧发生器在养殖水处理中的作用

水处理臭氧发生器真是功能强大、用途广泛,不仅在饮用水处理、泳池水处理、工业废水处理发挥着重要作用,水处理臭氧发生器还可以用于养殖水处理。 应用臭氧消毒游泳池水在国外十分普遍。经臭氧消毒后,游泳池池水清澈透明,彻底解决了氯消毒刺激眼睛、皮肤的问题。我国有部分经济发达地区也采用臭氧消毒游泳池水,效果较好。 给小区分质供水,必须使用臭氧消毒灭菌,只有这样才能保证饮用水时刻处于无菌富氧状态。 臭氧分解后能产生氧气,既可改善食用水生生物的生存质量,又能对其生存场所杀菌消毒。不过臭氧浓度应避免高于0.1mg/L,因为它有害于水生生物。 采用臭氧消毒灭菌不存在任何对人体有害的残留物(如用氯消毒有致癌的卤化有机物产生),对提高饮用水的消毒质量问题非常有效。 地表水中含有各种有机、无机以及各种细菌、病毒。地表水用臭氧进行深度处理后,基本上可以达到优质饮用水标准。有实验表明水中臭氧浓度在0.4ppm时,只需一分钟就可以将细菌和病毒全部杀死,它杀病毒比杀菌的速度更快。经过臭氧深度处理的饮用水的质量很高,可以防止微生物在管道内生长,保护了人体的健康。若是只用紫外消毒杀菌,只能透过一定厚度的水层,消毒杀菌不彻底,而用臭氧就能彻底解决问题。臭氧若是结合紫外对饮用水消毒杀菌,效果比单独用任何一种方法更好,还能节省能耗。

利用臭氧对自来水直接消毒则要简单得多,所需臭氧浓度也小得多。不过,臭氧极易分解,在它们的终端都还需要加少许余氯,以防止细菌在配水管网内的再度滋生。 臭氧化处理养殖水,对鱼、虾、蟹类的生长极为有利,经济效益也非常明显,在欧美已广为采用。养殖水因富含有机物,水质很容易出问题,细菌病毒鱼虾类的细菌传播也十分猖狂,近几年沿海诸多养虾池绝产和大量荒废正是因此形成。 臭氧在养殖水处理中,除了灭菌和抑制病毒菌对鱼虾的感染、传播外,还可以分解有机物,去除COD、BOD物质,又因其助凝作用,

臭氧技术在水处理中的应用

臭氧技术在水处理中的应用 李亮,李燕 中国矿业大学江苏省资源环境信息工程重点实验室,江苏徐州(221116) E-mail:liqiliang1234@https://www.doczj.com/doc/7312043326.html, 摘要:臭氧作为一种强氧化剂,在水处理中得到了广泛的应用。综述了各种臭氧高级氧化技术的研究进展,包括臭氧氧化技术、臭氧/紫外辐射、臭氧/过氧化氢、臭氧/超声波、臭氧/活性炭、催化臭氧化、臭氧与混凝处理联合等技术,并提出了目前臭氧技术存在的问题,最后展望了该技术未来的发展趋势。 关键词:臭氧;高级氧化;臭氧联用技术 1. 引言 臭氧(O3)是强氧化剂、杀菌消毒剂、催化剂、脱色剂和除臭剂。臭氧技术是治理环境和水质污染的关键技术,是二十一世纪环境科学四大关键技术之一,普遍应用于空气、水、物体表面的消毒以及油烟净化等方面。该技术的核心环节是通过特定的电场实现无声放电而产生大量的臭氧气体,在此过程中,高能电子与气体分子碰撞时发生一系列基无物化反应并将气体激活,产生多种活性自由基,从而对多种有害物质、细菌病毒等发生催化、氧化和分解,而转为无毒的副产物,达到真正消毒、洁净的目的。 在水处理方面主要应用于水厂、水塔、水箱、蓄水池、游泳池及污水处理。臭氧应用特点:氧化能力强,反应速度快;对细菌,病毒、芽胞、软体微生物等有极强的杀灭作用;氧化农药毒素,降低水中BOD、COD;臭氧的原料取自空气中的氧,完成工作后又还原成氧,增加水中溶解氧,没有二次污染;可改善水的理化性质,有良好的脱色、除臭、除异味作用;用臭氧消毒杀菌不会产生有毒的三氯甲烷及致癌有机卤化物副产品,不存在任何对人畜有害的残留物。 2. 臭氧氧化技术 臭氧的氧化电位为2.07V,氧化能力仅次于氟[1]。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余的O3可自行分解为O2。 卢宁川等[2]采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等[3]噪用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0-9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 3. 臭氧联合技术 目前,单独使用臭氧氧化技术处理废水仍存在一些问题。一方面,臭氧与有机物的反应选择性较强,在低剂量和短时间内,臭氧不可能完全矿化污染物,且分解生成的中间产物会阻止臭氧的进一步氧化[4]。另外臭氧的发生成本高,利用率偏低,导致处理费用高。因此对提高臭氧的利用率和氧化能力这方面的研究,是目前国内外的热点。

水处理应用臭氧的知识

臭氧几乎在瞬间以高速杀死水中的细菌、病毒和其他微生物。水中有机化合物等污染物的分解完全,没有二次污染。这是世界上臭氧应用最重要的领域。 水是传染病的主要媒介。据调查,农村地区50%的疾病是由饮用水污染引起的。臭氧是国家提倡的水消毒的首选,可以去除水中的重金属和其他成分。不会产生致癌的卤化氯,也不会产生二次污染。 杀菌力强,速度快。臭氧杀死普通大肠杆菌的速度是氯的数百倍,对原核生物中的病毒和细菌具有有效的杀灭作用。臭氧可以防止有机污染物的积累,改善水质,脱色和杀灭病原微生物。处理后的水可以有效防止传染病的传播。臭氧能有效减少水中污染物,减少氯副产物(一氯胺、二氯胺、三氯胺、三氯甲烷等)的形成。),并确保游泳者的健康。在处理过程中,游泳池水中残留的臭氧不会超过安全限值,空气可以消毒净化,使室内空气清新舒适。 臭氧是一种优良的强氧化剂,在水处理中可以氧化水中的各种杂质,从而达到净水的效果。同时,臭氧是一种非常有效的消毒剂,可以高效、快速地杀灭细菌和病毒,不会造成二次污染。 臭氧杀菌装置可以对生物卵、养殖水和设施进行杀菌,从而防止病原体的入侵。臭氧杀菌净水效果强,无毒无害。是水产养殖和种苗生产中最理想的杀菌净化剂。这对防治鱼、虾、海胆、河蟹、甲鱼等生物病害,改善水产养殖生态环境具有重要意义。 水是人类社会生存最重要的物质条件之一。作为一个水资源短缺的国家,水资源短缺已经成为制约我国城市可持续发展的重要因素。

臭氧发生器凭借自身在中水回用领域的技术和信息优势,在废水回用方面形成了一系列操作简单、满足多层次用户需求的经济实用的工艺和设备。 工业循环冷却水使用后。Ca2、Mg2、CI等离子体、水中溶解固体和悬浮固体相应增加。空气中的灰尘、杂物、可溶性气体、换热器材料泄漏等污染物都可能进入循环冷却水,造成循环冷却水系统中设备和管道的腐蚀和结垢,导致换热器传热效率降低,水截面积减小,甚至设备管道腐蚀穿孔。循环冷却水系统中的结垢、腐蚀和微生物繁殖是相互关联的。污垢和微生物粘液会导致水垢下的腐蚀,而腐蚀性产品会形成污垢。要解决循环冷却水系统中的这些问题,必须进行综合治理。臭氧可以作为唯一的处理剂来代替其他冷却水处理剂。它能抑制水垢、抑制腐蚀、杀菌,使冷却水系统在高浓度多次甚至零污染排放下运行,从而节水节能,保护水资源。同时,臭氧冷却水处理不会造成任何环境污染。 飞立电器科技有限公司是一家专业从事臭氧消毒设备研发、制造、销售为一体的现代化高科技企业,公司长期秉承“自主研发,掌握核心,以质取胜”的理念,以“质量第一,客户第一”为宗旨,以“现代化的管理,卓越的品质,合理的价格,优质的服务”为承诺,为广大客户提供质优价廉的产品。公司主要研发生产定制:大中小型空气源臭氧发生器、氧气源臭氧发生器、中央系统循环式臭氧消毒机、多功能臭氧消毒柜等;作为一家致力于打造高端品牌的现代化企业,飞立秉承以“宁为价格作解释,不为品质找借口”为宗旨,用具竟争力

臭氧催化氧化计算书

一、进水条件 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1p H 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。 二、相关简图 1.1催化氧化填料 催化剂主要特点如下: (1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2)在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分

在载体表面分散性良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下: 项目指标单位规格 外观指 标 吸水率% 45% -55% 粒径mm 条形3-6 堆积密度t/m30.45 -0.62 耐磨强度% ≥92% 压碎强度N/cm ≧110 碘值mg/g ≧550 活性金属含量% 3% -4% 性能指 标 COD去除率% 40%-75% Rt(水力停留时间)min 30-60 寿命年3~5

臭氧在中水、纯水处理的投加方法

本文取自铨聚臭氧科技有限公司的设备测试 8月水处理投加试题 1、射流器用于储水罐臭氧投加安装方法:(不少于2种)(30分) 2、射流器旁流臭氧投加安装方法(15分) 3、混合泵臭氧投加安装方法:(不少于2种)(30分) 4、混合塔臭氧投加方法(15分) 5、臭氧曝气混合投加(10分) 以上问题要求: A、画图 B、文字描述投加方法 C、分析该种方法的优缺点 D、下午5点钟断网开考 E、用WORD完成以上考试,完成后方可下班。 F、80分以下罚扫厕所1次 1. 射流器混合法 运行方式---射流法是在射流器内的气腔在高速水流作用下形成负压,吸进臭氧气体,高速水流再把臭氧气体粉碎,形成微气泡而与水充分接触混合。采用射流法混合臭氧的效率一般为25-40%。 出水

注意事项: a安装止回阀并确保臭氧输送管最高处高于储水罐顶50CM以上,以防回水。 b射流器最好的应用方式是和反应罐连用,增压泵从反应罐下部一侧进水供给射流器,射流器的出水从反应罐的下侧的切面方向再进入反应灌,循环投加臭氧,且水流带有臭氧气泡在储水罐内螺旋式上升,增加了混合效率。 c送水管道应采用PVC、不锈钢等耐氧化的材质,增压泵应选用不锈钢材质。 优点:投资少,混合好,接触时间短,混合率为曝气法的数倍,是主流的混合方法。 缺点:混合率利用率处于中下。停止工作时,水箱压力过大会有回水机器情况。 出水 运行方式---射流法是在射流器内的气腔在高速水流作用下形成负压,吸进臭氧气体,高速水流再把臭氧气体粉碎,形成微气泡而与水充分接触混合。采用射流法混合臭氧的效率一般为25-40%。 优点:投资少,混合好,接触时间短,混合率为曝气法的数倍,是主流的混合方法。

利用臭氧发生器制取的臭氧在冷却水处理方面的应用

利用臭氧发生器制取的臭氧在冷却水处理方面的应用[摘要]本文主要阐述了臭氧发生器用于制取臭氧,在冷却水水处理方面的作 用,比较利用其他原料处理冷却水上的优点及缺点,以及应用臭氧发生器在冷却水处理方面应注意的问题。 【关键词】臭氧发生器;臭氧;冷却水处理 臭氧发生器是用于制取臭氧的设备装置。臭氧易于分解无法储存需现场制取现场使用(但是在特殊的情况下是可以进行短暂时间的储存),凡是能用到臭氧的场所均需使用臭氧发生器。臭氧发生器在自来水,污水,工业氧化,空间灭菌等领域广泛应用。其通电把氧变成臭氧。 臭氧发生器中广泛使用,但制造成本较高。按臭氧发生器结构划分,有间隙放电式(DBD)和开放式两种。间隙放电式的结构特点是臭氧在内外电极区间的间隙内产生臭氧,臭氧能够集中收集输出使用其浓度较高,如用于水处理。开放式发生器的电极是裸露在空气中的,所产生的臭氧直接扩散到空气中,因臭氧浓度较低通常只用于较小空间的空气灭菌或某些小型物品表面消毒。间隙放电式发生器可代替开放式发生器使用。但间隙放电式臭氧发生器成本远高于开放式。 那么下面我们主要讲解下用臭氧发生器制取来的臭氧用于冷却水处理方面的用途。 臭氧是世界公认的广谱高效杀菌消毒剂。采用空气或氧气为原料利用高频高压放电产生臭氧。臭氧比氧分子多了一活泼的氧原子臭氧,化学性质特别活泼,是一种强氧化剂,在一定浓度下可迅速杀灭空气中的细菌。没有任何有毒残留,不会形成二次污染,被誉为“最清洁的氧化剂和消毒剂”。 臭氧仅作杀菌剂,臭氧是一种氧化性很强但又不稳定的气体。在水溶液中,臭氧保持着很强的氧化性。在许多化学反应中,它很想氯。作为杀菌剂,臭氧的作用机理与其他氧化性杀菌剂有许多相同之处。臭氧可与蛋白质结合,破坏细胞呼吸所不可缺少的还原酶的活性。检验经臭氧氧化后细胞时发现,细菌的细胞因失去了维持生命的细胞质而被破坏。和氯不同的是,用臭氧作杀菌剂不会增加水中的氯离子浓度,当冷却水排放时不会污染环境或伤害水生物,而且臭氧在光合作用下还会分解生成氧。臭氧是通过将氧或干燥空气经过臭氧发生器中的放电管而生成的气体。添加臭氧时,首先应将它溶解在水中,然后把溶液有臭氧的水注入冷却水中。臭氧可以从不同的部位注入冷却水系统。例如可以加入到冷却塔的集中水池中,或加到冷却水循环泵出口的一侧。在较为简单的冷却水系统中,只需在一处加入臭氧就足够了;对于复杂的,有多个支路的体系,则建议在几个不同的部位加入臭氧,使臭氧在水中的分布较为均匀。 在制定臭氧操作过程时,需要考虑的重要参数是:该冷却水系统的工况、水量、补充水和循环水的水质,尤其是化学需氧量和PH值。采用臭氧连续加注发时,所需的臭氧量很小。在进行冷却水处理时,一般认为,除了添加臭氧作为杀菌剂以控制水中的微生物生长外,还需要同时加入阻垢剂和缓蚀剂,以分别控制冷却水系统中的结垢和腐蚀。使用臭氧作为杀菌剂后,可使冷却水系统中不再有生物沉积物生成。原先存在于冷却水系统中的生物沉积物和冷却塔中的藻类,也会随之消失,循环冷却水变得清澈透明,异菌养数也会比以前大大减少,换热器的换热效果则会明显改善。 在冷却水中,臭氧对碳钢和不锈钢没有任何不利的影响,但臭氧对铜和铜合

臭氧催化氧化

化学与环境工程学院水处理高级氧化处理 学号:122209201133 专业:环境工程 姓名: 任课老师: 2015年6月

臭氧催化氧化技术 摘要:近几年臭氧高级氧化技术已在我国各个行业污水处理方面迅速发展,自从“两会” 结束以后,我国更注重环境友好型社会建设,臭氧氧化技术在印染废水、煤化工废水、反渗透浓缩垃圾渗滤液、废乳化液等方面有了深一步进展,取得了很大的进步。 关键词:臭氧氧化技术、工业废水、臭氧利用率 1.臭氧氧化机理 1.1 臭氧性质 臭氧是一种氧化性极强的不稳定气体,须现场制备使用。臭氧是氧气的同素异形体,含有3 个氧原子,呈sp2 杂化轨道,成离域π键,形状为V 形,极性分子。臭氧在常温常压下为淡蓝色气体,水中的溶解度为9.2mlO3/L,高于氧气(42.87mg/L),水中溶解浓度高于20mg/L 时呈紫蓝色。臭氧有很强的氧化性,氧化还原电位为 2.07V,单质中仅低于F2(3.06V)。 1.2 臭氧的氧化机理 臭氧能够氧化大多数有机物,特别是氧化难以降解的物质,效果良好。臭氧在与水中有机物发生反应过程中,通常伴随着直接反应和间接反应两种途径,不同反应途径的氧化产物不同,且受控的反应动力学类型也不同。 (1)直接氧化反应 臭氧直接反应是对有机物的直接氧化,反应速率较慢,反应具有选择性,反应速率常数在1.0~103M-1S-1范围内。由于臭氧分子的偶极性、亲电、亲核性,臭氧直接氧化机理包括Criegree 机理、亲电反应、亲核反应三种。 (2)间接氧化反应 臭氧间接反应是有自由基参与的氧化反应,过程中产生了?OH,氧化还原电位高达2.80V,自由基作为二次氧化剂使得有机物迅速氧化,属于非选择性瞬时反应,反应速率常数为108~1010M-1S-1,氧化效率大大高于直接反应。此外?OH 与有机物发生的反应主要有三种:脱氢反应(Hydrogen abstraction),亲电加成( Electrophilic addition),转移电子(Electron transfer reaction)。 2 臭氧氧化法的影响因素 ⑴臭氧浓度 由于臭氧在水中的溶解度比较小,提高臭氧的浓度能够提高改变臭氧在水中中的溶解平衡,使水中臭氧的浓度上升,进而提高臭氧氧化的效果。 ⑵体系的pH 反应体系的pH对臭氧氧化降解的影响非常大。体系的pH会直接影响以羟基自由基为主的各类自由基的产生。 ⑶体系的温度 体系温度对反应速率有明显的影响,温度升高有助于提高臭氧分子在水溶液中自分解产生自由基的浓度,同时温度提高有助于水溶液的污染物分子与臭氧分子或是自由基的平均分子动能,有利于污染物分子与臭氧分子或是自由基的碰撞,从而提高氧化降解的速率。 3 以臭氧为主体的组合工艺

臭氧催化氧化计算书之欧阳歌谷创作

一、进水条件 欧阳歌谷(2021.02.01) 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1pH 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。

二、相关简图 1.1催化氧化填料 催化剂主要特点如下: (1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2)在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下:

1.2进水方式 臭氧催化高级氧化进水工艺流程 上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。第二段、第三段取水位置分别是第一段出水和第二段出水,同样采用高效臭氧溶气装置投加臭氧,原理与第一段相同。通过三段投加,污水中难降解有机物被充分降解,使污水达到设计标准。接触池内未溶解的臭氧需重新还原变为氧气,避免对大气环境造成污染。在臭氧接触池池顶上设置有臭氧尾气分解处理设施,设计采用热触媒式臭氧尾气处理装置进行处理,将空气中残留臭氧还原为氧气,使尾气处理装置出口处臭氧浓度低于0.1ppm。 相关工程案例平面简图如下: 内部构造简图如下: 三、主要构筑物计算

臭氧在水处理中的应用

臭氧在水处理中的应用 臭氧(O3)技术于1905年应用于水处理,随着相关技术的进步,臭氧化法成本的降低,被普遍认为是很有发展前景的水处理方法。臭氧具有极强的氧化性,其氧化作用机理目前尚无肯定的研究结论,通常认为主要来自臭氧离解的·OH自由基,它是发生在水中的已知氧化剂中最活泼的氧化剂,它很容易通过基型反应将各种类型的有机物氧化。·OH自由基还可与其他物质如苯衍生物等形成二次氧化基,它还能将碳酸盐或重碳酸盐离子氧化成可起三次氧化剂作用的碳酸根或重碳酸根,臭氧分子可离解成过氧化物高子的过羟基]。 1 臭氧化法的主要工艺 O3水处理工艺类型很多,主要有以下几种类型:①O3+生物活性炭法,②O3+混凝法,③O3+活性炭吸附法,④O3+活性污泥法,⑤O3+膜处理法,⑥O3+超声波法。 O3+生物活性炭法主要过程是:先往水中投加臭氧,其强氧化性使复杂有机物分子断链成小分子,从而易于生物降解,同时提高了水中溶解氧浓度。然后再进人生物活性炭装置,易降解有机物被活性炭富集,经好氧微生物氧化分解为CO2和H2O等。该工艺的特点是臭氧预处理提高了废水的可生化性,有机物的富集和富氧提高了生化反应速度;活性炭上的有机物生物降解又可恢复活性炭吸附性能。O3+混凝法基于O3对亲水性物质强烈的破坏力,当亲水性物质转变成疏水性时,混凝沉淀效果将大大改善。O3+活性炭吸附法是指:由于活性炭微孔孔隙小,限制了对大分子物质的吸附,O3可破坏物质分子结构,形成小分子,增大活性炭吸附容量。O3+活性污泥法的作用如同生物活性炭法,目的在于提高废水的可生化性。在O3+膜处理法中,O3常用在超滤(UF)的后处理上。在O3+超声波处理法中,超声功率的增大可增加反应速度,O3通人量增大可加深生物反应程度,提高复杂有机物去除率。 臭氧单元处理主要是催化氧化法,如碱催化氧化、光催化氧化和多相催化氧化等,具体处理方法有:①O3/H2O2,②O3/UV(紫外光),③O3/固体催化剂(金属及其氧化物,活性炭等)。从反应机理看:①属于碱催化臭氧化,②属于光催化臭氧化,③属于多相催化臭氧化。 碱催化臭氧化反应的途径是:通过OH-催化,生成·OH自由基,再氧化分解有机物,·OH基产生过程如下: O3+OH-→·O2+HO2,O3+·O2→O3+O2,·O3+H+→HO3·→·OH+O2 光催化氧化是以紫外线为能源,以臭氧为氧化剂,利用臭氧在紫外线照射下生成的活泼次生氧化剂来氧化有机物,Gary,P·Peyton等认为臭氧光解先产生H2O2,H2O2在紫外光的照射下又产生·OH基,进入·OH自由基循环: O2-+O3→·O3-+O2,O3-+H+→HO3→·OH+O2 利用光催化臭氧化法处理难降解有机物废水时,部分难降解有机物在紫外光照射下,提高了能级,处于激发状态,与·OH基发生羟基化反应,生成易于生物降解的新物质。 多相催化臭氧化是近几年发展起来的新技术,其金属催化的目的是促进O3的分解,以产生活泼的·OH 自由基强化其氧化作用,常用的催化剂有CuO、Fe2O3、NiO、TiO2、Mn等。 2 臭氧化法在水处理中的应用 常见的臭氧化法在水处理中的应用有:微污染源水深度处理,印染染料废水、含酚废水、农药生产废水、造纸废水、表面活性剂废水、石油化工废水等的处理。 .1 微污染源水深度处理中的应用 经净水厂处理的微污染源水,水中有机物经氯化后会形成氯仿(CHCl3)等含氧有机物,常规水处理工艺不能去除有机磷农药和含氮有机物,采用生物活性炭(BAC)工艺就可达到深度处理的目的 源水中所含腐殖质会引起色度,常规方法难以去除。采用纤维TiO2作催化剂的O3+UV催化氧化可有特殊效果,反应接触时间30Min,去除率>92%。所需O3浓度与腐殖质结构有关。

相关主题
文本预览
相关文档 最新文档