当前位置:文档之家› 线性代数 第三章 测验

线性代数 第三章 测验

线性代数 第三章 测验
线性代数 第三章 测验

(1)设n 阶方阵A 的秩r

(A )必有r 个行向量线性无关;(B )任意r 个行向量均可构成极大无关组;

(C )任意r 个行向量均线性无关;(D )任一个行向量均可由其他r 个行向量线性表示

(2)若向量组α,β,γ线性无关;α,β,δ线性相关,则( )

(A )α必可由β,γ,δ线性表示;(B )β必不可由α,γ,δ线性表示;

(C )δ必可由α,β,γ线性表示;(D )δ必不可由α,β,γ线性表示;

(3)设A 为m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是:( )

(A )A 的列向量线性无关;(B )A 的列向量线性相关;

(C )A 的行向量线性无关;(D )A 的行向量线性相关。

(4)设n 元齐次线性方程组AX=0的系数矩阵A 的秩为r ,则AX=0有非零解的充分必要条件是:( )

(A )r ≤n (B )r ≥n (C )rn

(5)设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=B 所对应的齐次线性方程组,则下列结论正确的是:( )

(A )若AX=0仅有零解,则AX=B 有唯一解;

(B )若AX=0有非零解,则AX=B 有无穷多解;

(C )若AX=B 有无穷多个解,则AX=0仅有零解;

(D )若AX=B 有无穷多个解,则AX=0有非零解。

(6)设向量组(Ⅰ):α1,α2,…,αr 可由向量组(Ⅱ):β1,β2,…,βS 线性表示,则( )

(A )当rS 时,向量组(Ⅱ)必线性相关;

(C )当rS 时,向量组(Ⅰ)必线性相关;

7. 已知一个向量组为????

?

???????--=????????????-=????????????=????????????=????????????=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示..

8. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ?++=?++=??++=?

(1) 有唯一解;(2)无解;(3)有无

穷多解,并求通解.

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

2016年线性代数期中考试试卷

2016年线性代数期中考试试卷

A 卷 考试日期: 2016.5 第 2 页 共 9 页 考试时间120分钟 中国民航大学《线性代数》期中试题A 卷 一、填空、选择题(每题3分,共24分) 1、 设自然数从小到大为标准次序,则排列32514的逆序数是_______________ 2、矩阵A =??????????--452301143的伴随阵=*A _______________ 3、矩阵A =??????????-174532321的秩为_______________ 4、若44535231a a a a a j i 是5阶行列式中带正号的一项,则i,j 的值为( ) A 、i=1,j=3 B 、i=2,j=3 C 、i=1,j=2 D 、i=2,j=1

第 3 页共 9 页考试时间120分钟

第 4 页 共 9 页 考试时间120分钟 求444342414226A A A A +-+ 3、设A =??????????--111111111,B =??????????--150421321,求AB 3及B A T 4,求方阵A =???? ??????---011145223的逆矩阵。

第 5 页 共 9 页 考试时间120分钟 三、(8分)计算n 阶行列式 x a a a x a a a x D n .

第 6 页 共 9 页 考试时间120分钟 四、(8分)设100,,421,312A ab A b a T 求=????? ??-=????? ??= 五、(10分)设 .,82),1,2,1(B E BA BA A diag A 求矩阵-=-=*

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数第六章练习题

第六章练习题 一、 填空题 1. 设110100100000110,011,010,020003013000003A B C D ????????????????====???????????????????????? , 在,,B C D 中, 与A 等价的有 ; 与A 相似的有 ;与A 合同的有 . 2. 二次型123113(,,)361139T f x x x X X ?? ?= ? ??? ,它的矩阵是 ,它是 定二次型. 3. 设112 3 32000000,000000a a A a B a a a ????????==???????????? , 则当C = 时, .T C AC B = 4. 参数a 的取值范围是 时,二次型 222123123121323(,,)23224f x x x x ax x x x x x x x =++-+-是正定的二次型. 二、计算与证明题 1. 设二次型123121323(,,),f x x x x x x x x x =+- 1) 写出二次型123121323(,,)f x x x x x x x x x =+-的矩阵; 2) 二次型123(,,)f x x x 是不是正定二次型? 3) 用非退化线性替换X CY =化二次型123(,,)f x x x 为标准形, 并写出所用的线性替换. 2. 已知二次型2212313121323(,,)33484f x x x x x x x x x x x =++++, (1) 写出二次型的矩阵A ; (2)用正交线性替换X QY =, 化二次型123(,,)f x x x 为标准形; (3) 求实对称矩阵B , 使得3 .A B = 3. 实二次型222123123121323(,,)55266f x x x x x ax x x x x x x =++-+-的秩是2, 1)写出二次型123(,,)f x x x 的矩阵表示; 2)求参数a 及二次型123(,,)f x x x 的矩阵特征值;

线性代数期中考试试卷精选文档

线性代数期中考试试卷 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

3、矩阵A =???? ??????-174532321的秩为_______________ 4、若44535231a a a a a j i 是5阶行列式中带正号的一项,则i,j 的值为 ( ) A 、i=1,j=3 B 、i=2,j=3 C 、i=1,j=2 D 、i=2,j=1 5、行列式D 非零的充分条件是( ) A 、D 的所有元素非零; B 、D 至少有n 个元素非零; C 、 D 的任意两行元素之间不成比例; D 、以D 为系数行列式的线性方程组有唯一解。 6、设矩阵A 中有一个k-1阶子式不为零,且所有k+1阶子式全为零,则A 的秩r 必为( )

A 、r=k B 、r=k-1 C 、r=k+1 D 、r=k-1或r=k 7、矩阵A =???? ??????-311432000321的行最简形矩阵为_______________ 8、设A 为2阶矩阵,且2 1=A ,则()=-*-A A 521__________ 二、求解下列各题(每题6分,共24分) 1、计算行列式52222 5222 2522225=D 2、设33511102 4315 2113 -----=D ,记D 的(i,j) 元的代数余子式为ij A ,

求444342414226A A A A +-+ 3、设A =????? ?????--111111111,B =??????? ???--15 042 132 1,求AB 3及B A T 4,求方阵A =?? ?? ? ?????---011145223的逆矩阵。

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

中山大学《线性代数》期中考试卷答案

珠海校区2009年度第一学期《线性代数》期中考试卷 姓名:专业:学号:成绩: 一,填空题(每题3分,共24分) 1.在5 阶行列式中,含有a13a34a51且带有负号的项是________________ 2.设A是3阶方阵,| A |= 1/3 ,则|(3A)-1 + 2A*| = 1 1 0 0 1 1 1 1 3. 5 2 0 0 = : 4 . x c b a = ; 0 0 3 6 x2c2b2a2 0 0 1 4 x3c3b3a3 5 . 已知矩阵A = 1 1 , B = 1 0 , 则AB – BA T = ; 0 -1 1 1 1 0 2 6. 已知矩阵A = 1 k 0 的秩为2 ,则k = ; 1 1 1 2 1 1 1 7. 1 2 1 1 = ; 8. 若A = diag( 1 ,2 ,3 ,4 ) , 则A-1= ; 1 1 2 1 1 1 1 2 二. 判断题(每题2分,共10分) 1. 任一n 阶对角阵必可与同阶的方阵交换。() 2. n 阶行列式中副对角线上元素的乘积a n1a n-1,2…a1n总是带负号的() 3. 若A为n 阶方阵,则(A*)T = ( A T )* () 4. 设A , B 为n 阶方阵,则有(AB)3= A3B3() 5. 设A与B 为同型矩阵,则A ~ B的充要条件是R(A)=R ( B ) ( ) 三,计算下列行列式( 每题8 分,共16 分) -2 -1 1 -1 0 1 0 …0 0 D4 = -2 2 4 8 1 0 1 …0 0 -2 1 1 1 D n = 0 1 0 …0 0 -2 -2 4 8 . . . . . 0 0 0 …0 1 0 0 0 … 1 0 -1 -1 0 四. 已知 A = -1 0 1 且AB = A – 2B , 求 B . 2 2 1

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 7 3 4 111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 1 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 .

线性代数期中考试试题+答案

. .word 资料. .. 一、填空题(共30分,每填对一空得3分) 1、函数23 u xy z =在点(1,1,1)P 处沿方向(1,2,3)有最 大方向导数,最大方向导数等于. 2、设arctan x y z x y -=+,则 z x ?=?22y x y +,

. .word 资料. .. 2 2z x ?=?()2222xy x y -+. 3、函数(,)z z x y =由方程230z x y z e ++-=确定; 则 z x ?=?21z x e -, z y ?=?2 31z y e -.

. .word 资料. .. 4、微分方程d 2d y xy x =的通解为2x y ce =;0d ()d y x y x x x -=>的通解为 ln y x x cx =+. 5、设函数(,)f x y 连续,(,)(,)d d D f x y xy f u v u v =+??, 其中D 由直线0y =,1x =和y x =所围,则 (,)d d D f u v u v =??14,(,)f x y =14 xy +.

. .word 资料. .. 二、单项选择题(共20分,每题4分) 1、设函数(,)z f x y =的全微分d d d z x x y y =+,则点

. .word 资料. .. (0,0)O (D) . (A) 不是(,)f x y 的连续点; (B) 不是(,)f x y 的极值点; (C) 是(,)f x y 的极大值点; (D) 是(,)f x y 的极小值点. 2 、设函数(,)f x y =,则 (B) . (A) (0,0)x f '存在,(0,0)y f '不存在;

线性代数期中考试

工程数学期中考试试卷 化学化工 学院 班(年)级 学号 一、判断下列各题是否正确 1. 若A 、B 是同阶方阵,则(A +B )2 =A +2AB +B 2。 ( ) 2. 矩阵A 、B 的积AB =0,则A =0或B =0。 ( ) 3. 设n 阶方阵A 、B 、C 满足关系式ABC =E ,则BCA =E 。 ( ) 4. 设A 为一任意矩阵,则A +A T ,AA T 均为对称矩阵。 ( ) 5. 设对矩阵A 施行初等变换得到矩阵B ,且已知秩(A )=r ,秩(B )=s ,则r = s 。 ( ) 二、选择题(单选,括号中填所选项前的字母) 1.若方程组?? ???=+=+-=++020209873232321tx x x x x x x 存在非零解,则常数t = ………………( ) (A ) 2 (B ) 4 (C ) -2 (D ) -4 2.设有n 阶方阵A 与B 等价,则 …………………………………………( ) (A) | A | = | B | (B) | A | ≠ | B | (C) 若| A |≠0, 则必有| B |≠0 (D) | A | = -| B | 3.若A 为n 阶可逆矩阵,下列各式正确的是……………………………( ) (A )(2A )-1 = 2 A -1 (B) |2A| = 2 | A | (C) () A A A 1 1*--= (D) (A-1 )T = ( AT )-1 4.设6 1152 10112344 321--=A ,则4A 41+3A 42+2A 43+A 44 = ……………………( ) (A) 0 (B) 1 (C) 2 (D) 3 5.已知可逆方阵??????--=-21731A ,则A =………………………………( )

线性代数期中测验

《线性代数》期中考试题 一、选择题(每题2分,共12分) 1、排列 3465172 的逆序数为 ( D ) A. 7 B. 8 C. 9 D.10 2、若A B 、均为n n ?矩阵,则必有 ( C ) A. A B A B +=+ B. AB BA = C. ()T T T A B A B +=+ D. 111()A B A B ---+=+ 3、已知4阶矩阵,A B 的行列式12341235,,,,,,,A k B m αααααααα= ===,则矩阵 2A B +的行列式2A B +是 ( D ) A. 2k m + B. 9(2)k m + C. 8(2k m +) D. 27(2k m +) 4、已知向量组[]112 3T α=,[]2120T α=,[]3100T α=-,则以下选项正确 的是 ( B ) A. 向量组123,,ααα线性相关; B. 向量组123,,ααα线性无关; C. 123ααα=+ D. 2132ααα=+ 5、若矩阵A 为43?矩阵,且()2r A =,102013101B ????=??-???? ,则 ()r AB 为 ( B ) A. 1 B. 2 C. 3 D. 4 6、设21,ηη是非齐次线性方程组Ax b =的2 ( A ) A. 21ηη+是0Ax =的一个解 B. 212 121ηη+是Ax b =的一个解 C. 21ηη-是0Ax =的一个解 D. 212ηη-是Ax b =的一个解 二、填空题(每题2分,共10分) 1、在行列式12010 010 2101310 D k = -中,当k=___6____时,行列式等于零.

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数期中考试试卷6

线性代数期中考试试卷(06) 一、判断下列各题是否正确 1.1.若A、B是同阶方阵,则(A+B)2 =A+2AB+B 2。 () 2.2.矩阵A、B的积AB=0,则A=0或B=0。 () 3.3.设n阶方阵A、B、C满足关系式ABC=E,则BCA=E。 () 4.4.设A为一任意矩阵,则A+A T,AA T均为对称矩阵。 () 5.5.设对矩阵A施行初等变换得到矩阵B,且已知秩(A)=r,秩(B)=s,则r= s。 () 二、选择题(单选,括号中填所选项前的字母) 1.若方程组? ? ? ? ? = + = + - = + + 2 2 9 8 7 3 2 3 2 3 2 1 x t x x x x x x 存在非零解,则常数t = [ ]。 (A)2(B)4(C)-2(D)-4 2.设有n阶方阵A与B等价,则[ ]。 (A)| A | = | B | (B) | A | ≠| B | (C) 若| A |≠0,则必有| B |≠0 (D) | A | = -| B | 3.若A为n阶可逆矩阵,下列各式正确的是[ ]。 (A)(2A)-1 = 2 A-1(B) |2A| = 2 | A | (C) () A A A 1 1 * - -= (D) (A-1 )T = ( A T )-1 4.设 6 1 1 5 2 1 1 1 2 3 4 4 3 2 1 - - = A ,则4A41+3A42+2A43+A44 = [ ] (A) 0 (B) 1 (C) 2 (D) 3 5.已知可逆方阵 ? ? ? ? ? ? - - = - 2 1 7 3 1 A ,则A=[ ]。 (A) ? ? ? ? ? ? - - 3 1 7 2 (B) ? ? ? ? ? ? 3 1 7 2 (C) ? ? ? ? ? ? - - 2 1 7 3 (D) ? ? ? ? ? ? - - 2 1 7 3 6.设矩阵A、B、C满足AB=AC,则B=C成立的一个充分条件是[ ]。 (A) A为方阵(B)A为非零矩阵(C) A为可逆方阵(D) A为对角阵 7. 4 3 2 1 1 1 1 3 2 1 4 3 4 3 2 4 3 2 1 ) ( x x x x x f= ,则x4的系数是[ ]。 (A) 2 (B) 1 (C) -1 (D) -2 三、计算下列各题

线性代数期末考试试卷 答案合集详解

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ????? ???? ???=01 00 10000001 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数第一章 测试题

一、判断题 (1)标准秩序是指n 个不同元素,各元素间按从小到大的顺序排列( √) (2)在由 n 个元素构成的任一排列中,当某两个元素的先后秩序与标准秩序不同时,就说它们构成了一个逆序( √ ) (3)一个排列中所有逆序的总和称作逆序数( √ ) (4)逆序数为偶数的排列叫做偶排列,逆序数为奇数的排列叫做奇排列( √ ) (5)一个排列中的任意两个元素对换,排列不改变奇偶性( × ) (6)将行列式 nn n n n n a a a a a a a a a D 222211212111 = 的行与列互换,得到行列式 nn n n n n T a a a a a a a a a D 222212111211 = T D 叫作行列式D 的转置行列式( √ ) (7)已知行列式D ,则T D D =( √ ) (8)交换行列式的两行(或列),行列式不改变符号( × ) (9)如果行列式有两行或两列完全相同,该行列式可以不等于0( √ ) (10)行列式中某一行(或列)的各元素有公因子,则可提到行列式符号外面( √ ) (11)行列式所有行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( × ) (12)行列式某行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( √ ) (13)行列式的某一行元素全为零,行列式的值恒为零( √ ) (14)若行列式中有两行(列)的元素对应成比列,行列式的值可能为零,也可能不为零 ( × ) (15)若行列式的某一行(列)的元素都是两数之和,则该行列式可以表示成两行列式之和 ( × ) (16)把行列式的某一行(或列)各元素都乘以同一数k 后,加到另一行(或列)对应元素上去,行列式的值改变( × ) (17)在n 阶行列式中,划去元素ij a 所在的行和列,余下的n-1阶行列式,称为元素ij a 的余子式,记为ij M ,而其代数余子式表示为ij j i M +-)1(( √ ) (18)行列式D 等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 ),2,1( 2211n i A a A a A a D in in i i i i =+++= (19)范德蒙行列式∑≥>≥----= 1112112222121)( 1 1j i n j i n n n n n n x x x x x x x x x x x ( × ) (20)在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(或列)元

相关主题
文本预览
相关文档 最新文档