当前位置:文档之家› 分形燥波特效详细

分形燥波特效详细

分形燥波特效详细

分形燥波特效详细

1/fractal noise分形燥波

2/ fractal type分形模型

3/ noise type 噪波类型

4/ contrast对比度

5/ brightness亮度

6/ overflow溢出

7/transform变换

8/complexity复杂

9/sub settings噪波的子分形变化的相关设置

10/ evolution演变

11/evolution options演变设置

12/opacity透明度

13/blending mode混合模式

14/basic基本

15/ linear线性

16/invert反色

17/allow HDR results允许HDR结果

18/ normal正常

分形与分形艺术

分形与分形艺术 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 “分形” 一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有“破碎”、“不规则”等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的“蜿蜒曲折的一段海岸线”,无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。 图 1 Mandelbrot集合

Mn元素多重分形分析

Advances in Applied Mathematics 应用数学进展, 2020, 9(4), 560-564 Published Online April 2020 in Hans. https://www.doczj.com/doc/7912271369.html,/journal/aam https://https://www.doczj.com/doc/7912271369.html,/10.12677/aam.2020.94067 Multifractal Analysis of Mn Element Ruihua Ma School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan Hubei Received: Apr. 5th, 2020; accepted: Apr. 17th, 2020; published: Apr. 24th, 2020 Abstract The study of the distribution law of geochemical elements is one of the important ways to reveal the law of element mineralization and spatial change. Taking the desert region of Yashan, Xinjiang as an example, two types of minerals are selected, combined with multiple fractals, and multiple fractal moment estimation methods are used to conduct a full analysis of the elements in the soil in the two desert regions. From the aspects of singularity and asymmetric index, the non-elements of the elements are further explored. Linear migration provides a new method and direction for prospecting in the desert areas in the future. From the results, we can see that the distribution of the ore-forming element Mn in the soils of regions I and II has continuous multifractal characteris-tics. Then, by comparing the singular and asymmetric indices of the two regions, we find that the singular and asymmetric indices for the values of area I are larger than area II. It can be inferred that the migration characteristics of area I are higher than area II. Therefore, the multifractal characteristics of the elements have certain significance for ore prospecting in desert areas. Keywords Nonlinear Migration, Multifractal Spectrum, Asymmetric Index Mn元素多重分形分析 马瑞华 中国地质大学(武汉),湖北武汉 收稿日期:2020年4月5日;录用日期:2020年4月17日;发布日期:2020年4月24日 摘要 地球化学元素分布规律的研究是揭示元素成矿及空间变化规律的重要途径之一。以新疆雅山荒漠地区为例,选取两类矿质,结合多重分形,利用多重分形矩估计法对荒漠两地区的土壤中元素进行全量分析,

贝塔系数变动性的多重分形特征及其量化方法_宋光辉

网络出版时间:2014-05-16 13:29 网络出版地址:https://www.doczj.com/doc/7912271369.html,/kcms/detail/11.2242.O1.20140524.2107.001.html 贝塔系数变动性的多重分形特征及其量化方法? 宋光辉1,吴栩1,许林2 (1.华南理工大学工商管理学院,广东广州,510640) (2.华南理工大学经济与贸易学院,广东广州,510006) 摘要:针对CAPM模型中贝塔系数的时变性观点,本文提出了多重分形去趋势 贝塔分析法(MF-DBCA),运用该方法检验上证综合A股指数、上证综合B股指 数、深圳综指、深圳综合A股指数及深圳综合B股指数的贝塔系数变动性,并 对其多重分形程度进行了量化分析,分析了其在投资实践中应用。研究结果表明: 它们的贝塔系数变动性呈现出多重分形特征,上证综合A股指数的多重分形程 度最小,而上证综合B股指数的多重分形程度最大。本文研究为量化系统风险 及利用贝塔投资实践提供了一种新方法,为改进贝塔系数提供了一种猜想。 关键词:贝塔系数;多重分形去趋势贝塔分析法;多重分形特征;量化分析 中图分类号:F830.59文献标识码:A The Multifractal Characteristic of Beta-Coefficient Time-varying and Quantitative Analysis Method SONG Guanghui1 ; WU Xu1 ; XU Lin2 (1.School of Business Administration,South China University of Technology,Guangzhou 510640,China; 2.School of Economics and Commerce,South China University of Technology,Guangzhou 510006,China) Abstract: For time-varying view of the CAPM beta coefficient, this paper presents Multifractal detrended beta-coefficient analysis(MF-DBCA), and the instability betas of the Shanghai Composite A-share Index、Shanghai Composite B-share Index、 Shenzhen Composite Index、Shenzhen Composite A-share Index、Shenzhen Composite B-share Index are tested by this method, and also quantitative analysis on the multifractal degree. The results show that: their beta coefficient exist multifractal characteristics.This paper provides a new method for quantitative analysis on system risk and explaining asset earning power, and proposes suspect of a modified beta- coefficient. Key Words: Beta coefficient; Multifractal detrended beta-coefficient analysis; Multifractal characteristic; Quantitative analysis 基金项目:教育部人文社会科学青年基金项目(13YJC790150);教育部高等学校博士学科点专项科研基金 新教师类资助课题(20120172120050);广东省哲学社会科学“十二五”规划项目(GD13YGL05);中央高校基 本科研业务费专项资金(2013ZB0016)。 作者简介:宋光辉(1961-),男,河南信阳人,教授,博士生导师,研究方向:证券投资与分形市场;吴 栩(1986-),男,四川通江人,博士研究生,研究方向:证券投资与分形市场;许林(1984-),男,江西 上饶人,博士,讲师,硕士生导师,研究方向:数量经济学,证券投资与分形市场等。

趣味数学--分形艺术

神奇的分形艺术:无限长的曲线可能围住一块有限的面积 很多东西都是吹神了的,其中麦田圈之谜相当引人注目。上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。你或许会觉得这个图形很好看。看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。 在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。这样,原来的一条线段就变成了四条小的线段。用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。然后继续对16条线段进行相同的操作,并无限地迭代下去。下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。

当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。 这个神奇的雪花图形叫做Koch雪花,其中那条无限长的曲线就叫做Koch曲线。他是由瑞典数学家Helge von Koch最先提出来的。麦田圈图形显然是想描绘Koch雪花。Koch曲线于1904年提出,是最早提出的分形图形之一。下面我们来看Koch雪花的面积与周长,如下图

周长为次分叉图第4n 设图1三角形周长为31=P ,面积为4 31=A ; 第一次分叉图2;913,3411212A A A P P ??+==面积为周长为 第二次分叉图3 … 面积为 1121211)9 1(43)91(43913A A A A n n --??++??+?+=Λ ]})9 4(31)94(31)94(3131[1{221-+++++=n A Λ Λ,3,2=n 雪花曲线令惊异的性质是:无限长的曲线可能围住一块有限的面积。 ;91431223?????????????? ????+=A A A 面积为Λ ,2,1)34(11==-n P P n n ]})9 1[(4{31121A A A n n n n ---+=,周长为12 334P P ??? ??=

金融时间序列的多重分形分析

金融时间序列的多重分形分析 MULTIFRACTAL ANALYSIS OF FINANCIAL TIME SERIES 指导教师: 申请学位级别:学士 论文提交日期:2014年6月12日 摘要 有效市场假说(EMH)是现代金融市场的基础理论,该理论认为市场的价格反映了市场的全部信息,市场价格的波动之间相互独立而且不可预测,收益率服从随机游走,收益率分布服从正态分布或对数正态分布.但是,现实中的种种限制

因素决定着这一传统的金融理论有着很大的局限性,实际的资本市场并不是传统理论所描述的线性系统,而是一个非线性的系统,这也意味着分形理论开始应用在金融市场. 分形理论则认为金融市场具有明显的分形结构和尖峰厚尾的分布特征,金融时间序列在一定的标度范围内有着持续性与反持续性的特征,而且不同幅度的波动能够表现出多重分形特征.分形理论比有效市场理论更能有效揭示金融市场的波动本质,同时也能更有效地揭示出金融市场的基本规律. 本文选取上证综指(上海证券综合指数)和深证成指(深圳证券成分指数)2005年1月5日至2014年5月22日的每日收盘价的股指收益数据位样本,分别采取R/S、DFA、MF-DFA方法对我国股市的分形及多重分形特征进行实证研究与分析.主要验证了两时间序列的分形及多重分形特征;分析比较了两时间序列的市场有效性特征,通过计算并比较h ?的大小,得出了上海证券市场比深证证券市场有效;分析比较了两时间序列的市场风险,通过计算并比较多重分形谱的宽度α ?,得出了上海证券市场存在的风险比深证证券市场的要大. 关键词:分形;多重分形;广义Hurst指数;市场有效性;市场风险

表面粗糙度数

表面粗糙度理论与标准的发展 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。首先是美国在1940年发布了ASA B46.1国家标准,之后又经过几次修订,成为现行标准 ANSI/ASME B46.1-1988《表面结构表面粗糙度、表面波纹度和加工纹理》,该标准采用中线制,并将R a作为主参数;接着前苏联在1945年发布了ΓOCT2789-1945《表面光洁度、表面微观几何形状、分级和表示法》国家标准,而后经过了3次修订成为ΓOCT2789-1973《表面粗糙度参数和特征》,该标准也采用中线制,并规定了包括轮廓均方根偏差(即现在的R q)在内的6个评定参数及其相应的参数值。另外,其它工业发达国家的标准大多是在50年代制定的,如联邦德国在1952年2月发布了DIN4760和DIN4762有关表面粗糙度的评定参数和术语等方面的标准等。 以上各国的国家标准中都采用了中线制作为表面粗糙度参数的计算制,具体参数千差万别,但其定义的主要参数依然是R a(或R q),这也是国际间交流使用最广泛的一个参数。 2 表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

函数也可以如此美丽-Julia集的分形艺术

函数也可以如此美丽——Julia集的分形艺术 微博:@月绒兔子 前言 大家在高中的时候都学过解析函数吧?说解析函数是不是有点显得太高端了?那好,给你一个y=x的函数,在XY坐标系上画出这个函数的图像。别告诉我你不会啊,这可是拿脚后跟都能画出来的图像啊。 闲话不多说了。首先,先声明下此文并不是给大家讲数学的,也不是专门给理工科童鞋看的。此文的目的就是想让大家知道,有那么一个函数,她是如此的奇幻如此的美丽多变,就像她的名字一样—Julia。然后我们用HTML5的canvas来召唤她。 先来几张Julia的芳容欣赏下: 没错,以上四个图片不是电脑桌面,但是它确实Julia集合(Julia Set)所描绘的抽象艺术。 Julia集简介 我是在一门叫做“高等统计物理”的课程上认识到Julia集的。虽然她的图像非常绚丽多姿,但其实她的真身非常简单,简单到你不敢想象: f(z)=z^2+C 其中,z^2表示z的平方,z和C均为复数(复习一下:复数就是a+ib,a为实部,b为虚部,i就是表示虚部的部分)。 然后我们做以下的迭代: Z1=f(z0) Z2=f(z1)

Z3=f(z2) Z4=f(z3) … 那么当Z0=0,C=0.5时 Z1=0^2+0.5=0.5 Z2=0.5^2+0.5=0.75 Z3=0.75^2+0.5=1.0625 Z4=1.0625^2+0.5=1.62890625 Z5=1.62890625^2+0.5=3.653355… Z6=Z5^2+0.5=14.346860796… 最终Zn趋于无限大。 同理,如果令Z0等于另一个值时,有可能会出现最终Zn收敛于某一值(无限趋近于某一个值),也有可能趋近无穷大,或者趋近无穷小(负值)。 Julia集绘制原理 上面的简介说明了其实Julia集就是一个迭代函数而已,那么,这么美丽的图像是怎么画出来的呢?其实很简单,刚才我有提到过,z和C都是复数,C是常量。 所以,z=x+iy,C=a+ib,图像是以x为横坐标,y为纵坐标绘制的。这么说来,只要随便改变a和b的值,就会出现不同的图案了。 那么图像中颜色是根据什么来的呢? 我们从画布左上角第一个像素(x=0,y=0)开始,这个像素所代表的物理意义就是,当z=0+i0(也就是z=0)时,进行Zn的迭代计算。我们预先设置一个阀值k(例如k=4),当计算到Z10的时候,发现Z10的模大于k了(|Z10|>k),就说明在迭代到第10次的时候发散了。依此类推,如果是计算到Z88的时候|Z88|>k了,就说明迭代到第88次的时候发散了。这时候你就可以按照你的口味来了,你可以设置为发散的越慢(迭代次数越多)颜色越深,发散的越快(迭代次数越少)颜色越浅。当然也可以用冷暖色系来表示。找到形成发散的迭代次数,就可以结束迭代运算了。 当然,有一点是要注意的,这个迭代在计算到很高阶的时候运算量可是会很大的哦,所以一定要设置一个迭代次数的最大值,比如,如果再迭代到300次的时候,|Zn|还没有大于阈值k,那就认为这个点永远不会发散了(可以叫做收敛点),直接停止迭代运算。这点的颜色就按迭代最大值时对应的颜色值来填充。 第一个点的绘制原理就是酱紫。下面就是要遍历所有的点,按照同样的方法让计算机去计算喽。如果你的画布是800x800,那就需要从(x=0,y=0)一直遍历到(x=800,y=800),一共是800x800=640000个点。如果你对你的电脑运算能力有信心的话,就可以利用Julia集绘制高分辨的HD桌面壁纸喽! Julia集的魅力所在 学术界对于Julia集的研究非常广泛,学者们深深被这个集合的美丽和规律所吸引。除了她的多变和美丽外,还有一个神奇的地方(不要跟太多人讲哦),就是她的分形艺术(fractal art)。

两种测度方法表征粗糙表面的效果研究

2006年7月 第7期(总第179期) 润滑与密封 LUBRICATIONENGINEERING July2006 No.7(serialNo.179) 两种测度方法表征粗糙表面的效果研究+ 李刚朱华吕亮 (中国矿业大学可靠性工程研究所江苏徐州221008) 摘要:为了比较结构函数与均方根2种测度方法对粗糙表面的分形表征效果,模拟了具有不同理论分形维数的表面轮廓曲线,然后用结构函数和均方根2种方法对它们进行分形特性表征和分形维数计算,并对表征结果进行了理论分析。研究表明,2种测度方法均具有较好的表征效果。与结构函数测度方法相比,均方根测度方法的分维计算精度高,表征曲线的线性度好,反映分形特征的无标度区间宽,分形表征效果显著。另外,均方根测度方法还具有物理意义明确和分维计算简单的优点。因此均方根测度方法不失为粗糙表面分形表征的一种有效方法。 关键词:结构函数测度;均方根测度;分形表征;粗糙表面;分形维数 中图分类号:’r璐4文献标识码:A文章编号:0254一0150(2006)7一048—3 Study伽theDi仃ere眦esofCharacterizingR0ugh Surfaces耐thTwoFractalDime璐ionMethods LiGanaZhuHuaLvLiang (InstituteofReliabilityEngine秭ng,ChinaUnive瑁ityofMining蛐dTechn010盯,XuzlIouJi舳gsu221008,China)Abs订act:InordertostudytllediH.erenteffectsofcha瑚Lcterizingroughsu商帕es诮thtwofj∞taldimensionmethodsofthestmcturefunctionIm鹅urementandtllemotme船squareme鹊u砘ment,fhcta:I耐ilecunres埘tlldi矗-erenttheoreticaldiⅡIen8ionsweresilrmlated.Theirf圣actalch啪cteIisticsweDechar{lcterizedandftactaldimensionswel_ecalculated.There—sults0fcharacterizationandcalculationwereallalyzed,蚰dgoodf}aetalcharacterization乒托ctsforsinmlatedfhlctalcunreswereobtainedbytwoInethods.Compared诵tllt}lestrIlctu托functionmetIlod,tllerootme肌squaremet}lodhashighercal—culationaccuracyof触ctaldimensions,betterline耐哆offbctalch锄cterizationcurvesandwider瑚ge0fscaleinV撕anceinwhichthef}actalcharacteristicexists.Inaddition,tlIerootme蛐sqllar{emethodpossessesmeadvalltagesofde6nitephysicalmeaningandsimplef}actalcalculation.So,it is蚰硪bctivemetllodfbrf蕊talch啪ct面zationofroughsurfj∞es.K舒words:structurefunc石onmeasurement;rootmeaIlsquare measur啪en£;fmctalcharact翻黯tion;r叫ghsul矗ee;frac—taldimensjon 粗糙表面需要用有效的方法和参数来表征,由于基于统计学的传统表征参数存在尺度相关性,其测量结果随表面轮廓的测量条件如仪器分辨率和取样长度等的变化而表现出不稳定性,因此人们研究用尺度独立的分形参数来表征表面的粗糙度水平和内禀特性。到目前为止,人们已研究了多种计算粗糙表面分形维数的方法,如尺规法、盒计数法、变差法、功率谱法、结构函数法和均方根法等。这些方法各有其特点和适用范围,研究表明¨“o,机加工表面和磨损表面等粗糙表面具有统计自仿射分形特征,盒计数方法不 }基金项目:国家自然科学基金项目(50475164,50225519);江苏省自然科学基金项目(BK2002116);中国矿业大学科研基金资助项目(20058034). 收稿日期:2006—04—20 作者简介:李刚(1979一),男,研究生,主要从事摩擦学理论与设计研究.适合自仿射轮廓曲线的分维计算;功率谱法虽然适合于自仿射分形曲线,但测度一尺度的幂律关系不显著,因而分维计算精度较低;变差法相对于功率谱法的表征效果较好,但不如结构函数法。国外研究认为b“1,结构函数方法具有信息量大、分形表征有效等优点,特别适用于具有统计自仿射分形特征的表面表征,因而自1990年MajumdarA和Bhush肌Bp。引入摩擦学分形研究以来得到了广泛的应用¨“。。均方根方法是葛世荣p1在1997年摩擦学学报上发表的“粗糙表面的分形特征与分形表达研究”一文中提出来的,与结构函数方法相比,该方法具有标度律显著、表征曲线线性度好、无标度区间宽、分维计算精度高和表征直观等特点,因此分形表征效果较结构函数方法显著。为便于人们熟悉和应用该方法,使粗糙表面的表征更加科学、客观,本文作者以结构函数测度方法为比较对象,阐明均方根测度方法表征粗糙表面的有效性。 万方数据

分形与幽默艺术

分形与幽默艺术 分形与幽默艺术 作者:憔悴太子 ── 从赵本山的小品《心病》谈起 摘要表演艺术本身就有着自己的规律与理论。研究分形与幽默,研究分形与表演艺术之间的关系,只不过是从一个从新的角度来进一步了解及研究表演艺术它的自身规律与理论,将原来看到的,还有可能看不到的和遗漏的,或者看不清楚的问题及内容,从理论与技术上进一步进行归纳与升华成为应用价值的东西,从而形成新的规律与理论。并用它来指导表演艺术的编导与表演艺术的实践。从赵本山的小品《心病》谈起, 研究分形与幽默的目的就在于希望本文能起抛砖引玉的作用。 关键词分形自相似性表演艺术幽默 一前言 2003春节晚会上赵本山的小品“心病”(何庆魁先生等撰写),由赵本山、高秀敏、范伟组成的“黄金铁三角” 重新杀回央视,成为最大的看点和亮点。小品“心病”在舞台演出需要的时间很短(网上下载赵本山的“心病”播放时间为13分54秒),然而观众的笑声不断共计有25次之多(除“黄金铁三角”的人物出场时深受观众欢迎,引起观众大笑叫好外,其中还有15次也是大笑与幽默喜剧的高潮),足见其成功之处。他们获得非常好的幽默喜剧效果与巨大轰动效应。该小品最典型的幽默是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”。对于身外之物的“钱”的“心病”上,“医生”治好了“病人”的“心病”,他自己却是同样的“心病”大发其着,而且更为甚之。正是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”才引发了幽默喜剧的效果,也正是这个幽默喜剧情节才引发了一些不必要的争论。其实艺术上的“相似”的故事情节,“相似”表现手法的相互借鉴是无可非议的,因为世界上从时间与空间的整体来看每时每刻不知要发生多少“相似”,“相同”的事情,这是不足为奇的。世界本来就是“分形”的世界。 从现在的观点来看,赵本山的小品“心病”他们获得非常好的幽默喜剧效果与巨大轰动效应,除了他们的表演技巧外,小品剧情的发展与表现技巧都应用了“分形”这一手法。这里我们只不过是从一个从新的角度来进一步了解及研究表演艺术而已。 二分形简介 “分形”(f ractal)这个名词是由美国IBM(International Business Machine)公司研究中心物理部研究员暨哈佛大学数学教授曼德勃罗特(Benoit B. Mandelbort)在1975年首次提出的,其原意是“不规则的,分数的,支离破碎的”物体,这个名词是参考了拉丁文f ractus(弄碎的)后造出来的,它既是英文又是法文,既是名词又是形容词。1977年,他的所撰写的世界第一部关于“分形”的著作“分形:形态,偶然性和维数”(Fractal:From, Chance and Dimension),标志着分形理论的正式诞生。五年后,他又出版了著名的专著“自然界的分形几何学”(The Fractal Geometry of Nature),至此,分形理论初步形成。由于他对科学作出的杰出的贡献,他荣获了1985年Barnard奖,该奖是由全美科学院推荐,每五年选一人,是非常有权威性的奖。在过去的获奖者中,爱因斯坦名列第一,其余的也都是著名的科学家。 分形理论诞生后,人们意思到应该把它作为工具,从新的角度来进一步了解及研究自然界和社会,范围包括所有的自然科学和社会科学领域。[1] (张济忠<<分形>> 清华大学出版社1995年8月第一版绪论pⅧ-Ⅸ) 分形的几个特点: (1) 具有无限精细的结构; (2) 比例自相似性; (3) 一般它的分数维大于它的拓扑维数; (4) 可以由非常简单的方法定义,并由递归,迭代产生等。 这里(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段包含整个分形的信息。第(3)项说明了分形的复杂性,第(4)项说明了分形的生成机制。[2](分形--自然几何.htm)请看图1中的几个图形,它们叫做科赫曲线和科赫雪花曲线,从它的任何一个局部经过放大,都可以得到一个局部和整体自相似的图形。这就是分形几何的一个特点叫做自相似性。并且具有无限精细的结构,即它的全息性。从图1中,可以看出它的生成规律,即其递归过程。[3](分形艺术欣赏.htm)[4](21ic_com

基于W-M分形函数的三维粗糙表面摩擦生热研究

第16卷第3期2018年6月 中国工程机械学报 C H IN E SE JOURNAL OF CONSTRUCTION MACHINERY Vol. 16 No. 3 Jun. 2018 基于W-M分形函数的三维粗糙表面摩擦生热研究 刘宇,邓宏盛,张生芳,沙智华,马付建,尹剑 (大连交通大学机械工程学院,辽宁大连116028) 摘要:将W-M分形函数引人风电制动器制动过程的摩擦生热研究中,根据W-M分形表面形貌的特点及利用其 特有的自相似性,以Matlab软件模拟出粗糙表面的分形曲面形貌.通过Creo软件建立不同分形维数的粗糙表面 模型,运用Abaqus有限元软件分析分形维数、相对滑动速度、施加载荷对粗糙表面制动过程中闪点温度和接触 压力的影响.结果表明:随着分形维数增大,摩擦区域块状热区的数量减少,而点状热区的数量增多;相对速度越 大时,接触区域最顶端的微凸体节点温度也越大,非接触区域温度上升速率也越快;施加载荷增大时,微凸体的 最高闪温点的温度变化幅度不大,但会影响热区的数量大小与次闪温点和非接触点的温度. 关键词:粗糙表面(W-M函数;分形维数;摩擦生热 中图分类号!T H164 文献标志码:A文章编号!1672- 5581(2018)03-0194 - 08 Research on friction heat /en eration o f three dimensional r o u/h surface based on W-M fractal function LIU Y u,DENG Hongsheng,ZHANG Shengfang,SHA Zhihua,MA Fujian?YIN Jian (School of M echanical Engineering,Dalian Jiaotong University,Dalian 116028,Liaoning,China) Abstract:The Weierstrass-Mandelbrot(W-M)fractal function is introduced into the research of friction heat generation in braking process of wind power brake.According to the characteristics of surface morphology of W-M fractal theory and its unique self-similarity,the fractal surface morphology of surface is simulated by using Matlab.The rough surface model with different fractal dimensions is established by Creo software.And the flash point temperature and contact stress in rough process are analyzed under different fractal dimensions,relative sliding velocities and applied loads through finite element software Abaqus.The results show that the number of block hot zone number of dotted hot zone decreases in friction areas as the fractal dimension increases.The relative velocity is,the greater the temperature of the asperity nodes is at the top of the the faster the r ate of temperature rises in the non-contact region.When the applied load increases,the temperature of the highest flash point of the asperity increases little,but t can affect zones and the temperature of the sub-flash point and non-contact point. Key words:rough surface;W-M fractal function;fractal dimension;friction heat 大功率风电制动器具有制动转速高、制动力矩 大的特点,其制动过程中大部分动能通过摩擦作用 转化为热能,制动器摩擦副表面将产生大量摩擦 热.制动闸片由于局部高温和应力集中的原因,材料属性发生改变,造成闸片不均匀摩擦损耗的加 剧,影响了风电制动器的制动性能,并降低了制动 闸片材料的利用率,因此,如能对制动过程中摩擦 接触的微观过程进行深入研究,即可有效预测摩擦 基金项目:国家自然科学基金资助项目(51675075,51475066);辽宁省自然科学基金资助项目(2015020114)作者简介:刘宇"982 ),男,副教授.E5nail:liuyu_ly l2@https://www.doczj.com/doc/7912271369.html, 通信作者:张生芳(1973 ),男,教授,博士生导师.E~mail:zsf@djtu. edu. cn

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

分形和多重分形

第三章 分形和多重分形 分形和多重分形的概念正在越来越多地被应用到科学的各个领域中,它们在本质上描述了对象的复杂性和自相似性。分形和多重分形是不依赖于尺度的自相似的一个自然结果。单一的分形维数不能完全刻画信号的特征,已有例子表明许多视觉差别很大的图象却具有十分相似的分维。实际上通过计算分形维数无法区分单一分形集和多重分形集。为了获得对一个分形更详细的描述,需增加能刻画不同分形子集的参数,因此要引入多重分形理论。 在直观上可将多重分形形象地看作是由大量维数不同的单一分形交错叠加而成的。从几何测度性质的角度,可将多重分形描述为一类具有如下性质的测度μ(或质量分布):对于足够小的正数r ,成立幂律特性αr x B u r ∝))((,并且不同的集对应于不同的a (其中)(x B r 表示某度量空间内以x 为中心,半径 为r 的球),在此意义上,多重分形又称为多重分形测度,它揭示了一类形态的复杂性和某种奇异性。表征多重分形的主要方法是使用多重分形谱)(a f 或广义维数q D 。多重分形谱)(a f 在对多重分形进行精确的数学刻画的同时,通过)(a f 相对a 的曲线为多重分形提供了自然而形象的直观描述,其中a 确定了奇异性的强度,而)(a f 则描述了分布的稠密程度。 §3.1 分形的基本理论 3.1.1 分形理论的基本概念 ㈠ 分形

分形几何学是由Mandelbrot[4]首先提出并发展为系统理论,Mandelbrot 在研究英国海岸线的复杂边界时发现,在不同比例的地图上会测出不同的海岸线长度,这正是欧几里德几何无法解释的。在研究中,他将测量长度与放大比例(尺度)分别取对数,所对应的二维坐标点存在一种线性关系,此线性关系可用一个定量参数-称分形维数来描述。由此, Mandelbrot 进一步发展了分形几何理论,可以产生许多分形集图形和曲线,如Mandelbrot 集、Cantor 集、Koch 曲线、Sierpinski 地毯等,还可描述复杂对象的几何特性。与欧氏几何比较,分形几何主要有以下特点:1) 描述对象虽然很复杂、不规则,但不同尺度上有规则性或相似性。 2) 欧氏几何具有标度,理想的分形具有无限的几何标度,而无特征长度。 3) 欧氏几何描述特征是整数维,而具有分形的复杂曲线,其分维是大于1的非整数,具有分形的表面分维是大于2的非整数。 ㈡ 分数布朗运动 定义3.1 设H 满足10<

相关主题
文本预览
相关文档 最新文档