当前位置:文档之家› 机器人相关外文翻译---机器人技术发展趋势

机器人相关外文翻译---机器人技术发展趋势

机器人相关外文翻译---机器人技术发展趋势
机器人相关外文翻译---机器人技术发展趋势

Robotics technology trends

By : Jim Pinto, San Diego, CA. USA

When it comes to robots, reality still lags science fiction. But, just because robots have not lived up to their promise in past decades does not mean that they will not arrive sooner or later. Indeed, the confluence of several advanced technologies is bringing the age of robotics ever nearer - smaller, cheaper, more practical and cost-effective

Brawn, Bone & Brain

There are 3 aspects of any robot:

?Brawn – strength relating to physical payload that a robot can move.

?Bone – the physical structure of a robot relative to the work it does; this determines the size and weight of the robot in relation to its physical payload.

?Brain – robotic intelligence; what it can think and do independently; how much manual interaction is required.

Because of the way robots have been pictured in science fiction, many people expect robots to be human-like in appearance. But in fact what a robot looks like is more related to the tasks or functions it performs. A lot of machines that look nothing like humans can clearly be classified as robots. And similarly, some human-looking robots are not much beyond mechanical mechanisms, or toys.

Many early robots were big machines, with significant brawn and little else. Old hydraulically powered robots were relegated to tasks in the 3-D category – dull, dirty and dangerous. The technological advances since the first industry implementation have completely revised the capability, performance and strategic benefits of robots. For example, by the 1980s robots transitioned from being hydraulically powered to become electrically driven units. Accuracy and performance improved.

Industrial robots already at work

The number of robots in the world today is approaching 1,000,000, with almost half that number in Japan and just 15% in the US. A couple of decades ago, 90% of robots were used in car manufacturing, typically on assembly lines doing a variety of repetitive tasks. Today only 50% are in automobile plants, with the other half spread out among other factories, laboratories, warehouses, energy plants, hospitals, and many other industries.

Robots are used for assembling products, handling dangerous materials,

spray-painting, cutting and polishing, inspection of products. The number of robots used in tasks as diverse as cleaning sewers, detecting bombs and performing intricate surgery is increasing steadily, and will continue to grow in coming years.

Robot intelligence

Even with primitive intelligence, robots have demonstrated ability to generate good gains in factory productivity, efficiency and quality. Beyond that, some of the "smartest" robots are not in manufacturing; they are used as space explorers, remotely operated surgeons and even pets – like Sony's AIBO mechanical dog. In some ways, some of these other applications show what might be possible on production floors if manufacturers realize that industrial robots don't have to be bolted to the floor, or constrained by the limitations of yesterday's machinery concepts.

With the rapidly increasing power of the microprocessor and artificial intelligence techniques, robots have dramatically increased their potential as flexible automation tools. The new surge of robotics is in applications demanding advanced intelligence. Robotic technology is converging with a wide variety of complementary technologies – machine vision, force sensing (touch), speech recognition and advanced mechanics. This results in exciting new levels of functionality for jobs that were never before considered practical for robots.

The introduction of robots with integrated vision and touch dramatically changes the speed and efficiency of new production and delivery systems. Robots have become so accurate that they can be applied where manual operations are no longer a viable option. Semiconductor manufacturing is one example, where a consistent high level

of throughput and quality cannot be achieved with humans and simple mechanization. In addition, significant gains are achieved through enabling rapid product changeover and evolution that can't be matched with conventional hard tooling.

Boosting Competitiveness

As mentioned, robotic applications originated in the automotive industry. General Motors, with some 40-50,000 robots, continues to utilize and develop new approaches. The ability to bring more intelligence to robots is now providing significant new strategic options. Automobile prices have actually declined over the last two to three years, so the only way that manufacturers can continue to generate profits is to cut structural and production costs.

When plants are converted to new automobile models, hundreds of millions of dollars are typically put into the facility. The focus of robotic manufacturing technology is to minimize the capital investment by increasing flexibility. New robot applications are being found for operations that are already automated with dedicated equipment. Robot flexibility allows those same automated operations to be performed more consistently, with inexpensive equipment and with significant cost advantages.

Robotic Assistance

A key robotics growth arena is Intelligent Assist Devices (IAD) – operators manipulate a robot as though it were a bionic extension of their own limbs with increased reach and strength. This is robotics technology – not replacements for humans or robots, but rather a new class of ergonomic assist products that helps

human partners in a wide variety of ways, including power assist, motion guidance, line tracking and process automation.

IAD’s use robotics t echnology to help production people to handle parts and payloads – more, heavier, better, faster, with less strain. Using a human-machine interface, the operator and IAD work in tandem to optimize lifting, guiding and positioning movements. Sensors, computer power and control algorithms translate the operator's hand movements into super human lifting power.

New robot configurations

As the technology and economic implications of Moore's law continue to shift computing power and price, we should expect more innovations, more cost-effective robot configurations, more applications beyond the traditional “dumb-waiter” service emphasis.

The biggest change in industrial robots is that they will evolve into a broader variety of structures and mechanisms. In many cases, configurations that evolve into new automation systems won't be immediately recognizable as robots. For example, robots that automate semiconductor manufacturing already look quite different from those used in automotive plants.

We will see the day when there are more of these programmable tooling kinds of robots than all of the traditional robots that exist in the world today. There is an enormous sea change coming; the potential is significant because soon robots will offer not only improved cost-effectiveness, but also advantages and operations that have never been possible before.

Envisioning Vision

Despite the wishes of robot researchers to emulate human appearance and intelligence, that simply hasn't happened. Most robots still can't see – versatile and rapid object

recognition is still not quite attainable. And there are very few examples of bipedal, upright walking robots such as Honda’s P3, mostly used for research or sample demonstrations.

A relatively small number of industrial robots are integrated with machine vision systems – which is why it's called machine vision rather than robot vision. The early machine vision adopters paid very high prices, because of the technical expertise needed to “tweak” such systems. For example, in the mid-1980s, a flexible manufacturing system from Cincinnati Milacron included a $900,000 vision guidance system. By 1998 average prices had fallen to $40,000, and prices continued to decline.

Today, simple pattern matching vision sensors can be purchased for under $2,000 from Cognex, Omron and others. The price reductions reflect today's reduced computing costs, and the focused development of vision systems for specific jobs such as inspection.

Robots already in use everywhere

Sales of industrial robots have risen to record levels and they have huge, untapped potential for domestic chores like mowing the lawn and vacuuming the carpet. Last year 3,000 underwater robots, 2,300 demolition robots and 1,600 surgical robots were in operation. A big increase is predicted for domestic robots for vacuum cleaning and lawn mowing, increasing from 12,500 in 2000 to almost 500,000 by the end of 2004. IBot’s Roomba floor cleaning robot is now available at under $200.00.

In the wake of recent anthrax scares, robots are increasingly used in postal sorting applications. Indeed, there is huge potential to mechanize the US postal service. Some 1,000 robots were installed last year to sort parcels and the US postal service has estimated that it has the potential to use up to 80,000 robots for sorting.

Look around at the “robots” around us today: automated gas pumps, bank ATMs,

self-service checkout lanes – machines that are already replacing many service jobs.

Fast-forward another few decades. It doesn't require a great leap of faith to envision how advances in image processing, microprocessor speed and human-simulation could lead to the automation of most boring, low-intelligence, low-paying jobs.

Marshall Brain (yes, that's his name) founder of https://www.doczj.com/doc/7a3708566.html, has written a couple of interesting essays about robotics in the future, well worth reading. He feels that it is quite plausible that over the next 40 years robots will displace most human jobs. According to Brain's projections, in his essay "Robotic Nation", humanoid robots will be widely available by 2030. They will replace jobs currently filled by people for work such as fast-food service, housecleaning and retail sales. Unless ways are found to compensate for these lost jobs, Brain estimates that more than 50% of Americans could be unemployed by 2055 – replaced by robots.

New robot applications abound

As robot intelligence increases, and as sensors, actuators and operating mechanisms become more sophisticated, other applications are now multiplying. There are now thousands of underwater robots, demolition robots and even robots used in

long-distance surgery.

Dozens of experimental search-and-rescue robots scoured the wreckage of the World Trade Center's collapsed twin towers. Teams of robotics experts were at Ground Zero operating experimental robots to probe the rubble and locate bodies. During the war in Afghanistan, robots were being used by the US military as tools for combat. They were sent into caves, buildings or other dark areas ahead of troops to help prevent casualties.

A giant walking robot is used to harvests forests, moving on six articulated legs, advancing forward and backward, sideways and diagonally. It can also turn in place and step over obstacles.

At UC Berkeley, a tiny robot called Micromechanical Flying Insect has wings that flap with a rhythm and precision matched only by natural equivalents. The goal is to develop tiny, nimble devices that can, for example, surreptitiously spy on enemy troops, explore the surface of Mars or safely monitor dangerous chemical spills.

Robotics – an exciting new development arena

The typical Automation techie has knowledge and experience in instruments, PLCs, computers, displays, controls, sensors, valves, actuators, data-transmission, wireless, networking, etc. These are exactly the key requirements for development of robots and robotic systems. During this time of economic recession, Robotics can surely be a new arena of exciting and rewarding business development.

机器人技术发展趋势

作者:Jim Pinto,加利福利亚州圣迭亚哥·美国

谈到机器人,现实仍落后于科幻小说。但是,仅仅因为机器人在过去的几十年没有实现它们的承诺,并不意味着机器人的时代不会到来,或早或晚。事实上,多种先进技术的影响已经使得机器人的时代变得更近——更小、更便宜、更实用和更具成本效益。

肌肉、骨骼和大脑

任何一个机器人都有三方面:

·肌肉——有效联系有关物理荷载以便于机器人运动。

·骨骼——一个机器人的物理结构取决于它所做的工作;它的尺寸大小和重量则取决于它的物理荷载。

·大脑——机器人智能;它能独立思考和做什么;需要多少人工互动。

由于机器人在科幻世界中所被描绘过的方式,很多人希望机器人在外型上与人类相似。但事实上,机器人的外形更多地取决于它所做的工作或具备的功能。很多一点儿也不像人的机器也被清楚地归为机器人。同样,很多看起来像人的机器却还是仅仅属于机械结构和玩具。

很多早期的机器人是除了有很大力气而毫无其他功能的大型机器。老式的液压动力机器人已经被用来执行3-D任务即平淡、肮脏和危险的任务。由于第一产业技术的进步,完全彻底地改进了机器人的性能、业绩和战略利益。比如,20世纪80年代,机器人开始从液压动力转换成为电动单位。精度和性能也提高了。

工业机器人已经在工作

时至今日,全世界机器人的数量已经接近100万,其中超过半数的机器人在日本,而仅仅只有15%在美国。几十年前,90%的机器人是服务于汽车生产行业,通常用于做大量重复的工作。现在,只有50%的机器人用于汽车制造业,而另一半分布于工厂、实验室、仓库、发电站、医院和其他的行业。

机器人用于产品装配、危险物品处理、油漆喷雾、抛光、产品的检验。用于清洗下水道,探测炸弹和执行复杂手术的各种任务的机器人数量正在稳步增加,

在未来几年内将继续增长。

机器人智能

即使是原始的智力,机器人已经被证明了在生产力、效率和质量方面都能够创造良好的效益。除此之外,一些“最聪明的”机器人没有用于制造业;它们被用于太空探险、外科手术遥控,甚至于宠物,比如索尼的AIBO电子狗。从某种意义上来说,一些其他应用表明机器人可能的用途,如果生产厂家认识到这点,工业机器人并不是要局限于某一个方面,或者受限于昨日的机械概念。

伴随着电力微处理器和人工智能技术的迅速增长,大大提高机器人其潜在的弹性的自动化工具。新增加的智能机器人的应用要求先进的智能。机器人技术正在融合各种互补技术- 机器视觉,力传感(触摸),语音识别和高级技工。这一令人振奋的成果代表了新水平的工作应用,比以往任何时候都认为是实际的机器人。具有综合的视觉和触觉的机器人的引进,极大地改变了新的生产和输送系统的速度和效率。机器人变得如此准确,以至于机器人可以应用于所有手工场所已不再是一个不可能的观点。半导体制造业就是一个例子,高度一致的吞吐量和质量,不能靠手工或简单机械就能实现。此外,那些快速产品与传统硬质工具不相匹配的部分的转换和革新已经取得了显著的成果。

增强竞争力

如上所述,机器人的应用起源于汽车制造业。美国通用汽车已经拥有四至五万的机器人,仍然坚持继续发展并运用新方法。为了使机器人更加智能化,现在已运用了大量新的战略选择。在过去的两三年里,汽车价格已经下降,为了不断创造利润,制造商唯一的途径就是降低结构和生产成本。

汽车厂想要改建新模式,通常需要投入数以亿计美元来购买设备。机器人制造的技术重点是通过减少资本投入的方式以增加适用性。新的遥控技术已被发现用在以专用设备自动作业的操作上了。它的灵活性能作业自动化发挥得更协调,并且有很大的成本优势。

机器人协助

其主要的增长领域是智能机器人协助装置(IAD)——操作人员熟练地操作着机器人,就好像是自己的手和脚变长了,并且更有力了。这就是遥控技术,没有人和机器人可以代替,它是有助于改造人类环境产品的一个新版本,多方面的帮助人类伙伴,包括动力供应、运动导向、线路跟踪以及程序自动化。

智能机器人协助装置运用遥控技术帮助人们以较少的压力,更多、更大、更好、更快地才做零部件和有效荷载。利用人类机器界面,操作员和智能机器人协助装置携手合作以优化开放性、指导性和定位移动。传感器、计算机动力和操控运算法则将操作员的手令转译成人类提升能力装置。

遥控新格局

随着科技和有摩尔定律带来的经济影响将继续改变计算机的能力和价格,我们应该期望更多创新,更多更具成本效益的遥控结构,以及更多在传统服务重点之外的运用。

工业遥控设备最大的变化是,它们将形成更广泛的多种结构和机制。在许多情况下,牵涉到自动装置系统的配置,不会立即被认为是机器人。例如,自动操作半导体生产的遥控装置已远远不同于那些用在汽车制造业的遥控装置。

我们会有等到那么一天,更多这类可编程加工的遥控设备会比现今有的传统遥控设备多得多。一个突发性转变即将来临,它的潜力是巨大的,因为不久后遥控设备不仅能够提高成本效益,也能产生前所未有的优势和操作应用。

远景展望

尽管机器人研究人员希望仿效人类的智慧和外表,但是从未成功过。大多数机器人仍是无形的,也并非万能,也不能快速识别目标物体。两足直立行走的机器人微乎其微,比如本田P3,主要是用于研究和样品展示。

机器视觉系统集成的工业机器人的数量相对较少- 这就是为什么它被称为机器视觉,而不是机器人视觉。早期采用机器视觉价格很高,因为这样的技术需要调整系统。例如,在80年代中期,从辛辛那提米拉克龙公司的柔性制造系统,包括90万美元的视觉导引系统。到1998年的平均价格已经下降至40,000元,

且价格持续下降。

今天,从Cognex,Omron花2000美元就能购买到简单匹配的视觉传感器系统。降价反映了当今电脑成本的降低,和为特殊工作如侦察业等视觉系统的重点开发。

机器人在世界各地的使用

工业机器人的销售已经上升到创纪录的水平,他们拥有巨大的尚未开发的潜力,家务,如修剪草坪,并用真空吸尘器清理地毯。去年有3000个水下机器人,2300个拆卸机器人和1600个手术机器人开始工作。预计吸尘和除草机器人的数量将大幅度增加,从2000年得12500到2004年末的500000个。现在iBOT、Roomba的价格也不到2000美元了。

在最近的炭疽恐慌之后,机器人越来越多地用于邮政分拣应用。事实上,美国的邮政自动化有其巨大的潜力。去年,有1000个机器人被安装用来分类包裹。美国邮政总署估计,将来有可能使用80000个机器人来分类包裹。

换股今天在我们身边的“机器人”:瓦斯自动泵、银行自动柜员机、自助式测试线,机器已经取代了很多服务工作。、

在今后的数十年,不难想象,图像处理的发展进步、微处理器加速和人为模拟可能导致自动化成为世界上最无聊、低智力、低工资的工作。

Marshall Brian,HowStuffWorks。com的创办人,写了两篇有趣的关于机器人的论文,很值得一读。他觉得在今后四十年内机器人将代替许多人类工作,那是很有可能的。根据他的预测,在他的论文“机器人种族”中,人性化机器人将在2030年得到普及。他们将取代目前由人类从事的工作,如快餐服务、清洁房间和零售服务。除非找到办法来弥补这些失去的就业机会,否则他估计到2055年超过50%的美国人将由机器人代替而失业。

大量机器人的新应用

随着机器人智能的提高,以及传感器、传动和运行机制的日趋完善,它的应用也大大增加了。现在有成千上万的水下机器人、破坏机器人,甚至用于远程手术。

数十个实验搜救机器人搜寻了世贸中心双塔楼的残骸。机器人专家小组在第一现场操作实验机器人,用来探测瓦砾以定位遇难者尸体。在阿富汗使用的机器人是美军的作战工具。它们被送入洞穴、建筑物或其他地区,作为部队的先锋,以防止人员伤亡。

巨人步行机器人被用来伐木。它用六个关节来移动,前进和后退,横走和斜走,还可以转身和跨越障碍物。

在伯克莱分校,一个叫micromechanical的微型昆虫飞行机器人,它能非常自然地精确地拍打翅膀。他们的目标是做一个又小又灵活的装置,例如,秘密侦查敌军,可以探测火星表面和安全检查危险化学品泄漏。

机器人技术——一个振奋人心的新领域

自动化技术人员通常需要具备文本、PLC、计算机、显示器、控制、传感器、阀门、传动、数据传输、无线通讯、网络等方面的知识和经验。这些也正是机器人及机器人技术发展的关键。在经济不景气的这个时候,机器人技术一定会成为一定成为一个振奋人心且潜力巨大的新领域。

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 FEM Optimization for Robot Structure Abstract In optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved. 1)Introduction Industrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot. A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time. APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.

管道机器人外文翻译

一款使用离合器连接类型的内窥管道机器人 摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。 1.简介 管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。 近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置

减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。 2.机器人特征 A机器人硬件设备及系统 如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。 机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。 例1.装备有机械离合装置的管道检测机器人系统 机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且

外文翻译:机器人本科生外文翻译资料

外文翻译资料原文 学院 专业班级 学生姓名 指导教师

Robot Darrick Addison (dtadd95@https://www.doczj.com/doc/7a3708566.html,), Senior Software Engineer/Consultant, ASC Technologies Inc. 01 Sep 2001 "A re-programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." -- From the Robot Institute of America, 1979 Darrick Addison, an experienced developer in databases, networks, user interfaces, and embedded systems, introduces the field of robotics and the issues surrounding robotic systems. He covers mechanical design, sensory systems, electronic control, and software. He also discusses microcontroller systems, including serial and memory-mapped interfacing, and talks about some of the available open source software options. The word "robot" originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankenstein's monster -- creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations. Basically a robots consists of: ? A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment ?Sensors on or around the device that are able to sense the environment and give useful feedback to the device ?Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

智能避障机器人设计外文翻译

INTELLIGENT VEHICLE Our society is awash in “machine intelligence” of various kinds.Over the last century, we have witnessed more and more of the “drudgery” of daily living being replaced by devices such as washing machines. One remaining area of both drudgery and danger, however, is the daily act ofdriving automobiles 1.2 million people were killed in traffic crashes in 2002, which was 2.1% of all globaldeaths and the 11th ranked cause of death . If this trend continues, an estimated 8.5 million people will be dying every year in road crashes by 2020. In fact, the U.S. Department of Transportation has estimated the overall societal cost of road crashes annually in the United States at greater than $230 billion. When hundreds or thousands of vehicles are sharing the same roads at the same time, leading to the all too familiar experience of congested traffic. Traffic congestion undermines our quality of life in the same way air pollution undermines public health.Around 1990, road transportation professionals began to apply them to traffic and road management. Thus was born the intelligent transportation system(ITS). Starting in the late 1990s, ITS systems were developed and deployed. In developed countries, travelers today have access to signifi-cant amounts of information about travel conditions, whether they are driving their own vehicle or riding on public transit systems. As the world energy crisis, and the war and the energy

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

管道机器人(英文)

A SIMPLE ARCHITECTURE FOR IN-PIPE INSPECTION ROBOTS Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON, André PREUMONT Active Structures Laboratory UNIVERSITE LIBRE DE BRUXELLES Av. F. D. Roosevelt 50, cp 165/42, Brussels, Belgium Phone: (32)2-6504663 Fax: (32)2-6504660 e-mail: andre.preumont@ulb.ac.be Abstract: The paper presents an original robot architecture for in-pipe inspection. The robot consists of two parts articulated with a universal joint. One part is guided along the pipe by a set of wheels moving parallel to the axis of the pipe, while the other part is forced to follow an helical motion thanks to tilted wheels rotating about the axis of the pipe. A single motor is placed between the two bodies to produce the motion. All the wheels are mounted on a suspension to accommodate for changing tube diameter and curves in the pipe. The robot is autonomous and carries its own batteries and radio link. Four different prototypes have been constructed for pipe diameters of 170, 70 and 40 mm, respectively. For smaller diameters, the batteries and the radio receiver may be placed on an additional body attached to the others. The autonomy of the prototypes is about 2 hours. This architecture is very simple and the rotary motion can be exploited to carry out scrubbing or inspection tasks. Keywords: Autonomous mobile robot, In-pipe inspection, Helical motion Introduction Pipe inspection robots have been studied for a long time, and many original locomotion concepts have been proposed to solve the numerous technical difficulties associated with the change in pipe diameter, curves and energy supply. Although an exhaustive review of the literature is impossible due to the limited space available, a few broad categories can be identified: (i) For small size, many projects follow the earthworm principle consisting of a central part moving axially while the two end parts are provided with blocking devices connected temporarily to the pipe. Pneumatic versions of this concept have been proposed (e.g. [1]), but they require an umbilical for power. For smaller diameter (10 mm or less), a piezoelectric actuation has been considered, according to the inchworm principle, or according to an inertial locomotion driven by a saw-tooth wave voltage [2], or using vibrating fins with differential friction coefficients [3]. (ii) For medium size piping, classical electromechanical systems have been proposed with various architectures involving wheels and tracks, with more or less complicated kinematical structures, depending on the diameter adaptability and turning capability (e.g. [4,5]). (iii) For large pipes, walking tube crawlers have also been proposed [6].

外文翻译-多自由度步行机器人

多自由度步行机器人 摘要在现实生活中设计一款不仅可以倒下而且还可以站起来的机器人灵活智能机器人很重要。本文提出了一种两臂两足机器人,即一个模仿机器人,它可以步行、滚动和站起来。该机器人由一个头,两个胳膊和两条腿组成。基于远程控制,设计了双足机器人的控制系统,解决了机器人大脑内的机构无法与无线电联系的问题。这种远程控制使机器人具有强大的计算头脑和有多个关节轻盈的身体。该机器人能够保持平衡并长期使用跟踪视觉,通过一组垂直传感器检测是否跌倒,并通过两个手臂和两条腿履行起立动作。用实际例子对所开发的系统和实验结果进行了描述。 1 引言随着人类儿童的娱乐,对于设计的双足运动的机器人具有有站起来动作的能力是必不可少。 为了建立一个可以实现两足自动步行的机器人,设计中感知是站立还是否躺着的传感器必不可少。两足步行机器人它主要集中在动态步行,作为一种先进的控制问题来对待它。然而,在现实世界中把注意力集中在智能反应,更重要的是创想,而不是一个不会倒下的机器人,是一个倒下来可以站起来的机器人。 为了建立一个既能倒下又能站起来的机器人,机器人需要传感系统就要知道它是否跌倒或没有跌倒。虽然视觉是一个机器人最重要的遥感功能,但由于视觉系统规模和实力的限制,建立一个强大的视觉系统在机器人自己的身体上是困难的。如果我们想进一步要求动态反应和智能推理经验的基础上基于视觉的机器人行为研究,那么机器人机构要轻巧足以够迅速作出迅速反应,并有许多自由度为了显示驱动各种智能行为。至于有腿机器人,只有一个以视觉为基础的

小小的研究。面临的困难是在基于视觉有腿机器人实验研究上由硬件的显示所限制。在有限的硬件基础上是很难继续发展先进的视觉软件。为了解决这些问题和推进基于视觉的行为研究,可以通过建立远程脑的办法。身体和大脑相连的无线链路使用无线照相机和远程控制机器人,因为机体并不需要电脑板,所以它变得更加容易建立一个有许多自由度驱动的轻盈机身。 在这项研究中,我们制定了一个使用远程脑机器人的环境并且使它执行平衡的视觉和起立的手扶两足机器人,通过胳膊和腿的合作,该系统和实验结果说明如下。图 1 远程脑系统的硬件配置图 2 两组机器人的身体结构 2 远程脑系统 远程控制机器人不使用自己大脑内的机构。它留大脑在控制系统中并且与它用无线电联系。这使我们能够建立一个自由的身体和沉重大脑的机器人。身体和大脑的定义软件和硬件之间连接的接口。身体是为了适应每个研究项目和任务而设计的。这使我们提前进行研究各种真实机器人系统。 一个主要利用远程脑机器人是基于超级并行计算机上有一个大型及重型颅脑。虽然硬件技术已经先进了并拥有生产功能强大的紧凑型视觉系统的规模,但是硬件仍然很大。摄像头和视觉处理器的无线连接已经成为一种研究工具。远程脑的做法使我们在基于视觉机器人技术各种实验问题的研究上取得进展。 另一个远程脑的做法的优点是机器人机体轻巧。这开辟了与有腿移动机器人合作的可能性。至于动物,一个机器人有 4 个可以行走的四肢。我们的重点是基于视觉的适应行为的4肢机器人、机械动物,在外地进行试验还没有太多的研究。 大脑是提出的在母体环境中通过接代遗传。大脑和母体可以分享新设计

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

相关主题
文本预览
相关文档 最新文档