当前位置:文档之家› 基本不等式的八种变形技巧

基本不等式的八种变形技巧

 基本不等式的八种变形技巧
 基本不等式的八种变形技巧

基本不等式的八种变形技巧

基本不等式的一个主要功能就是求两个正变量和与积的最值,即所谓“和定积最大,积定和最小”.但有的题目需要利用基本不等式的变形式求最值,有的需要对待求式作适当变形后才可求最值.常见的变形技巧有以下几种:

加上一个数或减去一个数使和或积为定值

函数f (x )=4

x -3+x (x <3)的最大值是( )

A .-4

B .1

C .5

D .-1

【解析】 因为x <3,所以3-x >0,所以f (x )=-????

??

43-x +(3-x )+3≤-24

3-x ·(3-x )+3=-1.当且仅当43-x =3-x ,即x =1时等号成立,所以f (x )的最大值是-1.

【答案】 D

平方后再使用基本不等式

一般地,含有根式的最值问题,首先考虑平方后求最值.

若x >0,y >0,且2x 2

+y 2

3

=8,求x 6+2y 2的最大值.

[思路点拨] 由于已知条件式中有关x ,y 的式子均为平方式,而所求式中x 是一次的,且根号下y 是二次的,因此考虑平方后求其最值. 【解】 (x

6+2y 2)2=x 2(6+2y 2)=3·2x 2????1+y 2

3≤3·? ??

??2x 2

+1+y 2322=3×???

?922.当且仅当2x 2=1+y 23,即x =32,y =42

2

时,等号成立.故x 6+2y 2的最大值为9

2

3.

展开后求最值

对于求多项式积的形式的最值,可以考虑展开后求其最值.

已知a >0,b >0且a +b =2,求????1a +1????

1b +1的最小值.

[思路点拨] 由于待求式是一个积的形式,因此需将多项式展开后将积的最小值转化为和的最小值.

【解】 由题得????1a +1????1b +1=1ab +1a +1b +1=1ab +a +b ab +1=3

ab

+1,

因为a >0,b >0,a +b =2,所以2≥2ab ,所以ab ≤1,所以1

ab ≥1.所以????1a +1????1+1b ≥4(当且仅当a =b =1时取等号),所以????1a +1????1b +1的最小值是4.

变形后使用基本不等式

设a >1,b >1,且ab -(a +b )=1,那么( ) A .a +b 有最小值2(2+1) B .a +b 有最大值(2+1)2 C .ab 有最大值2+1 D .ab 有最小值2(2+1)

【解析】 因为ab -(a +b )=1,ab ≤(a +b 2

)2,

所以? ??

??a +b 22

-(a +b )≥1,它是关于a +b 的一元二次不等式,

解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去), 所以a +b 有最小值2(2+1). 又因为ab -(a +b )=1,a +b ≥2ab ,

所以ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1或ab ≤1-2(舍去), 所以ab ≥3+22,即ab 有最小值3+2 2. 【答案】 A

形如f (x )

g (x )

型函数变形后使用基本不等式

若y =f (x )g (x )

中f (x )的次数小于g (x )的次数,可取倒数后求其最值.

求函数y =(x +5)(x +2)

x +1

(x ≠-1)的值域.

[思路点拨] 将(x +5)(x +2)用(x +1)来表示再变形为f (x )=Ax +B

x +C 的形式,然后运用基本

不等式求解.

【解】 因为y =(x +5)(x +2)x +1=x 2+7x +10

x +1

=(x +1)2+5(x +1)+4x +1=x +1+4x +1+5,

当x +1>0时,即x >-1时,y ≥2

(x +1)·4

x +1+5=9(当且仅当x =1时取等号);

当x +1<0,即x <-1时,y ≤5-2

(x +1)·4

x +1

=1(当且仅当x =-3时取等号).

所以函数的值域为(-∞,1]∪[9,+∞).

用“1”的代换法求最值

已知1x +2

y

=1,且x >0,y >0,求x +y 的最小值.

【解】 法一:因为x >0,y >0,所以x +y =(x +y )·1=(x +y )·????1x +2y =3+y x +2x y

≥3+2y x ·2x

y

=3+2 2.

当且仅当y x =2x y ,且1x +2

y =1,即x =2+1,y =2+2时,上式等号成立.故x +y 的最小值

是3+2 2.

法二:因为1x +2y =1,所以x =y

y -2.

因为x >0,y >0,所以y -2>0.

所以x +y =y

y -2+y =y 2-y y -2=(y -2)2+3(y -2)+2

y -2

y -2+2

y -2

+3≥3+22? ?当y -2=2y -2,即y =2+2

)

时取等号,此时x =

2+1.

求以形如或可化为a x +b

y =1型为条件的cx +dy (a ,b ,c ,d 都不为0)的最值可利用“1”的代换

求乘法.本题中的条件1x +2

y

=1也可化为2x +y -xy =0.

若a ,b 为常数,且0

1-x

的最小值.

[思路点拨] 根据待求式的特征及00,1-x >0.又1=x +(1-x ),因此可考虑利用“1”

的代换法.

【解】 因为00.

所以a 2x +b 21-x =a 2x ·1+b 21-x ·1=a 2x ·[x +(1-x )]+b 21-x ·[x +(1-x )]

=a 2

+a 2(1-x )x +b 2x 1-x

+b 2≥a 2+b 2+2ab =(a +b )2.

上式当且仅当a 2(1-x )x =b 2x

1-x 时,等号成立.

所以a 2x +b 2

1-x ≥(a +b )2.

故函数f (x )的最小值为(a +b )2.

若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)·(b +2)的最小值是__________. [思路点拨] 由于所给条件式中含两个变量a ,b ,因此可以用一个变量表示另一个变量,将待求式转化为含一个变量的式子后求其最值.

【解析】 因为ab -4a -b +1=0,所以b =4a -1a -1=4+3a -1

.

又因为a >1,所以b >0.所以(a +1)(b +2)=ab +2a +b +2=6a +6a -1+9=6(a -1)+6

a -1+15.

因为a -1>0,

所以6(a -1)+6

a -1

+15≥2

6(a -1)×6

a -1

+15=27.

当且仅当6(a -1)=6

a -1(a >1),

即a =2时取等号. 【答案】 27

已知条件含形如ax +bxy +cy +d =0(abc ≠0)型的关系式,求关于x 、y 一次式的和或积的最值问题.常将关系式中ax +bxy +cy +d =0变形,用一个变量x (或y )表示另一个变量y (或x )后求解.

代换减元求最值

设正实数x,y,z满足x2-3xy+4y2-z=0,则当z

xy取得最小值时,x+2y-z的最大值为__________.

【解析】x2-3xy+4y2-z=0?z=x2-3xy+4y2,①

所以z

xy=x2-3xy+4y2

xy=

x

y+

4y

x-3≥2错误!-3=1.

等号成立条件为x=2y,

代入到①可得z=(2y)2-3·2y·y+4y2=2y2,

所以x=2y,z=2y2,

所以x+2y-z=2y+2y-2y2

=-2(y2-2y)=-2(y-1)2+2≤2.

【答案】 2

在含有两个以上变元的最值问题中,通过代换的方法减少变元,把问题化为两个变元的问题使用基本不等式,或者把问题化为一个变元的问题使用函数方法求解.

建立求解目标不等式求最值

已知x,y均为正实数,且xy=x+y+3,则xy的最小值为__________.

【解析】因为x,y均为正实数,

所以x+y≥2xy,xy=x+y+3可化为xy≥2xy+3,

即(xy-3)(xy+1)≥0,

所以xy≥3,xy≥9,

当且仅当x=y时,xy取得最小值9.

【答案】9

利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值.

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中数学不等式解题技巧

不等式解题漫谈 一、活用倒数法则 巧作不等变换——不等式的性质和应用 不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性. 倒数法则:若ab>0,则a>b 与1a <1 b 等价。 此法则在证明或解不等式中有着十分重要的作用。如:(1998年高考题改编)解不等式log a (1-1 x )>1. 分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a, 1 x 同 号,由倒数法则,得x>11-a ; 当00, 1x >0, 从而1-a, 1x 同号,由倒数法则,得11时,x ∈(11-a ,+∞);当0log b a B 、| log a b+log b a|>2 C 、(log b a)2 <1 D 、|log a b|+|log b a|>|log a b+log b a| 分析:由已知,得0

高考数学 解题方法攻略 不等式放缩 理

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+++=+<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2211111 1++≤ ++≤ ≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(22114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且 11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故 4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =11 11----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =) )(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以)(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ.

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

高考数学不等式解题方法技巧

4 4 1 x 时,1+ log x 3 v 2log x 2 ;当 x 时,1+ log x 3 = 2log x 2) 3 3 3.利用重要不等式求函数最值 时,你是否注意到:“一正二定三相等,和定积最大,积定和最小 ”这17字方 针。 1 x 2 3 【例】(1)下列命题中正确的是 A 、y x 的最小值是 2 B 、y 的最小值是 2 C 、 X Vx 2 2 y 2 3x 4(x 0)的最大值是 2 4'、3 D 、y 2 3x 4 (x 0)的最小值是 2 4-3 (答:C ); x x (2)若x 2y 1,则2x 4y 的最小值是 ______________ (答: 2^2 ); (3)正数x, y 满足x 1 2y 1,则 1 x -的最小值为 (答: y 3 2 .2 ); a 2 b 2 a b 4.吊用不等式有:(1) ;2 2 v ab 1 1 (恨据曰标不寺式左右的运算结构选用 ); a b (2) a 、b 、c R , a 2 .2 2 b c ab bc ca (当且仅当a b c 时,取等号); (3) 若 a b 0,m 0,则- b m (糖水的浓度问题)。 a a m 【例】 如果正数a 、b 满足ab a b 3 ,则ab 的取值范围是 (答:9, ) 不等式应试技巧总结 1不等式的性质: (1)同向不等式可以相加;异向不等式可以相减 :若a b,c d ,贝U a c b d (若a b,c d ,则 a c b d ),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘 ,但不能相除; 异向不等式可以相除 ,但不能相乘:若 a b 0,c d 0,则 ac bd (若 a b 0,0 c d ,则 a -); c d (3)左右同正不等式:两边可以同时乘方或开方 :若 a b 0 ,则 a n b n 或 n a 1 1 1 1 则 ;若ab 0 , a b ,贝U a b a b 【例】 (1)对于实数a,b,c 中, 给出下列命题: ①若a b,则 ac 2 bc 2 ; ③若a 2 2 b 0,则 a ab b ④ 若a b 0,则- 1 ⑤ a b ⑥若a b 0,则: a lb ;⑦若c a b 0,则丄 ;⑧若a b,1 1 c a c b a b 命题是 (答: ②③⑥⑦⑧); (2)已知1 x y 1 , 1 x y 3,则3x y 的取值范围是 ______________________ (答:1 n b ; (4)若 ab 0 , a b , ②若 ac 2 bc 2 ,则a b ; b a 右a b 0,则 a b 则a 0,b 0。其中正确的 3x y 7 ); (3)已知a b c ,且a b c 0,则—的取值范围是 a (答: 2,- 2 2.不等式大小比较的常用方法 : (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商 式) ; ( 3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性; (8)图象法。其中比较法(作差、 (常用于分数指数幕的代数 (7)寻找中间量或放缩法 【例】 时取等号) ;当0 a 1时, (2) 作商)是最基本的方法。 1 t 1 1,t 0 ,比较—log a t 和log a 的大小(答:当a 1 t 1 -lOg a t log a 」(t 1 时取等号)); 2 2 1 a 2 4a 2 ,q 2 a 2 ,试比较p,q 的大小(答:p (3) 比较 1+ log x 3 与 2log x 2( x 0且x 1)的大小(答:当0x1或x 1 t 1 1 时,-lOg a t ( t q ); 4 时,1+ log x 3 > 2log x 2 ; 3

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

《基本不等式及其变形》导学案

第9课时基本不等式及其变形 1.熟悉基本不等式的变形;并会用基本不等式及其变形来解题. 2了解基本不等式的推广,并会应用. 上一课时我们共同学习了基本不等式的基本概念以及利用基本不等式求最值,并了解了一正二定三相等四最值这些过程.基本不等式是一种重要的数学工具,是集合、函数、不等式、三角函数、数列等知识的综合交汇点,地位重要,这一讲我们将共同探究基本不等式及其变形的应用. 问题1:常见的基本不等式的变形 (1)x+≥2(x>0),x+≤-2(x<0); (2)+≥2(a,b同号),+≤-2(a,b异号); (3)a+b≥2,()2ab; (4)ab≤,()2≤,当且仅当a=b时取等号. 问题2:基本不等式的推广 已知a,b是正数,则有 (调和平均数)≤(几何平均数)≤(算术平均数)≤(平方平均数),当且仅当a=b时取等号. 问题3:基本不等式的推广的推导 ∵a,b是正数,∴≤=, 而≤,又a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2,∴≤. 故≤≤≤.

问题4:若a,b,c∈R+,则≥,当且仅当a=b=c时等号成立,则关于n个正数a1,a2,a3,…,a n的基本不等式为:≥,当且仅当a1=a2=a3=…=a n时等号成立,其中叫作这n个数的,叫作这n个数的. 1.四个不相等的正数a,b,c,d成等差数列,则(). A.> B.< C.= D.≤ 2.已知a>1,b>1,且lg a+lg b=6,则lg a·lg b的最大值为(). A.6 B.9 C.12 D.18 3.已知a,b为正实数,如果ab=36,那么a+b的最小值为;如果a+b=18,那么ab的最大值为. 4.已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca. 利用基本不等式判断不等关系 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3;⑤+≥2. 基本不等式在证明题中的应用 已知a,b,c都是正数,求证:++≥a+b+c.

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

基本不等式的各种求解方法和技巧

基本不等式 一、知识梳理 二、极值定理 (1)两个正数的和为常数时,它们的积有 ; 若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+= ,M 为常数,max ()ab = . (2)两个正数的积为常数时,它们的和有 ; 若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>= ,M 为常数,min ()a b += . (,)2 a b a b R ++≤ ∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法 方法一、直接利用基本不等式解题 例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( ) A .1 1 2ab > B .1 1 1a b +≤ C 2≥ D. 2211+8a b ≤ (2)不等式2162a b x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是( ) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)? D .(,4)(2,)?∞?+∞ (3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11 x y +的最大值为 ( ) A .2 B .32 C .1 D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1 445y x x =+?的最大值; (2)已知,则的取值范围是( ) A . B . C . D . 方法三:“1”的巧妙代换 命题点1、“1”的整体代换 例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285 C .5 D .6 (2)已知0,0,x y >>且21x y +=,求1 1 x y +的最小值. 0,2b a ab >>=2 2 a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

七年级数学不等式教学方法

七年级数学不等式教学方法 1七年级数学不等式该如何教学 注重基础知识的教学 初中的数学内容较小学教学内容更系统和深入,涉及面更广。因此,教师在教学中应 该注重基础知识的教学,帮助学生打下厚实的基础,以利于学生以后的数学学习。首先应 该摆正师生关系,在中国的教育当中一直强调着“师道尊严”。教师在课堂上一般都是居 高而上,普遍都是教师在讲台上讲,学生在下面埋头“消化”教师讲的知识点。教师掌握 着上课的节奏,这样学生显得很被动。在初中不等式教学当中涉及很多的知识点,学生仅 仅知道一些公式而不会运用是教学的一种失败。基础知识在教学当中就显得尤为重要。 不等式的解题方式多样,内容丰富,技巧性较强并且要依据题设、题的结构特点、内 在联系、选择适当的解题方法,就要熟悉解题中的推理思维,需要掌握相应的步骤、技巧 和语言特点。而这一切都是建立在学生有夯实的基础之上的。学生的基础知识不扎实的话,在解不等式题时就步履维艰。 夯实的基础来源于学生对不等式概念知识的掌握和运用,而概念的形成有一个从具 体到表象再到抽象的过程。对不等式抽象概念的教学,更要关注概念的实际背景和学生对 概念的掌握程度。数学的概念也是数学命题、数学推理的基础,学生学习不等式知识点也 是从概念的学习开始的。所以在不等式教学探究中教师应注重学生的基础。 注重学生对知识的归纳和整理 提高初中数学不等式教学效果,首先要培养学生主动探索数学知识的精神,通过寻求 不同思维达到解题效果来激发学生对数学学习的兴趣。引导学生主动去对数学不等式知识 进行探究,通过结合所学的数学知识来形成一个完整的知识网络,以帮助学生完成更深入 地数学知识探究。 同时初中数学不等式知识点的学习对学生归纳能力提出了较高的要求。灵活使用概念 能够帮助学生熟练地运用数学知识,对不等式这一章节知识点的掌握归纳和整理进行综合 的运用从而能够成功地解题。例如,在含有绝对值的不等式当中:解关于x的不等式2+a0时,解集是;2当-2≤a<0时,解集为空集;3当a<-2时,解集为。当学生对知识点进行归 纳和整理后,学生也就不会马失前“题”。 2提高数学课堂教学质量 创设自主学习与合作学习的情境 要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师 要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留

相关主题
文本预览
相关文档 最新文档