当前位置:文档之家› 斜拉桥模型制作设计图

斜拉桥模型制作设计图

斜拉桥模型制作设计图
斜拉桥模型制作设计图

斜拉桥模型制作设计图

一、模型概况

斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。

斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。

模型全长18.2米,高米,桥面宽米,索96根。

斜拉桥模型三维图见图1、2。

图1斜拉桥模型全桥三维图

图2斜拉桥模型桥塔三维图

、材料

全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用44钢筋, 桥墩以及基础为钢筋混凝土结构。

有机玻璃主要材料性能初步假设为:弹性模量E=x 103N/mm2。斜拉索采用44钢筋(Q235), 强度标准值f yk=235N/mm2,弹性模量E=x i0N/mm2。

三、模型结构图

斜拉桥模型立面布置

斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中心左右对称。

6号桥塔7号桥塔

图3 斜拉桥模型布置图(单位:伽) 注:以后图表中尺寸均采用毫米为单位。

2、主梁

3、塔

塔高3. 16米,详细尺寸见图5?7。塔与梁不

直接连接,依靠拉索连接。梁底距离塔横梁20毫米。

塔墩高米,地面以上米,地面以下开挖米。

为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注 环氧砂浆填补洞口

塔与墩连接处还 要加钢板锚固。塔与墩连接的详细构造见图15?17。

00

2

00

060

150L

QP7

图5 塔立面、剖面图塔立面图

JJ LL Qz QZ

Qz QZ

混凝土墩

\「 \

1000

007

550

图6塔侧面剖面剖面图

125

图 面

混凝土墩

1500

图7塔结构详图

4、拉索

斜拉索为双索面,共96根,采用钢筋。

根据位置不同,斜拉索采用不同的标号。比如,“ S1”表示边跨的拉索,“ M1 ”表示 中跨的拉索,具体标号见图

8

5r

n-iifes in-nmsi

15 70 15

r~r -----------

71-| 100

「-0 0

i-i#?

LTCN 一

57

,§I

图8拉索位置标号

拉索锚固方式 拉索在塔内壁锚固,在梁肋底部设螺栓来调节索力。该螺栓还可以调节梁的竖向线型

拉索的数量及长度

表1中列出拉索数量及长度,其中索长度指拉索位于梁与塔上作用点之间的距离。初步预 定下料长度比索长度大约多40伽。

梁底一端的索端的螺纹要至少 40伽。 表

(3)位于梁上的索位置

梁上的索位置布置见图9

说明:(a)斜拉索从主梁梁肋穿过,需要预先在梁肋上钻孔。

丄b)索在梁肋底部的定位:横向:梁肋中点处;纵向:见图10、11

(c)索在梁顶部的定位:见图12、13。

桥梁中心线

122.12 129.2

r -------- 1 ----------

M21 M23

-400 - _______ 387 5_______ ■OOO 匚_

l Z.Z.Z..U

图10梁侧索定位(纵向)<1>

r -----

M5 M7\M9\ M11 400 - 400 [ 400 400

86.78 96.58 105.7 114.2

1 =J -------- H 1 r 一

M13 M15 M17 M19 k -------------- 400 ---------------- 400 ---------------- 400---------------- ----------------- 400 ---------------

39 52.36 64.78 76.21

111.16.. 107^, 103.38| 戶6.58| 1

60 S23 S21 S19 S17 “S15

325 400 |Z35

桥梁中心线

129.2

122.12

114.2

:r ------- -I

图11梁侧索定位(纵向)<2>

105.7

96.58

86.78

76.21

39 64.78

52.36

7号塔中心

39 25 9 52.36

9

55

C

M

1

/Q O O 0

S23 S21 S19 S17

242.

§23

54 242 65 242

髡1眇77 242 90 S17

—O —0

49.7

o

S15

243 .03

S1

5 %

o

S13

o

S11

c

S9

243 .18

S13

7

243 .34

IS11

-0

243 .51

S9

246

.46 | 如23245.".| |, 318?|. 390?389.43 388.57

6号塔中心线

梁横向中心线

/

43.51

S9

J

243.70

h7

387.58

M3

245.11 244.30

243.9 3 244.30

I S

3

245.11

i s1

386.64 …386 384

梁横向中心线

M5 M7 M9

o

M1

1

243.93

462

M13

O-0-c—O- O—Q —匸384 386 A 386.64 387.58 | 388.57 L 389.43 .

_r

梁横向中心线

尸1"

梁纵向中心线J 1

1 O O O /O O □ 1 o M13 M15 M17 M19 M21 M23 ! M47

3.70 3.5

1

24

M9

24

M7 M1

2 3.34 243.18

M13 M1 M3 M5

2.90

243.18

M13 ,

1 390.2

24

M15 1

c■-

~L__390.88

3.03 24

M17.l

391.5

242 M19 .

o—

4 392.08 J 380.42

.77 24

2

M21

.65 242.54 I 242.54

M23J 丄严7

.703.4 |

梁顶索定位图(沿梁纵向)1

图12梁顶索定位图(沿梁纵向)<1>

M47

o

M45

梁横向中心线

M43

M41

M39 M37

M35

242.77

242.90

243.03

-O

——O

j

-O

p

!_ 380.42 392.08 j 391.5 斗 390.88 斗 390.2 _ 389.43

*

M

243.1 35

梁横向中心线

5 M45

8 M37

243.34

M 242.54 242.6 M47 M39

M41

M43 6号塔中心线

o

M35

o M33

o M31

o

M29

M27

M25

S25

243.34 M35 —O

1 — 88.57

243.5 1 M33

-O

243.7

0 M31

—0

387.58 243.9

3 M29

—O

I 386.64

386

384

244.30

M27 -O

245.1 1

M25 245.11

|

S25

J

462

S25

O

S27

\

S29 \

\

1

O

S31

O

S33

o

S35

L

24!

5.11 24 4.30 24 3.93 24 3.70 24 3.51 243 .34

S25

S27.

S29 S31 、

S33

S35.

O-

g 0-

2

2

O-

梁横向中心线

梁横向中心线

梁端

S35

S37

, o

S39

o

S41

o

S43

S45

o

S47

34 243. S35 , I 389.43

243. S37, -1

390.2

18 03 65 242. S47I

90 242 S43’ - Q-

243 S39, 「318.2

$45.99-1 246.23 |246.46,

242. S41, o- 77 242 S45 , o 丄 54 图13梁顶索定位图(沿梁纵向梁顶索定位图(沿梁纵向)2

(3)位于塔上的索位置

塔上的索位置布置见图14。

.塔中心

158.75 165.72 158.75

8X 67.5 76.25

110 190

67.9、

Q8.01

、?

68113、

68.3

68.55.

68.55、、

68賦

69.58 P'70

「79:

\^82.< D

\

\

.34

(1)塔侧向索位置图14塔上索的位置图

8X 67.5

76.25

110

L

1

190

I ; + --------

50打悴

F J

5

r1

200

爲0“

(2)塔内壁索位置

200

72.74

I /

6

82.13

91.53

100.93

110.35

119.79

129.26

138.75 1

159.2 u I1 11

1

175.06

,

1

1

1

i

1

1

1

1

1

1 1

1

1

1

1

IT"

1

O

I O \

\ O \

1 O \

O \

0 I

2 I

\ C

\

\°\

°

O 1

165.72

67.9 r

68.01

68.13

68.3

?68.55'

68.94’

69.58

r70.7$

82.1 '

123.04

\

254.34

1

1

203.56

I O

(3)塔外侧索位置

i ----------

:|

1

r

1 I

1

O

说明:(1)塔侧向索位置图中,只画了塔侧向剖面的一半;(2)塔内壁索位置:索布置在塔柱的中心线上

5、铁块

为了满足模型质量换算的要求,在梁底部布置铁块。

铁块初步采用13伽铁板加工而成(通过有机玻璃力学试验得知其弹性模量后,最后确定铁板厚度。) (1)梁下铁块的布置

表2布置在梁下铁块的统计

尺寸(长X 宽)

单块铁重量(kg ) 数量(块)

总重量(kg )

100 mmX 100 mm

704

90 mX 100 m

16

合计

6号塔中心线

4-

a

-

L

U 1

-■

u

*—

1 n

i

h

-

-

单层13m 厚铁板

4行88列(共352块),中心线两边各44列

截断

单层13m 厚铁板 4行32列(共128

块) 每块 100mm*100mm 铁块间隔8mm

图15 梁底铁块分布图 &

截断

截断

3m 厚铁 板 梁端部

80mm 搁在边 墩上

单层 4行2列(共 8块) 每块

90mm*100mm

两层13m 厚铁板 4行6列(共 48块) 每块

100mm*100mm 铁块间隔8mm

单层13m 厚铁板 4行32列(共 128块) 每块

100mm*100mm 铁块间隔8mm

#0 £

桥中心线

7号塔中心线

:昭

485C

』3

截断

单层13m 厚铁板 4行2列(共8块)

每块

90mm*100mm

两层13m 厚铁板 4行6列(共48块) 每块

100mm*100mm

(2)塔上铁块的布置

塔上铁块也采用13伽铁板,初步加在没有索的塔外壁(为了美观加在塔内是最好)

斜拉桥模型制作设计图

斜拉桥模型制作设计图 一、模型概况 斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。 斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。 模型全长18.2米,高3.46米,桥面宽0.55米,索96根。 斜拉桥模型三维图见图1、2。 图1 斜拉桥模型全桥三维图

图2 斜拉桥模型桥塔三维图 二、材料 全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用Ф4钢筋,桥墩以及基础为钢筋混凝土结构。 有机玻璃主要材料性能初步假设为:弹性模量E=3.6×103 N/mm2。斜拉索采用Ф4钢筋(Q235),强度标准值f yk=235N/mm2,弹性模量E=2.1×105N/mm2。 三、模型结构图 1、斜拉桥模型立面布置 斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中心左右对称。 6号桥塔 斜拉索 混凝土桥墩 边墩 主梁 边墩 3 7号桥塔 图3 斜拉桥模型布置图(单位:㎜) 注:以后图表中尺寸均采用毫米为单位。 2、主梁

主梁全长18.2米,横截面见图4。 图4 主梁横截面图 主梁截面图(单位:mm) 3、塔 塔高3.16米,详细尺寸见图5~7。塔与梁不直接连接,依靠拉索连接。梁底距离塔横梁20毫米。 塔墩高0.65米,地面以上0.4米,地面以下开挖0.25米。 为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。塔与墩连接处还要加钢板锚固。塔与墩连接的详细构造见图15~17。

索塔立面图 索塔侧面剖面图 图5 塔立面、剖面图图6 塔侧面剖面图

斜拉桥结构体系

斜拉桥结构体系 一、结构体系的分类 1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。 2、按照主梁的连续方式,有连续体系和T构体系等。 3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。 4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。 二、结构体系介绍 1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。 漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。目前,大跨斜拉桥多采用此种体系。 漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。 2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。水平位移将由斜拉索制约。 3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。 塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。 4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。 种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。

数学建模斜拉桥设计

斜拉桥设计 摘要: 模型是建立在对斜拉桥造价预算基础上的一类数学建模问题。模型的建立的初衷是对斜拉桥的设计提出合理美观的设计方案,且同时要尽量节省资金。 在对模型的建立与求解的过程之前先是对斜拉桥总体外观进行了设计,确定了水上的桥面长度与引桥的长度,以及引桥的支撑方式。模型的建立与求解是建立在模型假设的条件基础上,模型假设的提出为解决实际问题提供了方便。例如,索塔顶部的拉索部分并不是从同一节点引出,但假设同一节点之后更加方便简洁的有助于我们对斜拉桥的拉索的造价进行估算。在模型中由于索塔个数不同对索塔造价和拉索造价的影响确定了多种方案,从各方案的造价进行比较,确定最佳方案。 关键词:外观假设节点最佳方案

一、问题重述 如果计划在抚河某处修建一座斜拉桥,斜拉桥示意图和建桥处河道的截面图已分别划出。 给出几项简化假设: (1)在桥面处,索塔造价是同样长度的水上桥面的2倍; (2)100米长斜拉索与10米长水上前面造价相当; (3)索塔造价与离桥面的距离平方成正比;斜拉索造价与其长度成正比; (4)如果有陆地上的引桥的桥面,造价是水上桥面的一半; 1,请给出斜拉桥设计图,使其合理美观; 2,估算斜拉桥的造价,尽量节省资金。 图1 斜拉桥

河流截面图(单位m) 二、模型假设 1.假设斜拉桥的桥面是水平 2.假设斜拉桥的拉索的最大张角是45° 3.假设斜拉桥水面上每米的造价是5万元 4.假设模型中计算的拉索的个数索塔个数为整数 5.假设抚州地区的基岩深度为七米桩基深度为30米 6.在抚河剖面上补考虑地形起伏影响基岩距地表都为7米 7.斜拉索在索塔上的节点都为塔顶位置 8.假设主跨与次跨的长度相同 三、符号说明 1.i索塔个数 2.X ?索塔单边拉索的最大水平距离 3.α每个索塔的单边拉索个数 4. l第α个索拉索长度 α 5.t(1) 拉索的总长度 6.s表示各部分的造价 7.p表示各部分的价格 8.H索塔的长度的总和 9.W斜拉索桥的总造价 四、模型的建立与求解

斜拉桥建模实例

斜拉桥建模实例 我们拟定建立以下模型,见下图: 参数说明:桥面长度L1=100M,分100个桥面单元,每单元长度1M,桥塔长度L2=50M,分50个竖直单元,每单元长度1M,拉索单元共48个单元,左右对称,拉索桥面锚固端间隔为2 M,桥塔锚固端间隔为1M。 下面介绍具体建立模型的步骤: 步骤一,建立桥面单元。用快速编译器编辑1-100个桥面单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定)

步骤二:建立桥塔单元。用快速编译器编辑101-150个桥塔单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定,在分段方向的单选框内,一定要选择“竖直”,起点x=49,y=-20,终点x=49,y=30是定义桥塔的位置,这里我把它设在桥面中部,桥面下20米处,因为我做的桥塔截面为2m×2m的空心矩形,所以此处起点和终点x填49,请读者自己理解) 步骤三:拉索的建立。 A、先编辑桥塔左边部分24跟拉索单元。 点击快速编译器的“拉索”按钮,在拉索对话框内的编辑内容复选框选择编辑节点号勾上,编辑单元号:151-174,左节点号:1-48/2;右节点号:152-129;(注意:左节点1-48/2代表拉索在桥面的锚固点间距为2M),如下图:

编辑单元号:151-174,然后确定。如下图: B、建立桥面右半部分的24跟拉索。

在快速编译器中选择“对称”按钮,在“对称”对话框中的编辑内容4个复选框都勾上。 模板单元组:151-174;生成单元组:198-175;左节点号:55-101/2;右节点号:129-152;对称轴x=50,然后确定。见下图: 这样,我们就建好了拉索单元的模型。现在让我们来看一看整个模型的三维效果图:

midas斜拉桥建模

目录 概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料和截面特性值 4 成桥阶段分析 6 建立模型 7 建立加劲梁模型 8 建立主塔 9 建立拉索 11 建立主塔支座 12 输入边界条件 13 索初拉力计算 14 定义荷载工况 18 输入荷载 19 运行结构分析 24 建立荷载组合 24 计算未知荷载系数 25 查看成桥阶段分析结果 29查看变形形状 29 正装施工阶段分析 30

正装施工阶段分析 34 正装施工阶段分析 34 正装分析模型 36 定义施工阶段 38 定义结构组 41 定义边界组 48 定义荷载组 53 定义施工阶段 59 施工阶段分析控制数据 64 运行结构分析 65 查看施工阶段分析结果 66 查看变形形状 66 查看弯矩 67 查看轴力 68 查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70

概要 斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环 境融合,是符合环境设计理念的桥梁形式之一。 为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。 一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分 析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例 题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。 图 1. 斜拉桥分析模型

桥梁的设计与模型制作

桥梁的设计与模型制作 1. 桥梁有哪些种类? 基本有如下几种: 2.为什么有这样的设计? 人和车辆等通过桥梁时,桥面会弯曲,如果桥面弯曲的越厉害就越会发生危险。 同样的材料,同样的厚度,桥的跨度越大,越易弯曲。为防止桥面过于弯曲,可采用不同的方法帮助桥面承担重量。 如:梁式桥 梁式桥是一种在竖向荷载作用下无水平反力的结构。由于外力(恒载和活载)的作用方向与承重结构的轴线接近垂直,故与同样跨径的其它结构体系相比,梁内产生的弯矩最大,通常需用抗弯能力强的材料(钢、木、钢筋混凝土等)来建造。 梁式桥还可分为:钢桁梁桥、T型梁桥、悬臂梁桥、连续梁桥和连续钢构桥等。 图一钢桁梁桥 图二连续式梁桥 拱式桥 拱式桥的主要承重结构是拱圈或拱肋。这种结构在竖向荷载作用下,桥墩或桥台将承受水平推力。同时,这种水平推力将显著抵消荷载所引起在拱圈(或拱肋)内的弯矩作用。因此,与同跨径的梁相比,拱的弯矩和变形要小得多。鉴于拱桥的承重结构以受压为主,通常就可用抗压能力强的圬工材料(如砖、石、混凝土)和钢筋混凝土等来建造。 拱桥的跨越能力很大,外形也较美观,在条件许可的情况下,修建拱桥往往是经济合理的。 拱桥种类繁多,常见的有:圬工拱桥、箱型拱桥、双曲拱桥、钢架拱桥、桁架拱桥、肋拱桥、桁式组合拱桥和斜腿钢架拱桥等。根据拱桥的不同承载方式,还可分为:上承式桥梁、下承

式桥梁、中承式桥梁。 图六上承式拱桥桥梁 图七下承式拱桥桥梁 图八中承式拱桥桥梁 悬索桥 传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作为主要承重结构。在竖向荷载作用下,通过吊杆使缆索承受很大的拉力,通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。悬索桥也是具有水平反力(拉力)的结构。现代的悬索桥上,广泛采用高强度的钢丝成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻,就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。悬索桥的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支架悬吊拼装。我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往采用吊桥。 悬索桥的样式图见下图所示:

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

研究性学习桥梁设计中的力学知识与模型制作

桥梁设计中的力学知识与模型制作 1. 桥梁有哪些种类? 基本有如下几种: 2.为什么有这样的设计? 人和车辆等通过桥梁时,桥面会弯曲,如果桥面弯曲的越厉害就越会发生危险。同样的材料,同样的厚度,桥的跨度越大,越易弯曲。为防止桥面过于弯曲,可采用不同的方法帮助桥面承担重量。 如:梁式桥 梁式桥是一种在竖向荷载作用下无水平反力的结构。由于外力(恒载和活载)的作用方向与承重结构的轴线接近垂直,故与同样跨径的其它结构体系相比,梁内产生的弯矩最大,通常需用抗弯能力强的材料(钢、木、钢筋混凝土等)来建造。 梁式桥还可分为:钢桁梁桥、T型梁桥、悬臂梁桥、连续梁桥和连续钢构桥等。 图一钢桁梁桥

图二连续式梁桥 拱式桥 拱式桥的主要承重结构是拱圈或拱肋。这种结构在竖向荷载作用下,桥墩或桥台将承受水平推力。同时,这种水平推力将显著抵消荷载所引起在拱圈(或拱肋)内的弯矩作用。因此,与同跨径的梁相比,拱的弯矩和变形要小得多。鉴于拱桥的承重结构以受压为主,通常就可用抗压能力强的圬工材料(如砖、石、混凝土)和钢筋混凝土等来建造。 拱桥的跨越能力很大,外形也较美观,在条件许可的情况下,修建拱桥往往是经济合理的。 拱桥种类繁多,常见的有:圬工拱桥、箱型拱桥、双曲拱桥、钢架拱桥、桁架拱桥、肋拱桥、桁式组合拱桥和斜腿钢架拱桥等。根据拱桥的不同承载方式,还可分为:上承式桥梁、下承式桥梁、中承式桥梁。 图六上承式拱桥桥梁 图七下承式拱桥桥梁

图八中承式拱桥桥梁 悬索桥 传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作为主要承重结构。在竖向荷载作用下,通过吊杆使缆索承受很大的拉力,通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。悬索桥也是具有水平反力(拉力)的结构。现代的悬索桥上,广泛采用高强度的钢丝成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻,就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。悬索桥的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支架悬吊拼装。我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往采用吊桥。悬索桥的样式图见下图所示: 图九单跨式悬索桥 斜拉桥 斜拉桥由斜索、塔柱和主梁所组成。用高强钢材制成的斜索将主粱多点吊起,并将主梁的恒载和车辆荷载传至塔柱,再通过塔柱基础传至地基。这样,跨度软人的主梁就象一根多点弹性支承(吊起)的连续梁一样工作,从而可使主梁尺寸大大减小,结构自重显著减轻,既节省了结构材料,又大幅度地增大桥梁的跨越能力。此外,与悬索桥相比,斜拉桥的结构刚度大,即在荷载作用下的结构变形小得多,且其抵抗风振的能力也比悬索桥好,这也是在斜拉桥可能达到大跨度情况下使悬索桥逊色的重要因素。 斜索在立面上也可布置成不同型式。各种索形在构造上和力学上各有特点,在外形美观上也各具特色。常用的索形布置为竖琴形(图十)和扇形(图十一)两种。另一种是斜索集中锚固在塔顶的辐射形布置(图十二),因其塔顶锚固结构复杂而较 少采用 。图十竖琴形斜拉桥

斜拉桥的分类

斜拉桥的总体布置与结构体系 总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。 一、跨径布置主要有下面三种类型 (1)双塔三跨式。为目前应用最广泛的跨径布置方式。下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。 (2)独塔双跨式。这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。

独塔双跨式斜拉桥立面图 (3)多塔多跨式。多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。 多塔多跨式斜拉桥示意图 二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。 (1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面。

单索面斜拉桥(临海大桥) 竖直双索面斜拉桥

倾斜双索面斜拉桥 (2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形。 辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。 竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理。竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。

斜拉桥的结构体系及特点

斜拉桥结构体系及特点 斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔,其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应,斜拉索对主梁只起到一定程度的帮扶作用。斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。 斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系,影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式,不同的结合方式产生不同的结构体系。根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1)塔梁固结体系;(2)支承体系; (3) 刚构体系, 见图1 所示。(4)半漂浮体系,见图2所示。 (1)塔梁固结体系及特点 塔梁固结、塔墩分离、梁底设支座支承在桥墩上,斜拉索为弹性支承,这是一种完全的主梁具有弹性支承的连续梁结构。这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定,而其他支座可纵向活动。这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分,代之以一般桥墩,中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。这种体系结构整体刚度小, 当中跨满载时,由于主梁在墩顶处的转角位移导致塔柱倾斜,使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。 我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。 (2)支承体系及特点 塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座,这种体系接近主梁具有弹性支承的连续梁结构。支承体系与梁塔固结体系主梁受力性能基本相同, 塔墩底部承受较大的弯矩。 我国芜湖长江大桥采用的是支承体系, 该体系在部分斜拉桥结构中较少采用。支承体系的特点:支承体系悬臂施工中不需要额外设置临时支点,施工较方便。

组合斜拉桥简介及其结构特点分析

2002年增刊广东公路交通 GuallgDOllgc∞gIjlJi日岫总第76期文章编号:167l一7619(2002)增刊一0Q52一03 组合斜拉桥简介及其结构特点分析 苗德山1(1.广东省交通集团有限公司.广州5101叭 孙向东2 2.广东省公路勘察规划设计院。广州5lQ5昕) 摘要:利用斜拉桥自身构件的各种变化,可以派生出众多优美的结构形式,并达到与环境的完美结合。组合斜拉桥跨越能力强,应用广泛,桥型美观。简要介绍了其类型并分析了各桥型的结构受力特点。 关键词:组舍斜拉桥桥掣结构分析 中图分类号:tM8.刀“文献标识码:c 1引言 随着结构分析技术、高强材料及先进施工工艺的发展,斜拉桥凭其自身的特点在太跨径桥梁领域成为了一种竞争能力极强的桥型。虽然现代斜拉桥只有短短的几十年历史,却在实际工程中展现了勃勃生机。利用斜拉桥自身构件的各种变化可以派生出众多优美的结构形式,并达到与环境的完美结合。 斜拉桥的上部结构由梁、索、塔三类构件组成,因上述三者一般不是同一种材料,故从整体上看斜拉桥本身就是一种组合结构。对于任何桥型来说跨度的推进始终是其发展的主题,而斜拉桥在自身的发展过程中,其粱、索、塔在结构形式、材料组成及协作方式等方面均发生了众多演化,其中以粱所派生出的形式最多,影响也最大。斜拉桥的主梁在空间不同的部位可以分别采用不同材料,通常是钢材和混凝土,此类斜拉桥与钢斜拉桥和混凝土斜拉桥相比,可称之为组合斜拉桥。 2组合斜拉桥分类 2.1竖向组合斜拉桥 竖向组合斜拉桥,是指在钢格构或钢梁上铺设钢筋混凝土或预应力混凝土行车道,这也就是通常所说的叠合梁斜拉桥(图1)。此类斜拉桥的代表有加拿大的A11Ilacis桥、中国上海的南浦及杨浦大桥等。 囤1血mads桥的叠台粱断面 2.2纵向组合斜拉桥 纵向组合斜拉桥一般是由边跨混凝土主粱与主跨钢粱在纵向加以连接组成.也就是通常所说的混合粱斜拉桥。此类斜拉桥的代表有法国的 ?52N0Ⅱllalldv桥和日本的生口桥等。 图2所示为N0㈣dy大桥的纵向布置情况,图中显示边跨混凝土粱进人中跨116m后与中跨钢主梁相接,从而减少钢主梁长度,降低造价。 圈2N0mwdv桥的纵向布置

斜拉桥结构设计及问题简析

斜拉桥结构设计及问题简析 摘要:斜拉桥是一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。本文通过分析斜拉桥的结构特点,论述了斜拉桥在结构、布置、选材和审美方面的设计要求及注意事项,并简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取措施。 关键词:斜拉桥;布置形式;结构设计;斜拉桥审美 Abstract: The cable-stayed bridge is a bridge combined stress system, its main structure is composed of cables, towers, girders. In this paper, through the analysis of the structural characteristics of cable-stayed bridge, the cable-stayed bridge in the structure, layout, material selection and design aesthetic requirements and matters needing attention, and briefly introduces the problems encountered in the design and construction of cable-stayed bridge and measures. Keywords: cable-stayed bridge;layout;structure design;cable-stayed bridge aesthetics 自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。我国斜拉桥的设计与施工技术也已经跨入世界的先进行列,并取得了显著的成绩:(1)斜拉索制造工艺实现了专业化和工厂化及防护技术不断完善;(2)斜拉桥的施工技术逐步完善;(3)用计算机进行结构计算和施工过程控制等。目前我国的斜拉桥正在向新型结构、大跨度、轻质和美观等方向发展,以更好的适应交通、经济、环境和安全的要求。 1 斜拉桥整体结构特点 斜拉桥又称为斜张桥,是用许多拉索将主梁直接拉在桥塔上的一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。在斜拉桥结构体系中,索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势。 2 斜拉桥的布置 2.1斜拉桥整体布置

建斜拉桥模型

建斜拉桥桥模 雅周初中胡卫民 【所属领域】科学与生活 【活动目标】 1、让学生观看有关桥梁历史和建设的影像资料,了解桥梁的巨大 作用,以及它的结构原理,小组合作,制作斜拉桥的结构模型,比比哪一组的承重最大。(过程与方法目标) 2、充分让学生动手,培养学生的动手能力,能发挥想象力,改造 大桥,使桥梁更坚固,更耐用。(知识与能力目标) 3、在活动过程中,培养学生团队精神,合作能力,鼓励他们为中 国的建设而努力学习。(情感态度价值观目标) 【方案设计】 活动背景苏通大桥是一座双塔双索面钢箱梁斜拉桥。斜拉桥主孔跨度1088米,列世界第一;主塔高度300.4米,列世界第一;斜拉索的长度577米,列世界第一;群桩基础平面尺寸113.75米X 48.1米,列世界第一。专用航道桥采用140+268+140=548米的T 型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥;位于江苏省东部的南通市和苏州(常熟)市之间,是交通部规划的黑龙江嘉荫至福建南平国家重点干线跨越长江的重要通道,也是江苏省公路主骨架网“纵一”——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。建设苏通大桥对完善国家和江苏省干线公路网、促进区域均衡发展以及沿

江整体开发,改善长江安全航运条件、缓解过江交通压力、保证航运安全等具有十分重要的意义。 参加对象中学阶段 活动时间一课时 活动准备长木条若干薄木板三张粗棉线若干大剪刀美工刀胶水手钻等 【活动过程】 一、创设情境,产生问题 师:同学们,你们都见过什么桥? 生:拱桥斜拉桥石板桥吊桥等 师:大家了解这么多种桥,说明你们平时都很留心观察生活。师:播放关于桥梁的发展历史,以及当今桥梁的发展状况,特别是有关苏通大桥的建设情况。 师:介绍斜拉桥的结构。 师:斜拉桥其实可以看做物理中的杠杆,主塔做的很高的原因是什么? 生:是为了减少钢索所承受的拉力。 二、搭建桥梁,自主探究 1、大胆猜测 师:桥梁越长,对主塔有什么要求? 生:桥梁越长,主塔越高 师:对于建桥材料有什么要求?

斜拉桥

哈尔滨工业大学毕业设计(论文) 第1章绪论 1.1概述 斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。 上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段: 第一阶段:稀索,主梁基本上为弹性支承连续梁; 第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力; 第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。 近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。 1.1.1 结构体系 斜拉桥的基本承载构件由梁(桥面)、塔和索三部分组成,且三者以不同的方式影响总体结构的性能。实际设计时三者是密不可分的。塔、梁及索的不同变化和相互组合,可以构成具有各自结构性能且力学特点和美学效果的突出的斜拉桥。正因为如此,斜拉桥基本体系可按力学性能分为漂浮体系、支承体系、塔梁固结体系和刚构体系: 漂浮体系为塔墩固结、塔梁分离,主梁除两端有支承外,其余全部用拉索悬吊,是具有多点弹性支承的连续梁。 支承体系即墩梁固结、塔梁分离,在塔墩上设置竖向支承,为具有多点弹性支撑的三跨连续梁。 塔梁固结体系即塔梁固结并支承在墩上,梁的内力和挠度同主梁与塔柱的弯曲刚度比值有关。其支座至少有一个为纵向固定。 刚构体系为梁塔墩互为固结,形成跨度内具有多点弹性支承的刚构。这种体系的优点是既免除了大型支座又满足悬臂施工的稳定要求,结构整体刚度较好,主梁挠度小;缺点是主梁固结处负弯矩较大,较适合于单塔斜拉桥。在塔墩很高的双塔斜拉桥中,若采用薄壁柔性墩来适应温度和活载等对结构产生的水平变形,形成连续刚构,能保持刚构体系的优点,并使行车平顺。采用这种体系的有美国的Dames Point桥和我国的广东崖门大桥等。 - 1 -

斜拉桥模型制作

《斜拉桥模型制作》结题报告 学校:安庆二中 课题组成员:黄天航任方斌金昊戴凯 制作;黄天航 材料收集:任方斌 收集查询资料:金昊戴凯 指导老师:叶老师 斜拉桥是我国大跨境最流行的桥型之一,其造型之优美、奇特深深地吸引了我。所以,亲手做一个漂亮的斜拉桥模型是我的愿望。 下面我将详细介绍斜拉桥模型制作的设计理论、制作过程及关键工序 一、原理:斜拉桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。我们以一个索塔来分析。索塔两侧是对称的斜拉索,通过斜拉索将索塔和主梁连接在一起。现在假设索塔两侧只有两根斜拉索,左右对称各一条,这两根斜拉索受到主梁的重力作用,对索塔产生两个对

称的沿着斜拉索方向的拉力,根据受力分析,左边的力可以分解为水平向向左的一个力和竖直向下的一个力;同样的右边的力可以分解为水平向右的一个力和竖直向下的一个力;由于这两个力是对称的,所以水平向左和水平向右的两个力互相抵消了,最终主梁的重力成为对索塔的竖直向下的两个力,这样,力又传给索塔下面的桥墩了。斜拉索数量再多,道理也是一样的。之所以要很多条,那是为了分散主梁给斜拉索的力而已。 二、模型制作及工序 1、主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行式。 2、模型全长60厘米,宽15厘米,高22.5厘米,桥墩高7.5厘米,索18根。 桥板模型主要采用PVC塑料,主梁采用不锈钢,索采用毛线,桥墩采用木板。 3、模型制作过程: A、桥墩找一块木板,锯成宽7.5厘米、长15厘米两个矩形,制成体积大小相等的两个桥墩。 B、桥体找一块PVC塑料板,画好长60厘米,宽15厘米的一个矩形,沿线锯下PVC塑料矩形板,修整好边缘,做成.桥体。在矩形板上用铅笔标出四个桥梁的位置,并打好孔。表面贴有不透明反光胶带,中间用白色胶带扎成一条中垂线,用来分开马路。桥面按来左去右形摆放五辆小汽车模型。

半漂浮体系斜拉桥动力特性的有限元分析与试验研究_李湛

2010年12期(总第72期 )作者简介:李湛(1978-),男,内蒙古包头人,助理研究员,主要从事桥梁结构的检测与评价工作。 1工程概况 本桥为77+218+620+218+77m 五跨连续钢箱梁斜拉桥,桥面宽度30.1m ( 包含风嘴)。桥型布置见图1所示。钢箱梁采用正交异性板流线形扁平钢箱梁,梁高3.0m (箱内尺寸),宽30.1m (含风嘴)。桥塔采用钻石型桥塔,采用C50混凝土,塔柱顶高程210.00m ,承台顶高程6.00m ,桥塔总高204.00m ,其中上塔柱高68.50m ,中塔柱高92.00m ,下塔柱高41.00m 。塔柱采用空心箱形断面。 图1总体布置图/cm 2有限元模型的建立 斜拉桥是由索、塔、梁组合形成的一种空间受力结构,在对其进行有限元分析时,首先要将结构离散化,即将桥梁结构划分成若干个单元,各单元之间通过节点相连。进行动力特性分析,建立有限元模型时应该着重 于结构的刚度、质量和边界条件的模拟,为了考虑斜拉索的垂度引起的非线性,其力学模型处理有两类,一类最为简单,直接处理为弹性直杆单元包括单直杆和多直杆),另一类是等效弹性模量法,即索的弹性模量采用Ernst 公式予以折减,本次计算采用前者的简化处理方法。本文根据桥梁的设计资料采用土木工程通用计算软件Midas Civil 中建立了本桥的有限元模型。钢箱梁和主塔均采用梁单元模拟,斜拉索采用桁架单元模拟。全桥模型共有节点474个,梁单元300个,桁架单元168个,模型如图2所示。 图2有限元模型 3动力性能测试 本次固有振动参数采用天然脉动试验法进行测试, 天然脉动试验法即在桥面无任何交通荷载以及桥址附近无规则振源的情况下,测定桥跨结构由于桥址处风荷载、地脉动、水流等随机荷载激振而引起的桥跨结构微小振动响应。通过测量桥塔、钢箱梁和斜拉索的环境振动响应,识别大桥前15阶整体振动的动力特性参数,包括振型振动频率、振型和阻尼比。 测试时根据桥梁现场的实际情况采用有线与无线两 半漂浮体系斜拉桥动力特性的 有限元分析与试验研究 李 湛 (交通运输部公路科学研究院,北京100088) 摘 要:斜拉桥结构的振动特性参数(振动频率、振型及阻尼比)是大桥动力学性能的决定因素之一,也是结构 总体状态的一种表征。斜拉桥结构的结构体系问题、抗风性能、抗震性能均与大桥结构的动力特性密切相关。本文采用Midas Civil 结构分析软件建立了某半漂浮体系钢箱梁斜拉桥的三维有限元模型,分析了大桥的动力特性,并将有限元分析结果与大桥的动力性能测试结果进行了比较。关键词:半漂浮;斜拉桥;动力特性;有限元;脉动试验中图分类号:U448.27 文献标识码: B 237

斜拉桥模型制作

《斜拉桥模型制作》结题报告 学校: 课题组成员: 制作 材料收集: 收集查询资料: 指导老师: 斜拉桥是我国大跨境最流行的桥型之一,其造型之优美、奇特深深地吸引了我。所以,亲手做一个漂亮的斜拉桥模型是我的愿望。 下面我将详细介绍斜拉桥模型制作的设计理论、制作过程及关键工序 一、原理:斜拉桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。我们以一个索塔来分析。索塔两侧是对称的斜拉索,通过斜拉索将索塔和主梁连接在一起。现在假设索塔两侧只有两根斜拉索,左右对称各一条,这两根斜拉索受到主梁的重力作用,对索塔产生两个对

称的沿着斜拉索方向的拉力,根据受力分析,左边的力可以分解为水平向向左的一个力和竖直向下的一个力;同样的右边的力可以分解为水平向右的一个力和竖直向下的一个力;由于这两个力是对称的,所以水平向左和水平向右的两个力互相抵消了,最终主梁的重力成为对索塔的竖直向下的两个力,这样,力又传给索塔下面的桥墩了。斜拉索数量再多,道理也是一样的。之所以要很多条,那是为了分散主梁给斜拉索的力而已。 二、模型制作及工序 1、主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行式。 2、模型全长100厘米,宽14.5 厘米,高40 厘米,桥墩高6.8 厘米,索根。 3、模型制作过程: A、桥墩找一块木板,锯成宽1.5厘米、长10厘米两个矩形,

制成体积大小相等的两个桥墩。 B、桥体找一块木板,画好长100厘米,宽14.5厘米的一个矩形,木板,修整好边缘,做成桥体。在矩形板上用铅笔标出四个桥梁的位置,并打好孔。表面贴有不透明反光胶带。 C、塔架选用木条,两两斜插入桥的孔中,使木条顶部相连接成A字形塔架。在塔架上用记号笔标出拉索绳子的位置。 D、绕绳索用毛线做成的绳索反复沿桥梁、塔架缠绕,按照人字形上下环绕一条斜拉索;再在里层平行于第一条拉索,用同样的方法环绕好第二条拉索。 4、按照以上四道工序,一个斜拉桥模型就制作完成了。 三、收获和体会: 通过资料整理,我们了解到了更多的斜拉桥相关知识,增强了我们的动手能力和知识面,也让我们懂得了集体的重要性,另外我们也从我们的主观方面领略了数学的博大精深。 世界上建成的著名斜拉桥有:苏通长江大桥(主跨1088m),法国诺曼底斜拉桥(主跨856米),南京长江二桥南汊桥钢箱梁斜拉桥(主跨628米),以及1999年日本建成的最大跨度的多多罗大桥(主跨890米)。我国至今已建成各种类型的斜拉桥100多座,其中有50余座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了我国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家,在世

斜拉桥模型制作设计图

斜拉桥模型制作设计图 、模型概况 斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。 斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。 模型全长18.2米,高3.46米,桥面宽0.55米,索96根。 斜拉桥模型三维图见图1、2。

图2斜拉桥模型桥塔三维图 二、材料 全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用①4钢筋,桥墩以及基础为钢筋混凝土结构。 有机玻璃主要材料性能初步假设为:弹性模量E=3.6 x 103 N/mm 2。斜拉索采用①4钢筋(Q235),强度标准值f yk=235N/mm 2,弹性模量E=2.1 x i05N/mm 2。 三、模型结构图 1、斜拉桥模型立面布置 斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中 心左右对称。

图3 斜拉桥模型布置图(单位:mm)注:以后图表中尺寸均采用毫米为单位。 2、主梁 主梁全长18.2米,横截面见图4 3、塔 塔高3. 16米,详细尺寸见图5?7。塔与梁4250 丄9700 丄4250 18200 “ .....H^lvrr.'——. O6§ 0032边墩混凝土桥墩边墩

不直接连接,依靠拉索连接。梁底距离塔横梁20毫米。 塔墩高0.65米,地面以上0.4米,地面以下开挖0.25米。 为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。塔与墩连接处还要加钢板锚固。塔与墩连接的详细构造见图15?17

立面图 I 梁 100 125 1500 320 」295 混凝土墩 158.6 172.5 125 210 混凝土墩 地坪 + 1 : 1 、 1 ? % V. < n * 卫 * A r - II II 屮 1 ft 1 15 ' 01 1 1 0】 I 15 匚 0 — 5 7 P O 1 T O 1.0 X O Q ^ ^ ^ Z ^ Q / / i + q 1 W 5 5 n A 3 A 3 5 7图5塔立面立剖面图图索塔塔面剖面图面图

斜拉桥抗震结构体系研究

斜拉桥抗震结构体系研究 1、概述 斜拉桥由桥塔、桥面系、斜拉索、边墩(锚固墩、辅助墩) 和支撑连接装置组成(支座等)。斜拉桥的大部分质量集中在桥面系,因而,地震惯性力也主要集中在桥面系。桥面系的地震惯性力通过斜拉索和支座传递给桥塔、边墩,再由桥塔、边墩传递给基础,进而传递给地基承受。在工程界,斜拉桥的结构体系一般是根据梁、塔、索的结合方式来划分的。梁、塔、索的结合方式不同,则桥面系的地震惯性力的传递方式不同,因此地震反应也将大不相同。 从抗震设计的角度来看,双塔三跨斜拉桥的结构体系大致可分成四类: ①全漂浮体系或半漂浮体系:塔、梁分离,塔与梁之间设0 号索或滑动铰支承;②塔、梁固结体系或塔、梁固定铰支承体系; ③塔、梁不对称约束体系:塔、梁分离,一个塔与梁之间采用固定铰支承,另一个塔与梁之间采用滑动铰支承;④塔、梁弹性约束体系:塔、梁分离,塔与梁之间除设滑动铰支承外,还增设纵向弹性约束装置或构件。 斜拉桥的整体抗震性能主要取决于所选用的结构体系。因此,对各种结构体系进行分析研究,从中选用抗震性能较好的结构体系,在斜拉桥的抗震设计中是非常关键的一步。 2、各种结构体系斜拉桥的抗震性能比较 斜拉桥的整体抗震性能一般从两个方面进行评价,即内力和位移。在地震作用下,斜拉桥的内力和位移都是越小越好。但这两个方面往往是相互矛盾的。要使得内力反应小,往往要付出较大位移的代价,反之也一样。结构的周期越长,则加速度越小,因而内力也越小。不同的结构体系,梁、塔、索的结合方式不同,则体系的刚度也不同。体系的刚度越小,则周期越长,加速度越小,而位移却越大。 (1) 全漂浮体系或半漂浮体系 全漂浮体系或半漂浮体系的塔、梁分离,全漂浮体系的塔与梁之间仅通过0 号索支承,而半漂浮体系的塔与梁之间设滑动铰支承。与其它体系相比,全漂浮体系或半漂浮体系的纵桥向刚度最小,周期最长,因此在地震作用下的位移反应最大,但塔柱的内力反应最小。当斜拉桥的跨度不大时,桥梁的整体刚度相对较大,位移还不成问题,主要是内力控制设计,这时,采用全漂浮体系或半漂浮体系显然是明智的选择,特别是在烈度较高的地区。而随着斜拉桥跨度的增大,位移的矛盾逐渐突出,全漂浮体系或半漂浮体系就越来越不适合了。对于跨度近1000m 的超大跨度斜拉桥,全漂浮体系或半漂浮体系将会导致相当大的位移,应避免采用。 (2) 塔、梁固结体系或塔、梁固定铰支承体系

斜拉桥模型的设计与制作

斜拉桥模型的设计与制作 王雪松、曹行松、李定杰 (西南交通大学希望学院,四川,南充) 摘要:斜拉桥是将桥面用许多拉索直接拉桥塔上的一种桥梁,是由承压的塔,受拉的索和承穹的桥体组合起来的一种结构体系。是现代大跨度桥梁的重要结构形式。斜拉桥模型制作是研究复杂构造细节重要手段之一,其目的是为培养自己的动手能力和结构分析提供数据和结论,也是检验数值理论和分析理论正确性的重要依据。文中详细介绍了斜拉桥模型结构的设计理论,制作过程及关键工艺。并针对设计和制作方面问题作了一定的探讨和研究。 关键字:斜拉桥;设计方案;模型制作 Designing and Building Cable-stayed Bridge Model Wang Xuesong、Cao Xingsong、Li Dingjie (Hope College of Southwest transportation university of Nanchong ,SiChuan) Abstract:Cable—stayed bridge is constructed by many cables which pull bridge face directly to the bridge tower.This architecture,composed of a stressed tower,pulled cables and bent beams,is an important construction form of modem spanning bridges.The model tests of cable—stayed bridge are an important method in studying complicated spanning structures.aiming at providing data and conclusion for structure analysis.It is also a main criteria for checking correctness of numerical theory and analytic theory.This paper de·scribes the design theory,building process and key techniques in details. Key words:cable-stayed bridge;design plan ;produce model 1 引言 斜拉桥的上部结构由梁、索、塔3个主要部分组成。它是一种桥面体系以加劲梁受压弯为主,支承体系以斜拉索受拉及桥塔受压为主的桥。斜拉桥的最大优点在于造型的多样化,平行双索面、斜索面或中央单索面配以各种不同造型的桥塔,形成刚性塔和轻型漂浮桥面风格,或者刚性桥面辅以挺拔塔柱的另一种姿态。斜拉桥作为一种拉索结构,比梁式桥具有更大的跨越能力,而且由于拉索的自锚特性,不需要如同悬索桥那样的巨大锚碗。在河口海的软土地基上需要建造大跨度桥梁时,具有更大的竞争力和可行性。加上斜拉桥良好的力学性能和经济指标,使斜拉桥近年来在世界各地开花结果。现代斜拉桥结构的变化发展,离不开理论分析、模型试验等技术手段。斜拉桥模型试验是研究复杂桥跨结构或复杂构造细节的重要手段之一。早在1829年,法国科学家柯西用模型试验研究了梁和板的振动问题,1846年英国罗伯特·斯坦福森等针对不列颠桥设计进行了1:6的桥梁结构模型试验。随着斜拉桥建设的发展,我国从2O世纪五六十年代起就展开了这方面的研究。特别是最近十几年,斜拉桥模型试验更是方兴未艾_8J。本文围绕斜拉桥的模型设计和制作等方面的问题作了一定的探讨和研究,详细介绍了斜拉桥模型结构设计方案、制作过程及关键工艺。 2 双塔斜拉桥模型设计 斜拉桥的主要组成部分为主梁、塔和拉索,它们相互关联,相互制约,因此不可能单独孤立的分别设计,应从总体考虑进行全桥模型的综合设计一般情况下,实际桥梁中以交通量确定桥面宽度模型制作中不作为考虑的重点,以一般量为依据确定桥面宽度。主跨的跨长由实际情况决定,但主跨与边跨的比例问题要加以考虑。主梁的高度不仅与主跨有关,还随着桥宽、主梁截面面积、主梁截面形式而变化,同时它在结构上还必须满足风动力稳定的要求;主梁的刚度对主跨的弯矩影响很大,要配合索、塔的刚度进行多层次比较选择。桥塔的结构形式、高度、断面面积会随着斜缆的布置形式而有很大的不同,尤其是要认真考虑其刚度的增加整个桥跨结构变形的影响。拉索在塔和主梁上的索距应配合塔和梁的高度、刚度、材料以及整

相关主题
文本预览
相关文档 最新文档