当前位置:文档之家› 波形发生器(课程设计)

波形发生器(课程设计)

波形发生器(课程设计)
波形发生器(课程设计)

波形发生器的设计

1.设计目的

(1)掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。

(2)学会安装与调试由分立器件与集成电路组成的多级电子电路小系统。 2.设计任务

设计一台波形信号发生器,具体要求如下: (1)输出波形:正弦波、方波、三角波。 (2)频率范围:3Hz -30Hz ,30Hz -300Hz ,300Hz -3KHz ,3KHz -30KHz 等4个波段。

(3)频率控制方式:通过改变RC 时间常数手控信号频率。

(4)输出电压:方波峰—峰值V U pp 24≤;三角波峰-峰值V 8U pp =,正弦波峰

-峰V 1U pp >。

3.设计要求

(1)完成全电路的理论设计 (2)参数的计算和有关器件的选择 (3)PCB 电路的设计

(4)撰写设计报告书一份;A3 图纸2张。报告书要求写明以下主要内容:总体方案的选择和设计 ;各个单元电路的选择和设计;PCB 电路的设计 4、参考资料

(l )李立主编. 电工学实验指导. 北京:高等教育出版社,2005

(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004

(3)谢云,等编著.现代电子技术实践课程指导.北京:机械工业出版社,2003

目录

一. 设计的方案的选择与论证 (3)

1.1 设计方案 (3)

1.1.1 设计方案1 (3)

1.1.2 设计方案2 (4)

1.1.3 设计方案3 (5)

1.2 方案选择 (6)

二. 单元电路的设计 (6)

2.1 方案设计 (6)

2.1.1 正弦波电路 (6)

2.1.2 方波电路 (11)

2.1.3 三角波电路 (12)

2.2 参数的选择 (13)

三、仿真 (14)

3.1 软件介绍 (14)

3.2 仿真的过程与结果 (15)

四、PCB制版 (15)

4.1 软件简介 (15)

4.2 PCB电路板设计步骤 (20)

五、总结与心得 (21)

六、附录 (22)

6.1 材料清单 (22)

6.2 原理图 (23)

6.3 PCB板图 (24)

七、参考文献 (25)

一.设计方案的选择与论证

产生正弦波、三角波、方波的电路方案有多种。

由于本次设计要求频率并未超过1MHz,因此正弦波的产生可以通过RC桥式正弦波振荡电路产生,也可以通过滤波法或折线法对三角波进行变换来产生,或者利用差分放大电路实现三角波-正弦波变换。

三角波一般通过积分电路对方波进行变换来获得。

方波一般通过电压比较器来产生。

综上可以得出两种设计方案:

(一)设计方案

1.1.1 设计方案1

由三角波,方波发生器产生三角波和方波信号,然后通过转换电路将三角波转换成正弦波信号,其电路框图如下所示:

比较器积分器正弦波变换器

图一、方案一原理框图

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。

图二、差分放大电路

但是相对于正弦波振荡电路来说,此方案较为复杂,且对器件要求较高。

1.1.2 设计方案2

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。其电路框图如下图所示:

图三、方案二原理框图

1.1.3设计方案3

利用ICL8038单片集成电路来产生高精度正弦,方形,三角, 锯齿波和脉冲波形,其原理框图如下图所示

图四、方案三原理框图

正弦波变换器

过零比较器

积分器

1.2方案选择

最终整体方案选择方案2,主要是由于方案1中的正弦波变换器多为差分电路,然而差分电路较为复杂,而且对器件要求较高,方案三中的ICL8038单片集成电路造价较高,因此,综合考虑之后选择方案2。

二.单元电路设计

2.1方案设计

2.1.1 正弦波发生电路

(1)方案一、RC 振荡电路

采用RC 选频网络构成的振荡电路称为RC 振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz 的低频信号。因为对于RC 振荡电路来说,增大电阻R 即可降低振荡频率,而增大电阻是无需增加成本的。 RC 串并联网络的频率特性可以表示为:

)

ω1ω(31ω1ω1ω12

1

2

RC

RC j RC j R C j R RC j R

f Z

Z Z

U

U F

+=

++++=

+=

=

?

?

?

RC

o

1

ω=

,则上式可简化为

)-(ω

ωωω3

1O O j F

+=

?

以上频率特性可分别用幅频特性和相频特性的表达式表示如下:

|

F

?

|)ω

ω-ωω(

312

2

o

o +=

)-(

3

ωωωωarctan o

o =

根据上式可以分别画出RC 串并联网络的幅频特性和相频特性。

RC 正弦波振荡电路示意图:

图五、RC 正弦波振荡电路

根据RC 串并联网络的选频特性及上述平衡条件容易得到RC 正弦波振荡电路的振荡频率为:

RC f

o

π21=

振荡的幅度平衡条件| F A ?

?

|1=

是表示振荡电路已达到稳幅振荡时的情况。若要振荡电路能够自行起振,开始时必须满足

1||>?

?F A 的幅度条件。

已知当

f

f

o

=

时,

31

||=

?

F ,由此可求得振荡电路的起振条件为:

3

||>?

u A

同相比例运算电路输出电压与输入电压之间的比例系数为:

3R

1′>

+

R

F

(即 RF=2R ′)

因此,根据RC 振荡电路的频率计算公式RC

f

o

π21

=

可知,只需改变R

或C 的值即可。本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少,其最大幅值为电路的输出电压峰值,最小值为0。

(2)方案二、LC 振荡电路

LC 振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC 正弦波振荡电路有变压器反馈式LC 振荡电路、电感三点式LC 振荡电路和电容三点式LC 振荡电路,它们的选频网络采用LC 并联谐振回路。

LC 振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间

互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电IC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。

频率计算公式f=1/2π√LC

开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。

并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。

常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。

(3)方案三、石英晶体正弦波振荡电路

并联型石英晶体正弦波振荡电路

如果用石英晶体取代LC振荡电路中的电感, 就得到并联型石英晶体正弦波振荡电路, 如左下图所示, 电路的振荡频率等于石英晶体的并联谐振频率。

图六、并联型石英晶体振荡电路图七、串联型石英晶体振荡电路

串联型石英晶体振荡电路

如右上图所示为串联型石英晶体振荡电路。电容Cb为旁路电容, 对交流信号可视为短路。电路的第一级为共基放大电路, 第二级为共集放大电路。若断开反馈, 给放大电路加输入电压是, 极性上“+”下“-”;则T1管集电极动态电位为“+”, T2管的发射极动态电位也为“+”。

只有在石英晶体呈纯阻性, 即产生串联谐振时, 反馈电压才与输入电压同相, 电路才满足正弦波振荡的相位平衡条件。所以电路的振荡频率为石英晶体的串联谐振频率fS。调整Rf的阻值, 可使电路满足正弦波振荡的幅值平衡条件。

但是石英晶体正弦波振荡电路常用于替换LC振荡电路,常应用于高频电路,低频电路一般选择RC振荡电路

2.1.2 方波电路:

(1)方案一、滞回比较器

电路由反相输入的滞回比较器和RC电路组成。

图八、滞回比较器

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。

Uo通过Rf对电容C正向充电。反相输入端电位Un随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。

随后,Uo又通过Rf对电容C反向充电,Un随时间逐渐增长而减低,当t 趋于无穷大时,Un趋于-Uz。

但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。上述过程周而复始,电路产生了自激振荡。

(2)方案二、一般单限比较器

可以将其接在正弦振荡电路的输出端,也可以将其接在三角波输出电路的输出端。

图九、一般单限比较器

其中6管脚输入环节一产生的正弦信号,其中方框内决定方波的振幅,振幅为限压管电压+24伏。

方案一可以自己产生自激振荡,可以作为总电路的输入,方案二并不能产生自己震荡,但是两个方案大体思路相同

由于第一部分电路选择了正弦波自激震荡,从简化电路的角度来考虑,因此第二部分电路无需其自己产生自激震荡。

2.1.3 三角波电路 (1)方案1、积分电路

三角波的产生是由积分电路实现的,积分电路将方波转换成三角波。在方波发生电路中,当阈值电压数值较小时,可将电容两端的电压看成为近似三角波。所以只要将方波电压作为积分运算电路的输入,在其输出就得到三角波电压。

积分电路的原理图如下: 原理图:

图十、三角波发生电路

由于集成运放的反相输入端“虚地”,故u u C O -= ;又由于“虚断”,运放反相输入端的电流为零,则i i C I =,故R i R i u C I I ==,由以上几个表

dt u u I O RC ?=

1

达式可得积分电路输入电压和输出电压的关系为:

由于输入的是方波,所以 Ur 的值为两个状态,当Ur>0时,t

u

u RC I

O =,

输出波形以

RC

u

I

的斜率上升,当 uI<0时,输出波形以

RC

u

I

的斜率下降。

上升和下降的斜率相等所以波形对称,形成三角波。

当方波发生电路的输出电压u01=-Uz 时,积分运算电路的输出电压u0将线性下降;而当u01=Uz 时,将线性上升。

输出波形频率为:

2.2参数的选择

2.2.1 正弦波振荡电路:

选频:

RC f

o

π21

=

3

||>?

u A

同相比例运算电路输出电压与输入电压之间的比例系数为:

3R

1′

>+

R

F

(即 R F =2R ′) R 5=2R 4,R 4=5.23k ,R 5=12K ,

2.2.2 过零比较器:

Upp ≤24V Dz ≤24V D2=24v ,D1=24v

U T1=R 10*U z /(R 10+R 8)

2.2.3 三角波由积分电路:

=0U (-RC

t t U )

-(1121)+)(10t U U 0=8V,U 1=24V,T 方波=f 方波

RC=-3T 方波/2 RC=-3/2f 方波

三、仿真

3.1软件介绍

Multisim 是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT 公司)推出的以Windows 为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

通过Multisim 和虚拟仪器技术,PCB 设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim ,您可以立即创建具有完整组件库的电路图,并利用工

业标准SPICE模拟器模仿电路行为。

借助专业的高级SPICE分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。

与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。

3.2仿真的过程与结果在仿真过程中常常会遇到难以得出自己预计的结果,这时需要我们根据相应的公式估算出相应的值,再在计算值附近选用大小不同的器件来确定实际值。

R1=25k,R2=25k,C1=10nf,C2=10nf,R5=2R4,时有正弦波产生

R6=50K*50%,C3=50nf,R7=10K,T=1.5ms,时有三角波产生

四、PCB制版

4.1 软件简介

PROTEL是Altium公司在80年代末推出的EDA软件,在电子行业的CAD 软件中,它当之无愧地排在众多EDA软件的前面,是电子设计者的首选软件,它较早就在国内开始使用,在国内的普及率也最高,有些高校的电子专业还专门开设了课程来学习它,几乎所有的电子公司都要用到它,许多大公司在招聘电子设计人才时在其条件栏上常会写着要求会使用PROTEL。

PCB(PrintedCircuitBoard)-----中文名称为印制电路板,又称印刷电路板、印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的提供者。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。

4.2 PCB电路板设计步骤:

1、按照原理图绘制波形发生器电路原理图,并对该原理图进行编译确保电路原理图制作正确。

2、在绘制好原理图后利用封装管理器执行【工具】→【封装管理器】查看各元器件的封装是否符合要求,检查线路有无错误。

3、检查无错误后,生成网络表。

[

C1

RAD-0.3

Cap

]

[

C2

RAD-0.3

Cap

]

[

C3

RAD-0.3

Cap

]

[

D1

DIO7.1-3.9x1.9 Diode 1N4148

]

[

D2

DIODE-0.7

24v

]

[

D3

DIO7.1-3.9x1.9 Diode 1N4148

]

[ D4

DIODE-0.7

24v

]

[

D5

DIO10.46-5.3x2.

8

Diode 1N4007

]

[

D6

DIO10.46-5.3x2.

8

Diode 1N4007

]

[

R1

AXIAL-0.4

Res2

]

[

R2

AXIAL-0.4

Res2

]

[

R4

AXIAL-0.4

Res2

]

[

R5

AXIAL-0.4

Res2

]

[

R6

AXIAL-0.4

Res2

]

[

R7

AXIAL-0.4

Res2

]

[

R8

AXIAL-0.4

Res2

]

[

R9

AXIAL-0.4

Res2

]

[

U1

DIP14

LM324AN

]

[

U2

SO14

LM324AD

]

[

U3

SO14

LM324AD

]

(

VCC

U1-4

U1-11

U2-4

U2-11

U3-4

U3-11

)

(

NetC1_1

C1-1

R1-2

)

(

NetC1_2

C1-2

D1-2

D3-1

R8-2

U1-1

)

(

NetC2_2

C2-2

R2-2

U1-3

)

(

NetC3_1 C3-1

R6-1

R7-1

U3-2

)

(

NetC3_2 C3-2

R7-2

U3-1

)

(

NetD1_1 D1-1 D3-2

R5-2

)

(

NetD2_2

D2-2

D4-2

)

(

NetD4_1

D4-1

R6-2

R9-2

)

(

NetD5_2

D5-2

D6-1

R8-1

U2-2

)

(

NetR4_2

R4-2

R5-1

U1-2

)

(

NetR9_1

R9-1

U2-1

)

(

GND

C2-1

D2-1

D5-1

D6-2

R1-1

R2-1

R4-1

U2-3

U3-3

)

4、生成工程变化订单ECO,检查是否有错误

5、启动PCB编辑器并设置PCB工作层面和PCB工作参数,利用向导或直接设置电路板的几何尺寸并设置电路板禁止布线层,利用设计同步器装入网络

Update PCB Document PCB1.PcbDoc

6

课程设计波形发生器

一、设计任务和要求 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 二、原理电路设计: (1)方案的提出 方案一: ①先由文氏桥振荡产生一个正弦波信号(右图) ②把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 ③把方波信号通过一个积分器。转换成三角波。 方案二: ①由比较器和积分器构成方波三角波产生电路。(下图) ②然后通过低通滤波把三角波转换成正弦波信号。 方案三: ①由比较器和积分器构成方波三角波产生电路。(电路图与方案二相同) ②用折线法把三角波转换成正弦波。(下图) (2)方案的比较与确定 方案一:

文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f 时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时, 如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)单元电路设计 此电路由反相输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。设某一时刻输出

利用Labview实现任意波形发生器的设计

沈阳理工大学课程设计专用纸No I

1 引言 波形发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备。随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。 波形发生器的核心技术是频率合成技术,主要方法有:直接模拟频率合成、锁相环频率合成(PLL),直接数字合成技术(DDS)。 传统的波形发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的波形发生器。但基于模拟技术的传统波形发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。随着待测设备的种类越来越丰富,测试用的激励信号也越来越复杂,传统波形发生器已经不能满足这些测试需要,任意波形发生器(AWG)就是在这种情况下,为满足众多领域对于复杂的、可由用户自定义波形的测试信号的日益增长的需要而诞生的。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器输出频率较低。目前的任意波形发生器普遍采用DDS(直接数字频率合成)技术。基于DDS技术的任意波形发生器(AWG)利用高速存储器作为查找表,通过高速D/A转换器对存储器的波形进行合成。它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机编辑,产生真正意义上的任意波形。

模电课程设计(波形发生器)

课程设计 课程名称模拟电子技术基础课程设计题目名称波形发生电路_ 学生学院物理与光电工程学院 专业班级电子科学与技术(5)班 学号 学生姓名 指导教师 2013-12-10

一、题目: 波形发生电路 二、设计任务与技术指标 要求:设计并制作用分立元件和集成运算放大器组成的能产生正弦波、方波和三 角波的波形发生器。 基本指标: 1、输出的各种波形基本不失真; 2、频率范围为50H Z ~20KH Z ,连续可调; 3、方波和正弦波的电压峰峰值V PP >10V ,三角波的V PP >20V 。 三、电路设计及其原理 1) 方案的提出 方案一 ①用RC 桥式振荡器产生正弦波。 ②正弦波经过一个过零比较器产生方波。 ③方波通过积分运算产生三角波。 方案二 ①由滞回比较器和积分运算构成方波和三角波发生电路。(如图1所示) ②再由低通滤波把三角波转成正弦波。 方案三 ①由滞回比较器和积分运算构成方波和三角波发生电路。(同方案二) ②利用折线法把三角波转换成正弦波。(如图2所示) 图1 图3 图2

2)方案的比较 方案一中以RC串并联网络为选频网络和正反馈网络、并引入电压串联负反馈,从而产生正弦波。为了稳定正弦波幅值,一般要在反馈电阻一边串联一对反向的并联二极管,但这样会使正弦波出现交越失真。R1/R2=2时,起振很慢; R1/R2>2时,正弦波会顶部失真。调试困难。还有,RC桥式振荡器对同轴电位器的精确度要求较高,否则,正弦波很容易失真。 方案二的低通滤波产生正弦波适宜在三角波频率固定或变化小时使用,而本次课程设计要求频率50Hz-20KHz,显然不适合。 方案三滞回比较器和积分比较器首尾相接形成正反馈闭环系统,这样就形成方波发生器和三角波发生器。滞回比较器输出的方波经积分产生三角波,三角波又触发比较器自动翻转成方波。 另外,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。虽然反馈网络中电阻的匹配困难,但可以通过理论计算出每个电阻阻值后再调试。这样可以省下很多功夫。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 3)单元电路设计 方波---三角波产生电路

模电课程设计-波形发生器

一、设计题目 波形发生电路 二、设计任务和要求 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;输出电压峰峰值V PP≥20V 三、原理电路设计: (1)方案的提出 方案一: ①先由文氏桥振荡产生一个正弦波信号(右图) ②把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 ③把方波信号通过一个积分器。转换成三角波。 方案二: ①由比较器和积分器构成方波三角波产生电路。(下图) ②然后通过低通滤波把三角波转换成正弦波信号。 方案三: ①由比较器和积分器构成方波三角波产生电路。(电路图与方案二相同) ②用折线法把三角波转换成正弦波。(下图)

(2)方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,C1=C2。即f=f 如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)单元电路设计

微机原理课程设计波形发生器

微机原理课程设计 波形发生器 基本要求: (1)通过按键选择波形,波形选择(方波、三角波)。8255 A 和0832 (2)通过按键设定波形的频率,同时波形频率在数码管上显示。8255A (3)频率设定后,通过8253精确计时来设置波形宽度大小,比如方波的占空比。(4)8259A产生中断,用示波器显示输出波形。 附加要求: (1)通过按键可以增大或者降低频率; (2)显示正弦波。

目录 一理论部分 1.1 课程设计的目的 (2) 1.2 课程设计要求与内容 (2) 1.3 总体设计方案 (2) (1)设计思想及方案论证 (2) (2)总体设计方案框图 (3) 1.4 系统硬件设计 (4) 1.5 系统软件设计 (5) 二实践部分 2.1 系统硬件原理简介 (6) 2.2 程序调试 (9) 2.3 软件系统的使用说明 (9) 三课程设计结果分析 3.1 实验结果 (10) 3.2 结果分析 (11) 四课程设计总结 (11) 五附录 5.1源程序及说明 (12)

波形发生器 一 理论部分 1.1 课程设计的目的 (1)综合模拟电子线路、数字电子技术和微机原理等多门专业基础课程的知识,使学生对 以计算机为核心的通信、测量或控制系统有个全面了解和实践的过程。 (2)掌握常规芯片的使用方法、掌握简单微型计算机应用系统软硬的设计方法,进一步锻炼同学们在微型计算机应用方面的实际工作能力,强化本学科内容并扩展知识面。 (3)体验分析问题、提出解决方案、通过编程等手段实现解决方案、不断调试最终达到设计要求的全过程。 (4)培养学生的创造力和对专业的适应性。 1.2 课程设计的内容和要求 1、通过按键选择波形,波形选择(方波、三角波、正弦波)。8255 A 和0832 2、通过按键设定波形的频率,同时波形频率在数码管上显示。8255A 3、频率设定后,通过8253精确计时来设置波形宽度大小,比如方波的占空比。 4、8259A 产生中断,用示波器显示输出波形。 5、通过按键可以增大或者降低频率; 6、画出电路原理图,说明工作原理,编写程序及程序流程图。 1.3 总体设计方案 (1)设计思想及方案论证 由于要求达到模拟信号波形发生,因此要由D/A 转换芯片0832来来完成此项任务,由8253形成波形的主要做法是:先输出一个下限电平,将其保持t 然后输出一个稍高的电平,在保持t ,然后重复此过程,因此需要延长0832输入数据的时间间隔来改变频率。如图1信号发生波形图所示。0832输入的数据的延时可以通过软件完成,也可以通过硬件完成。由于实验要求输出的波的频率可以改变,且精确,所以选用硬件延时 硬件延时主要由计时器8253和中断控制器8259来实现。由8253输出的方波的高低电平,来触发8259的IR0端,8259给CPU 中断信号,CPU 中断来执行相应的中断子程序,中断子程序为向0832输出数据的程序,通过选择此程序可以产生锯齿波,方波,正弦波。由于0832产生的方波的频率可以控制,所以每次中断执行波形发生程序的时间间隔可以精确控制。以此来控制输出的波形频率。最后通过8255驱动LED 数码显示管,实现对输入的频率的显示,由键盘直接输入波形频率,通过LED 数码显示管显示。 +5V 0V 图1 信号发生波形图

课程设计——波形发生器

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

波形发生器课程设计报告

课程设计报告书 波形发生器 学院电子与信息学院 专业班级 学生姓名 学生学号 指导教师 课程编号 课程学分1 起始日期2017 波形发生器 一、选题背景 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、矩形波的函数波形发生器。 二、方案论证 1、设计题目要求 1.1、功能要求 同时三通道输出,采用正弦波、矩形波、三角波的级联结构; 电源由稳压电源供给; 1.2、指标要求: 输出电压要求正弦波Vp-p>10V、矩形波Vp-p>10V、三角波Vp-p>4V; 输出波形频率范围为100Hz—2kHz;

通带内输出电压幅度峰峰值误差不大于5%; 矩形波占空比可调整,调整范围:10%~90%; 2、总体设计方案 2.1设计思路 根据模拟电子技术基础课程,可通过RC桥式正弦波振荡电路产生正弦波,通过比较器变换成矩形波,再通过积分电路变换成三角波;或者同过滞回比较器和RC电路组成的矩形波发生电路产生矩形波,通过积分电路变换成三角波,再用滤波法变换成正弦波。 2.2设计方案 满足上述设计功能可以实施的方案很多,现提出以下几种方案: 2.2.1方案一 ①原理框图 图2.2.1方案一原理框图 ②基本原理 通过RC桥式正弦波振荡电路,产生正弦波,改变电阻R和电容C的值实现频率可调;通过单限比较器,产生矩形波,接入参考电压,通过改变与参考电压串联电阻的阻值,实现占空比可调;通过积分电路,产生三角波。 2.2.2方案二 ①原理框图

DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告 目录 第1章系统设计方案 (2) 1.1 设计思路 (2) 1.2 方案比较与选择 (2) 第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2) 2.2 数模转换电路 (3) 第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8) 4.1 proteus的调试 (8) 第5章结论与总结 (11) 5.1 结论 (11) (系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。) 5.2 总结 (11) (这是一个主观的总结,谈谈自己收获和不足等方面的内容。) 第1章系统设计方案 1.1 设计思路 (一)、课设需要各个波形的基本输出。如输出矩形波、锯齿波,正弦波。这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。这样做的好处在于,查表所耗费的时钟周期相同,这样输出的点与点之间的距离就相等了,输出的波形行将更趋于完美,当然更让我们感到的高兴的是它输出波形的频率将近达到了100赫兹,能够满足我们设计的扩展要求了。

波形发生器——模电课程设计

0000大学机电工程学院本科生课程设计 课程:模拟电子技术基础 题目:波形发生器 班级: 11111111111111 姓名: 111111 学号: 100000000 指导老师: 000000 完成日期: 2012.7.6

波形发生器是用来产生一种或多种特定波形的装置,这些波形通常有正弦波、方波、三角波、锯齿波,等等。以前,人们常用模拟电路来产生这种波形,其缺点是电路结构复杂,所产生的波形种类有限。 随着单片机技术的发展,采用单片机电路产生各种波形的方法已变的越来越普遍。虽然,可能产生的波形会呈微小的阶梯状,但是,只要设计得当,这一问题可以得到一定的解决。本设计使用的是555_virtual构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等。

1设计的目的及任务 (4) 1.1 课程设计的目的 (4) 1.2 课程设计的任务与要求 (4) 1.3 课程设计的技术指标 (4) 2 电路设计总方案及原理框图 (6) 2.1 电路设计原理框图 (6) 2.2 电路设计原理图 (6) 2.3 方案设计 (7) 2.4 主要芯片介绍 (7) 3 各部分电路设计 (9) 3.1 系统的电路总图 (9) 3.2 正弦波 (9) 3.3 方波产生电路 (10) 3.4 三角波 (12) 4 电路仿真 (14) 4.1 Multisi (14) 4.2 仿真电路 (14) 5 实验结果 (17) 5.1 调试产生方波-三角波的电路 (17) 5.2 设计数据 (17) 6 设计总结 (18) 7 仪器仪表清单 (20)

函数波形发生器课程设计报告

课程设计报告 学生姓名:学号: 学院:电气工程学院 班级: 题目: 函数波形发生器的设计 指导教师:职称: 年月日

一. 设计要求 函数波形发生器 基本要求: (1)用运算放大器和分立元件实现,生成方波、三角波、矩形波 (2)波形的幅值、频率可调 (3)用运算放大器和分立元件实现正弦波(拓展) 二. 设计原理及框图 图1 方波、三角波、正弦波、锯齿波、矩形波信号发生器的原理框图 原理: 1.该电路通过电压比较器即可组成方波信号发生器。 2.然后经过积分电路产生三角波,通过改变方波的占空比不仅可以得到锯齿波, 还可得到额外的矩形波。 3.三角波通过低通滤波电路来实现正弦波的输出。 电压比较器 方波 占空比可调 积分电路 锯齿波 积分电路 三角波 低通发生器 正弦波 通过四综示波器将三角波、方波、锯齿波、矩形波、正弦波显示出来 矩形波

三.器件说明 类型规格数量备注 电阻20KΩ 1 R1 10KΩ 3 R2、R3、R4 5KΩ 1 R5 510Ω 2 R11、R12 滑动变阻器50KΩ 1 R6 20 KΩ 2 R7、R8 5MΩ 1 R9 100KΩ 1 R10 集成运放3554AM 2 U1、U2 电容240nF 1 C1 2.2uF 2 C2、C3 开关单刀双掷开关 1 J1 普通二极管1N4148 1 D3 稳压二极管1N4731A 2 D1、D2 示波器四综示波器 1 XSC1

四.设计过程 4.1方波——三角波设计电路原理 图2 方波-三角波函数发生器电路 参数的计算为: 1.方波接入示波器的A通道,三角波接入示波器的B通道。 2.将比较器的输出电平稳定在±5V,选用IN4731(4.3V),其Uo=±(4.3+0.7)=±5V。 3.可变电阻R7、R8用来改变电阻比值以改变方波和三角波的输出幅值。取R2为10kΩ,则R1为20kΩ,需要改变幅值时再使用可变电阻。 4.f0需在10Hz到100Hz的范围内以10倍频程变化,则电路用电容C1来实现10倍频程变化,用R=R5+R6来实现每个频程内的f0的连续变化,设R5为5k Ω,则R6约为50kΩ,计算f0从10Hz到100Hz时电路中的电容C1有: ,

电子课程设计-多种波形发生器报告

\ 课题名称多种波形发生器 课题代码203 … 院(系) 专业电气工程及其自动化班级 学生 时间 指导教师签名: @ 教研室主任(系主任)签名:

一.| 二.设计目的 1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力。 2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特 性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。 3、学会使用EDA软件Multisim对电子电路进行仿真设计。 4、初步掌握普通电子电路的安装、布线、调试等基本技能。 5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会 撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。 二.设计内容、要求及设计方案 ~ 1、任务 设计并制作能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。 2、要求 1)输出的各种波形工作频率范围 Hz~20 kHz连续可调; 2)正弦波幅值±l0V,失真度小于%; 3)方波幅值±l0V; 4)三角波峰一峰值20V;各种输出波形幅值均连续可调;

5)设计电路所需的直流电源。 | 3、总体方案设计 1)设计思路 波形产生电路通常可采用多种不同电路形式和元器件获得所要求的波形信号输出。波形产生电路的关键部分是振荡器,而设计振荡器电路的关键是选择有源器件,确定振荡器电路的形式以及确定元件参数值等。具体设计可参考以下思路。 ①用正弦波振荡器产生正弦波输出,正弦波信号通过变换电路 得方波输出(例如用施密特触发器),用积分电路将方波变换成三角波或锯齿波输出; ②利用多谐振荡器产生方波信号输出,用积分电路将方波变换 成三角波输出,用折线近似法将三角波变换成正弦波输出; ③用多谐振荡器产生方波输出,方波经滤波电路可得正弦波输 出,方波经积分电路可得三角波输出; ④利用单片函数发生器568038,集成振荡器E1648及集成定时 器555/556等可灵活地组成各种波形产生电路。 — 三、设计方案 1)设计方案 此次,多种波形发生器的实验,从设计思路可以看出,主要用到了正弦波振荡器,施密特触发器,积分电路等。基于本学期

波形发生器课程设计

波形发生器设计 设计总说明 本系统采用AT89C51单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)运算放大器、按键等。采用AT89C51单片机和DAC0832芯片,直接连接键盘和显示。该种方案主要对AT89C51单片机的各个I/O口充分利用. P1口是连接键盘以及接显示电路,P2口连接DAC0832输出波形.这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本.也对按照系统便携式低频信号发生器的要求所完成.占用空间小,使用芯片少,低功耗。 通过按键控制可产生方波、三角波、正弦波、梯形波、锯齿波。其设计简单、性能优好,具有一定的实用性。正弦波、三角波、方波、梯形波、锯齿波是较为常见的信号。在科学研究及教学实验中常常需要这几种信号的发生装置。 关键字:AT89C5,DAC0832,运算放大器

目录 1绪论 (1) 1.1设计目的 (1) 1.2设计容 (1) 2系统设计方案 (3) 2.1系统组成 (3) 2.2系统工作原理 (3) 3系统硬件电路设计 (4) 3.1单片机最小系统设计 (4) 3.2其他硬件模块电路设计 (4) 3.2.1 DAC0832芯片介绍 (4) 3.2.2单片机AT89C51介绍 (6) 4系统软件程序设计 (10) 4.1主程序设计 (10) 4.2其他子程序设计 (11) 4.2.1锯齿波流程设计 (11) 4.2.2梯形波流程设计 (12) 4.2.3三角波流程设计 (13) 4.2.4方波流程设计 (14) 4.2.5正弦波流程设计 (15)

5 调试与仿真 (18) 6 总结 (19) 致 (21) 参考文献 (22)

基于单片机的波形发生器的课程设计报告

重庆科技学院学生实习(实训)总结报告 重庆科技学院 学生实习(实训)总结报告 学院 : 电气与信息工程学院专业班级 :测控 学生姓名 :学号: 设计地点(单位)I506 设计题目 :基于单片机的波形发生器的设计 完成日期:2014年03月17日 指导教师评语:____________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ________________________________________ 成绩(五级记分制) :___________________________指导教师(签字):____________________________

目录 一、实习的任务要求与意义 (1) 1.1 设计要求 (1) 1.2 设计任务 (1) 1.3 基本功能与性能指标 (1) 1.4 实习的意义 (1) 二、设计方案 (2) 2.1 硬件选择 (2) 2.2 系统总体设计 (3) 三、系统硬件设计 (4) 3.1 单片机的最小系统 (4) 3.2 按键电路设计 (5) 3.3 LCD 显示的设计 (5) 四、系统软件设计 (7) 4.1 主程序设计 (7) 4.2 LCD 显示子程序设计 (8) 4.3 D/A 转换子程序设计 (8) 五、调试及性能分析 (9) 5.1 调试步骤 (10) 5.2 性能分析 (12) 参考文献 (13) 附录 1 系统硬件电路图 (14) 附录 2程序代码 (15)

单片机课程设计波形发生器报告

目录 第一章概述 (2) 第二章设计任务 (3) 第三章硬件设计 (3) 系统主体构造 (3) 硬件元件概述 (3) 硬件连接 (9) 硬件参数简介 (10) 第四章软件设计 (10) 锯齿波程序设计 (11) 三角波程序设计 (12) 正弦波程序设计 (13) 第五章系统功能描述和功能 (15) 第六章设计心得 (16) 第七章参考文献 (16) 附录 (16) 程序设计 (20)

第一章概述 课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的、系统的、综合的工程训练。在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程、设计要求、完成的工作内容和具体的设计方法,掌握必须提交的各项工程文件。 课程设计的基本目的是:培养理论联系实际的设计思想,训练综合运用电路设计和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固,加深和扩展有关电子类方面的知识。 课程设计的主要任务是运用所学微控制器技术、微机原理等方面的知识,设计出一台以AT89C51为核心的单片机数据采集、通讯或测控系统,完成信息的采集、处理、输出及人机接口电路等部分的软、硬件设计。 多功能波形发生器设计课题需要充分灵活运用编程语言所提供的各种指令语句,巧妙利用软硬件实现以上所要求的功能,在程序逻辑设计上也要求正确,合理的对项目进行分解分块,合理的逻辑设计可以起到事半功倍的效果,是整个项目当中最富有创新性和挑战性的部分。

第二章设计任务 本次设计要求采用单片机和DAC设计波形发生器,具体要求如下:(1)利用单片机和DAC0832产生锯齿波、三角波、正弦波等波形。(2)完成DAC与运放的连接,输出可供示波器显示。 (3)用按键改变波型的种类,同时显示波形的代号,波形的幅值与频率。 第三章硬件设计 系统主体构造 芯片方面选用AT89C51与DAC0832为主要芯片,根据要求采用键盘选择产生的波形的类型,所以基本电路有键盘电路,数模转换电路。整体框架图如下所示: 硬件元件概述

波形发生器课程设计

波形发生器课程设计 课程设计用纸 教师批阅 波形发生器设计 摘要 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。所以本设计使用的是DAC0832芯片构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变。在单片机上加外围器件距阵式键盘,通过键盘控制波形频率的增减以及波形的选择,并用了LCD显示频率大小。在单片机的输出端口接DAC0832进行D/A转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。 本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等,还可以输出任意波形,如用鼠标创建的一个周期的非规则波形或用函数描述的波形等,输出的波形的频率、幅度均可调,且能脱机输出。设计的人机界面不但清晰美观,而且操作方便。 关键词:波形发生器;DAC0832;单片机;波形调整 - - - 1 - 课程设计用纸

教师批阅 目录 一、设计目的及意 义 ..................................................................... ..... - 3 - 1.1设计目 的 ..................................................................... ................ - 3 - 1.2设计意 义 ..................................................................... ................ - 3 - 二、方案论 证 ..................................................................... ................ - 4 - 2.1设计要 求 ..................................................................... ................ - 4 - 2.2方案论 证 ..................................................................... ................ - 4 - 三、硬件电路设 计 ..................................................................... ......... - 5 - 3.1设计思路、元件选 型 .................................................................. - 5 - 3.2原理 图 ..................................................................... .................... - 5 - 3.3主要芯片介 绍 ..................................................................... ......... - 6 - 3.4硬件连线 图 .....................................................................

波形发生器(课程设计)

波形发生器的设计 1.设计目的 (1)掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 (2)学会安装与调试由分立器件与集成电路组成的多级电子电路小系统。 2.设计任务 设计一台波形信号发生器,具体要求如下: (1)输出波形:正弦波、方波、三角波。 (2)频率范围:3Hz -30Hz ,30Hz -300Hz ,300Hz -3KHz ,3KHz -30KHz 等4个波段。 (3)频率控制方式:通过改变RC 时间常数手控信号频率。 (4)输出电压:方波峰—峰值V U pp 24≤;三角波峰-峰值V 8U pp =,正弦波峰 -峰V 1U pp >。 3.设计要求 (1)完成全电路的理论设计 (2)参数的计算和有关器件的选择 (3)PCB 电路的设计 (4)撰写设计报告书一份;A3 图纸2张。报告书要求写明以下主要内容:总体方案的选择和设计 ;各个单元电路的选择和设计;PCB 电路的设计 4、参考资料 (l )李立主编. 电工学实验指导. 北京:高等教育出版社,2005 (2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004 (3)谢云,等编著.现代电子技术实践课程指导.北京:机械工业出版社,2003

目录 一. 设计的方案的选择与论证 (3) 1.1 设计方案 (3) 1.1.1 设计方案1 (3) 1.1.2 设计方案2 (4) 1.1.3 设计方案3 (5) 1.2 方案选择 (6) 二. 单元电路的设计 (6) 2.1 方案设计 (6) 2.1.1 正弦波电路 (6) 2.1.2 方波电路 (11) 2.1.3 三角波电路 (12) 2.2 参数的选择 (13) 三、仿真 (14) 3.1 软件介绍 (14) 3.2 仿真的过程与结果 (15) 四、PCB制版 (15) 4.1 软件简介 (15) 4.2 PCB电路板设计步骤 (20) 五、总结与心得 (21) 六、附录 (22) 6.1 材料清单 (22) 6.2 原理图 (23) 6.3 PCB板图 (24) 七、参考文献 (25)

课程设计——波形发生器

1、概述 波形发生器就是一种常用得信号源,广泛地应用于电子电路、自动控制系统与教学实验等领域。函数信号发生器就是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波得电路。函数信号发生器在电路实验与设备检测中具有十分广泛得用途。通过对函数波形发生器得原理以及构成分析,可设计一个能变换出三角波、正弦波、方波得函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成得正弦波—方波—三角波函数发生器得设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。 2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成得正弦波—方波—三角波函数发生器得设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点就是采用RC串并联网络作为选频与反馈网络,其振荡频率f=1/2πRC、改变RC得值,可得到不同得频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方波输出。用运放构成积分电路,将方波信号变换成三角波。 原理框图如图2-1

3、设计原理 3、1正弦波产生电路 正弦波由RC桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器与一个带有选频功能得正反馈网络组成。其振荡平衡得条件就是AF=1以及ψa+ψf=2nπ。其中A为放大电路得放大倍数,F为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF略大于1。 放大电路应具有尽可能大得输入电阻与尽可能小得输出电阻以减少放大电路对选频特性得影响,使振荡频率几乎仅决定于选频网络,因此通 就是常选用引入电压串联负反馈得放大电路。正反馈网络得反馈电压U f 同相比例运算电路得输入电压,因而要把同相比例运算电路作为整体瞧成电路放大电路,它得比例系数就是电压放大倍数,根据起振条件与幅值平衡条件有

单片机函数波形发生器课程设计

东北石油大学课程设计 课程单片机课程设计 题目函数波形发生器设计 院系电气信息工程学院测控系 专业班级测控技术与仪器11—1 学生姓名任建伟 学生学号110601240123 指导教师路敬祎张岩 2014年7 月8日

东北石油大学课程设计任务书 课程单片机课程设计 题目函数波形发生器设计 专业测控技术与仪器姓名任建伟学号110601240123 一、任务 设计一款基于AT89C51单片机的函数波形发生器。 二、设计要求 要求:利用D/A芯片产生峰峰值为5V的锯齿波、三角波、梯形波、正弦波和方波。 控制功能:使用5个拨动开关进行功能切换。当K0接高电平时输出锯齿波;当K1接高电平输出梯形波;当K2接高电平输出三角波;K3接高电平输出正弦波;K4接高电平输出方波。 使用的主要元器件:8031、6MHz的晶振、74LS373、74LS138、2764、DAC0832、LM324、拨动开关K0、K1、K2、K3、K4等。 输出波形的验证方法:使用示波器测量输出波形。 三、参考资料 [1]陈志旺,李亮。51单片机快速上手。机械工业出版社。 [2]薛定宇。控制系统计算及辅助设计——MATLAB语言与应用(第2版)。清华大学出版社。 [3]邹虹。单片机波形发生器的设计。重庆邮电学院学报。

[4]毅刚,彭喜元。单片机原理与应用设计。电子工业出版社。 [5]杨素行.模拟电子技术基础简明教程(第三版)[M].北京:高等教育出版社,2006. [6] Altium Designer原理图与PCB设计[M].北京:电子工业出版社2009. 完成期限2014.6.30 至2014.7.9 指导教师路敬祎张岩 专业负责人曹广华 2014年6月30 日 目录 第一章绪论 (1) 1.1课题背景 (1) 1.2本系统研究的国内外现状 (3) 1.3本文主要研究内容和工作 (3) 第二章方案论证 (4) 2.1方案一纯硬件设计法 (4) 2.2方案二纯软件设计法 (5) 2.3方案三软硬件结合法 (5) 第三章系统硬件设计 (7) 3.1内部结构概述 (7) 3.2P0~P3口结构及功能 (8)

相关主题
文本预览
相关文档 最新文档