当前位置:文档之家› 蒙脱土_水基聚氨酯纳米复合材料的动态力学分析Ⅰ_离子含量和热处理的影响

蒙脱土_水基聚氨酯纳米复合材料的动态力学分析Ⅰ_离子含量和热处理的影响

蒙脱土_水基聚氨酯纳米复合材料的动态力学分析Ⅰ_离子含量和热处理的影响
蒙脱土_水基聚氨酯纳米复合材料的动态力学分析Ⅰ_离子含量和热处理的影响

蒙脱土/水基聚氨酯纳米复合材料的动态力学分析Ⅰ:离子含量和热处理的影响

张永成,李学哲

(山西省产品质量监督检验所,山西太原 030012)

摘 要:以接枝磺酸钠聚己二酸1,4-丁二醇酯二醇、Na基蒙脱土等为原料制备了蒙脱土/水基聚氨酯纳米复合物,并通过研究离子含量和热处理条件对其膜动态力学性能的影响,分析了它们的相态结构与组成及后处理条件间的内在联系。结果表明,蒙脱土的存在妨碍了聚氨酯分子链离子间物理交联的形成,减弱了离子含量变化和热处理对其聚集态结构的影响。另外,还通过Haplin-Tai-Nielsen公式研究了不同离子含量和热处理条件下纳米复合物中蒙脱土的分散状况。

关键词:蒙脱土;水基聚氨酯;纳米;复合材料:动态力学性能

中图分类号: TQ323.8 文献标识码: A 文章编号: 1672-2191(2006)05-0044-03

收稿日期:2006-04-12

基金项目:山西省青年科学基金资助项目(20031012)。

作者简介:张永成(1975-),男,山西灵石人,博士,从事产品质量监督检验工作。电子信箱:zyc601@yahoo.com.cn

水基聚氨酯(WPU)是以水代替有机溶剂作分散

介质的聚氨酯(PU)体系,它可调配成不含或含有少许溶剂的涂料或胶黏剂,具有无毒、不易燃烧、不污染环境、节能、安全可靠、不易损伤被涂饰表面、易操作和易改性等优点,从而使得它在织物、皮革涂饰及黏合剂等许多领域有广泛的应用前景。特别是近年来,由于溶剂价格高涨和环保压力,WPU取代溶剂基PU已成为必然[1 ̄2]。

PU黏土纳米复合物是目前新兴的一种复合材料,与常规PU基复合材料相比,具有相当高的强度、弹性模量、韧性和阻隔性能,以及优良的热稳定性和阻燃性能。另外,它还为PU高分子凝聚态物理中受限链和PU刷子等问题的研究提供了基本模型。因此,其无论在工业开发还是基础研究方面都成为当前PU材料学研究的热点[3 ̄6]。但是,这些研究多以有机改性黏土与热塑性或热固性PU复合材料为主。

以接枝磺酸钠的聚己二酸1,4-丁二醇酯二醇等为原料合成的WPU与纳米蒙脱土(MMT)水分散液进行复合,得到了储存稳定的MMT/WPU复合乳液(MWPU),其结构和性能在以前的工作中已经进行了表征。本文通过研究WPU合成过程中离子含量和热处理对最终MWPU膜的动态力学行为的影响,分析了MWPU膜相态结构与组成的内在联系,并进一步分析了WPU中粒子的界面变化对MWPU膜聚

集态结构的影响。

1 实验部分1.1 原料

聚己二酸1,4-丁二醇酯二醇(PBA,Mn=600,使用前提纯,烟台华大);4,4′-二苯基甲烷二异氰酸酯(MDI,使用前蒸馏,烟台华大);二羟甲基丙酸(DMPA,使用前蒸馏,山东华源);丙酮(分析纯);去离子水(自制);三乙胺(TEA,分析纯);二正丁胺(分析纯);NaOH标液(0.5mol/L,自制);甲苯(分析纯);异丙醇(分析纯);指示剂(自制);纳米蒙脱土水分散液(FH,山西纳威)。1.2 制备方法

1.2.1 接枝磺酸钠的PBA制备

接枝磺酸钠的PBA(SPBA)按照文献[2]方法合成,其Mn=1000。1.2.2 MWPU膜制备

采用预聚体丙酮法合成,用250mL的四口圆底烧瓶加装搅拌器、温度计和球形冷凝管,加入一定配比的SPBA(真空脱水)和MDI在氮气保护下反应2h,控制温度在85℃,用二正丁胺法分析所得预聚体的NCO值,达到理论值后加入一定量DMPA和丙酮继续在60℃反应1h。然后依次加中和剂、丙酮、去离子水和FH(在剧烈搅拌下),减压蒸出丙酮就得到浅色透明的MWPU乳液,固含量为25%。将所得乳液浇于模具中,室温下干燥一段时

化学推进剂与高分子材料 · 44 ·

Chemical Propellants & Polymeric Materials

 2006年第4卷第5期

·研究与开发·

间后放入真空烘箱中48h,除去残留的水分得MWPU膜。样品编号、原料配比和热处理条件及基本动态力学性能见表1。

表1 样品编号和动态力学性能

Tab.1 Sample designation and dynamic mechanical performance

样品DMPA质MMT质量热处理Tg /℃E′(15℃)量分数/%分数/%(100℃)(E″峰)/MPa

MT12.80无-27.51.6

MT24.20无-22.727.3

MT32.8012h-22.550.5

CT12.81无-15.132.5

CT24.21无-15.060.0

CT32.8112h-22.086.7

注:MT为基质,CT为复合材料;E′为储能模量,E″为损耗模量;中和剂为TEA,中和度为100%。

1.3 表征方法

动态力学性能测试在DMA-983(TA)上进行,工作频率1Hz,升温速率5℃/min,测试温度-100 ̄150℃。

2 结果与讨论

图1(a)和(b)是不同DMPA含量的WPU基质与纳米复合物膜的动态力学性能随温度的变化曲线。

图1 不同DMPA和MMT含量的样品动态力学性能Fig.1 Dynamic mechanical performance of samples

with different DMPA and MMT content

(a) storage modulus,E′ (b) loss modulus,E″

由图1可见,对于WPU基质膜,E′和E″随DMPA含量增大而增大,这与其他WPU动态力学性能的研究结果相符[7]。其原因与DMPA含量增加而导致的PU分子链之间更多的物理交联有关。同时增加的物理交联还会导致其E′曲线的橡胶平台区域升高且变得平缓,如图1(a)所示。对于纳米复合物膜来说,其E′和E″虽然也随DMPA含量增加而增大,但增幅较小,且其橡胶平台区域基本无变化,这可能是因为MMT与PU硬嵌段链节间的作用妨碍了PU分子中离子间的联系,从而减少了其分子链间物理交联的形成。另外,WPU基质与纳米复合物膜的软段玻璃化转变温度(Tg)的变化可由图1(b)给出,具体数值示于表1。可见,WPU基质膜的Tg随DMPA含量增加而升高,这也与其他WPU的研究结果相符[8]。但是,复合物膜的Tg在DMPA含量增加时基本无变化,这可能也与MMT与PU硬嵌段链节间的作用有关。

由于WPU分子链上有多种功能基团,热处理可加强这些基团间的联系和提高膜的各种性能,同时也影响它的分子聚集态结构。图2(a)和(b)是不同热处理条件的WPU基质与纳米复合物膜的E′和E″随温度的变化曲线。

图2 不同热处理条件和MMT含量的样品动态力学性能Fig.2 Dynamic mechanical performance of samples under

different heat treatment conditions and MMT content(a) storage modulus,E′ (b) loss modulus,E″

张永成等 · 蒙脱土/水基聚氨酯纳米复合材料的动态力学分析Ⅰ:离子含量和热处理的影响

· 45 ·

由图2可见,100℃的热处理可显著提高基质WPU和复合物WPU膜的E′和E″。与基质相比,复合物膜热处理后E′曲线的橡胶平台区域变得更宽也更平,这可能是因为热处理可加强MMT与PU基质间的作用,使其分子链间形成更多的物理交联。热处理对基质WPU和复合物WPU膜Tg的影响见图2(b)和表1。对于WPU基质膜来说,热处理后Tg由-27.5℃升高到了-22.5℃;但是对于复合物WPU膜来说,热处理后Tg却由-15.1℃降低到了-22℃。这说明热处理对WPU基质膜和复合物WPU膜的相态结构有不同影响,它可能与MMT的存在对PU分子的链段运动和构象调整的限制有关。

在聚合物基MMT纳米复合物的动态力学性能研究中,利用Haplin-Tai-Nielsen公式,可根据基质

聚合物的E

2′计算出在温度低于聚合物的Tg时纳米

复合物的E

′[9]。其基本原理如公式(1) ̄(3)所示:

′/E

′= (1+ XYФ

)/(1- XψФ

) (1)

X = K

E 

- 1, Y = [(E

′/E

′) - 1]/[(E

′/E

′) + X] (2)

ψ = 1+ [(1-Ф

)/Ф

2] (3)

式中:E

′为纳米复合物的储能模量;E

′为基质聚

合物储能模量;E

′为MMT储能模量;K

为爱因

斯坦系数,与未发生插层的分散MMT粒子的纵横

比有关;Ф

和Ф

分别为MMT的体积分数和最大

填充体积分数。一般近似认为E′

=170GPa;Ф

0.63。此外,根据Osman[3]的方法,可计算出MMT

质量分数为1%时,Ф

=0.00358。

因此,依据上述公式和数据,选取相近的

值,可得出PU软段在不同温度(<Tg)下的E

′/

′值。表2为所计算出的在-110℃、-70℃和

-30℃时CT1、CT2和CT3 3种样品的E

′/E

′。

表2 计算和实验得出的样品的E1'/E2'

Tab.2 Calculated and tested E1'/E2' of samples

E1′/E2′(-110℃)E1′/E2′(-70℃)E1′/E2′(-30℃)

样品

KE计算值实验值KE计算值实验值KE计算值实验值704515704515704515

CT12.2161.6041.1571.5562.2281.6101.1581.6132.3781.6311.1602.268CT22.1291.5661.1521.0602.1451.5741.1591.1232.2091.6021.1571.444CT32.1161.5601.1511.0592.1231.5641.1521.0802.1741.5891.1551.070 注:实验值通过动态力学分析(DMA)得到。

由表2可见,CT1在低温(-110℃)时相应的K

E值为45,而CT2和CT3则为15,说明在CT1中

有更多的MMT团聚现象,导致其分散MMT粒子纵横比的增大。这可能是由于CT1较差的亲水性(与CT2相比)和较差的硬段规整性(与CT3相比)使得基质与MMT相容性较差所致。

3 结论

①在MMT/PU纳米复合材料中,MMT的存在可能妨碍了PU分子链离子间物理交联的形成,减弱了离子含量变化和热处理对其聚集态结构的影响。

②通过Haplin-Tai-Nielsen公式研究不同离子含量和热处理条件下纳米复合物中MMT的分散状况

表明,在-110℃时CT1的K

值为45,而CT2和CT3则为15,说明在该温度时CT1中有更多的MMT团聚现象,导致其分散MMT粒子纵横比的增大。

参考文献

[1]Sundar S, Tharanikkarasu K, Dhathathreyan A, et al. Aqueousdispersions of poly(urethane-co-vinylpyridine) synthesized

from polyurethane macroiniferter[J].Colloid & Polym Sci,

2002,280:915.[2]Kevin Lewandowski,Larry R Krepski,Daniel E Mickul.Synthesis and properties of waterborne self-crosslinkablesulfo-urethane silanol dispersions[J].J Polym Sci:PolymChem,2002,40:3037-3045.

[3]Osman M A,Mittal V,Morbidelli M,et al.Polyurethaneadhesive nanocomposites as gas permeation barrier[J].Macromolecules,2003,36:9851-9858.

[4]Mishra J K,Kim I,Ha C S.New millable polyurethane/organoclay nanocomposite: Preparation, characterization andproperties[J].Macromol Rapid Commun,2003,24:671-675.[5]Chen T K,Tien Y I,Wei K H.Synthesis and characterizationof novel segmented polyurethane/clay nanocomposites[J].Polymer,2000,41:1345-1353.

[6]Chang J H,Uk An Y.Nanocomposites of polyurethane withvarious organoclays:Thermomechanical properties,morphology, and gas permeability[J].J Polym Sci,Part B:Polym Phys,2002,40:670-677.

[7]Byung Kyu-Kim,Jonc Cheol-Lee.Waterborne polyurethanesand their properties[J].J Polym Sci,Part B: Polym Chem,1996, 34:1095-1104.

[8]Suprakas Sinha Ray,Masami Okamoto.Polymer/layeredsilicate nanocomposites:A review from preparation toprocessing[J]. Prog Polym Sci,2003,28:1539-1641.

(下转至第52页)

3 结论

抗氧剂DP101对BOPP颜色、MFR及OIT控制都好于传统抗氧剂Irganox B225,这说明SYS1在BOPP稳定过程中起到了重要作用。

参考文献

[1]杨明.塑料添加剂手册[M].南京:江苏科学技术出版社,

2002.

[2]佘贤万.高效抗氧剂G2225在BOPP上的工业应用[J].工业催化,2003(1):52-54.

[3]Popisil J,Habiecher W D.Addcon world 2001 7th inter-national plastics additives and modifiers conference[C].Berlin:2001.6.

Role of 3-Arylbenzofuranone in BOPP Stabilization

DONG Ping, XI Xiao-li, QI Pan-lun

(Daqing Institute of Petrochemical Company,Daqing 163714,China)

Abstract: 3-Arylbenzofuranone is a highly efficient free radical scavenger which can effectively trap carbon-centered radicals.Manyexperiments showed that it plays an important role in stabilization of BOPP.The antioxidative mechanisms of 3-arylbenzofuranone andconventional antioxidants were compared.Ternary antioxidant DP101 was prepared by compounding 3-arylbenzofuranone with hinderedphenol and phosphite ester.The test experiments in BOPP showed that the antioxidative performance of DP101 is better than conventionalbinary antioxidant Irganox B225.

Key words: benzofuranone ; carbon free radical scavenger ; antioxidative performance ; BOPP

***************************************************************************************************************(上接第46页)

Dynamic Mechanical Analysis of Montmorillonite/Waterborne Polyurethane

NanocompositesⅠ: Effect of Ion Content and Heat Treatment

ZHANG Yong-cheng, LI Xue-zhe

(Shanxi Products Quality Supervision and Inspection Institute,Taiyuan 030012,China)Abstract: The montmorillonite/waterborne polyurethane nanocomposite was prepared by using sodium sulfonate grafted poly(butylene adipate)diol,Na-based montmorillonite,etc as raw materials.The relationship among the nanocomposite phase structure,composition and post-treatment was analyzed by studying the effects of ion content and heat treatment conditions on dynamicmechanical performance of the nanocomposite film.The results showed that montmorillonite prevents formation of physical crosslinkamong polyurethane molecule chain ions and decreases the influence of ion content change and heat treatment on the nanocompositecollected state structure.In addition,the dispersion status of montmorillonite in the nanocomposites under different ion content and heattreatment conditions was studied by using Haplin-Tai-Nelsen formula.

Key words: montmorillonite ; waterborne polyurethane ; nano composite ; dynamic mechanical performance

***************************************************************************************************************

BASF投资于烷基乙醇胺

BASF正在美国Gesismar厂区建设烷基乙醇胺装置,预计2007年投产。这类产品可用作聚氨酯催化剂,还可用于其他方面。BASF声称,新装置将补充现有在美国的胺装置,目前可生产约20个不同的精细胺类,当扩产完成后,该公司这些重要的中间体的全球产能将增加约40%。目前BASF仅在德国Ludwigshafan 总部所在区域内生产烷基乙醇胺。公司已看到此类产品在德国应用增长的机遇,包括用于聚氨酯(作催化剂)、水处理、医药和涂料。

叶青萱摘译自Urethane Technology,2006,April/May:4

Degussa公司计划建新型环氧丙烷装置Degussa公司正在按部就班地使其过氧化氢基环氧丙烷(HPPO)技术工业化。该公司已将这种由它与德国工程公司Uhde公司合作开发的技术授权给韩国的SKC化学公司,该韩国公司计划在韩国的Ulsan建1套10万t/a的环氧丙烷(PO)装置,于2008年开始。为了向该装置提供过氧化氢原料,Degussa公司与美国Utah州的Headwaters公司的合资公司Degussa-Headwaters公司以3500万美元从芬兰Kemira公司购买了1套过氧化氢装置,该合资公司希望使这套过氧化氢装置的产能从当前的3.4万t/a扩大1倍以上,以供应SKC公司的PO装置。该合资公司称,它还可能使用该过氧化氢装置来工业化一种催化直接法合成过氧化氢的技术。这种过氧化氢路线生产PO的技术不产生苯乙烯或叔丁醇等副产物。此外,BASF和Dow化学公司也正在计划在比利时安特卫普建1套基于过氧化物的PO装置。

于剑昆摘译自Chemical & Engineering News,2006,84(20):21

建筑业拉动聚氨酯需求

据Freedonia分析,建筑业对建筑保温材料、涂料和胶黏剂的需求量日益增长,将拉动聚氨酯(PU)需求量以每年2.8%的速度增长。预计2009年全球PU需求量将达359万t。

Freedonia认为,建筑市场将占所有聚氨酯用量的36%。其中,聚氨酯软泡和硬泡需求量仍将最大,占其总需求量的近2/3。预计聚氨酯软泡需求增长率为1.9%,到2009年将达118万t;聚氨酯硬泡需求年增长率为3.4%,到2009年将达109万t。

于剑昆摘译自Chemical Week,2006,168(17):33

物体的受力(动态平衡)分析典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质 图1—1 a b 图1—2 图1—4 a b c

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图 b 中物体A 沿竖直面下滑,接触面粗糙。图 c 中物体A 沿光滑斜面下滑。图 d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。 图1—8 图1—9

静力学中的动态平衡问题

静力学中的动态平衡问题 静力学中的动态平衡问题是学生学习中的难点,也是高考的重点,本文利用基本的平行四边形定则,归纳出了四种典型题型的快速解决方法,以期对学生的学习有所帮助。 常见的有四种题型:1.受三个力的作用而平衡,除重力外,还有一个力的方向不变.2.三角形相似.3.绳、滑轮组合体.4.两个力保持夹角不变,同时转过相同的角度.一.除重力外,有一个力的方向不变 1.题型特点: ①受三个力作用.②一个力的大小方向都不变(F1),一个力的方向不变(F2),一个力的大小和方向都变化(F3). 2.规律: ①设F2与F3之间的夹角为θ,F2与θ正相关. ②当θ=90°时,F3最小,θ趋向于90°时,F3减小,θ远离90°时,F3增大.当θ在锐角与钝角之间变化时,F3先减小后增大. 3.判断步骤: ①受力分析,模型辨识 ②θ变化范围及变化趋势. ③根据规律得出结论. 4.规律研究:我们先来研究以下的两个例子 例题1.质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中() A.F逐渐变大,T逐渐变大 B.F逐渐变大,T逐渐变小 C.F逐渐变小,T逐渐变大 D.F逐渐变小,T逐渐变小 解析:以O点为研究对象,受力如图所示,当用水平向左的力缓慢 拉动O点时,则绳OA与竖直方向的夹角变大,我们作几个平行四边形, 根据代表力的线段长度变化可知F逐渐变大,T逐渐变大,选项A正确. 第二问:如果本题中保持O点在图示的位置不动,而使F顺时针转过90°, 问:F、T又是如何变化的? 我们可以通过作平行四边形(甲)或力的三角形(乙),从表示力的线段长度的变化来

阳离子水性聚氨酯.pdf

阳离子水性聚氨酯 更新时间:XXXX-12-26 9:23:35 浏览次数:1189次 水性聚氨酯树脂和其他树脂一样, 其最终制品的性能是由内部结构决定的。阳离子型水性聚氨酯是将叔胺官能团引入到聚氨酯的大分子中而制得的。通常用含叔胺基的二醇作扩链剂, 用烷基化剂或合适的酸进行季铵化而得到离子基团。和普通的聚氨酯一样可用不同种类的多元醇、不同结构的二异氰酸酯、不同类型的扩链剂、不同类型的中和剂和采用不同的合成方法进行合成。阳离子型水性聚氨酯的骨架上带有阳离子基团, 这就使其具有了一些独特的性能, 在皮革、涂料、胶粘剂、纺织和造纸等领域有着较好的应用。此外, 阳离子水性聚氨酯对水的硬度不敏感, 且可以在酸性条件下使用。因此, 开发出性能优异的阳离子水性聚氨酯, 其市场前景非常广阔。 1 阳离子水性聚氨酯的合成 1.1 合成机理 合成阳离子水性聚氨酯时, 一般通过两种途径引入阳离子。一是用卤素元素化合物引入阳离子,该机理先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 加入卤素元素化合物( 如2,3-二溴丁二酸) 扩链, 然后再加入溶剂降低粘度, 加入三乙胺季铵化, 搅拌离子化, 将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是SN2(亲核取代反应) ; 二是用叔胺化合物引入阳离子, 该机理首先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 用叔胺化合物( 如N- 甲基二乙醇胺) 扩链, 再加入溶剂降低粘度, 然后加入离子化试剂如乙酸, 搅拌离子化。将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是酸碱中和。 1.2 合成方法 阳离子水性聚氨酯的合成与阴离子水性聚氨酯的合成最大的不同就是阳离子水性聚氨酯需加酸成盐, 因此一般不在水中用胺扩链, 所以阳离子水性聚氨酯一般不用阴离子水性聚氨酯常用的预聚体混合法。从国内外近年来的研究来看, 阳离子水性聚氨酯的合成主要有熔融法和丙酮法。 熔融法是无溶剂制备水性聚氨酯的重要方法。它把二异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。反应的第一步是合成含亲水基团的端异氰酸酯基预聚体。然后在高温下, 该预聚体和过量的脲反应生成缩二脲。该产品分散在水中之后, 再和甲醛反应生成甲醇基, 通过降低pH 值可促进缩聚反应进行扩链和交联。熔融法的优点是不需要大量溶剂, 避免了相对分子质量快速增长而带来的问题,工艺简单, 易于控制, 也不需要特殊设备。但是用该 法合成水性聚氨酯时需要强力搅拌, 因为即使在100 ℃左右的温度下, 预聚体的粘度也很高。用该法制得的水性聚氨酯通常是枝化的和相对分子质量较 低的树脂。乳液中残存的甲醛气味比较大, 且有较强的毒性, 在环保要求越来越高的今天, 它将被摒弃。 丙酮法也叫溶液法。就是在低沸点的能和水混合的惰性溶剂(如丙酮、甲乙酮、四氢呋喃等) 中, 制得含亲水基团的高相对分子质量的聚氨酯乳液, 然后用水将该溶液稀释。先形成油包水的以溶剂为连续相的乳液, 然后再加入大量的水, 发生相倒转, 水变成连续相并形成分散液。脱去溶剂后得到无溶剂的高相对分子质量的聚氨酯- 脲的分散液。该法操作简单, 重复性好。 1.3 原料选择 1.3.1 多异氰酸酯类化合物的选择 二异氰酸酯有TDI(甲苯二异氰酸酯)、MDI(二苯基甲烷二异氰酸酯)、IPDI(异佛尔酮二异氰酸酯) 、HDI(六亚甲基二异氰酸酯) 等10余种产品, 其中的脂肪类二异氰酸酯(HDI,IPDI等) 抗

亲水性扩链剂对水性聚氨酯分散体性能的影响

亲水性扩链剂对水性聚氨酯分散体性能的影响 张伟 (福州大学化学化工学院,邮编350002) 引言 水性聚氨酯是水溶型、水分散型和水乳化型聚氨酯的统称。自20世纪60年代工业化以来,水性聚氨酯以其优良的性能和环境友好特性得以迅速发展。其在皮革涂饰、纺织涂层、玻璃纤维集束、涂料和粘合剂等领域的应用,也成为近年来研究的热点[1]。 水性聚氨酯材料主要由二异氰酸酯、大分子多元醇、亲水性扩链剂、中和剂、后扩链剂等组成。生产PU分散体的一般工艺流程为:多元醇减压蒸馏脱水后,加入多异氰酸酯,可选择是否加入催化剂,80~85℃下反应到NCO达到理论值,加入亲水性扩链剂,可选择是否加入其他扩链剂以及丙酮等溶剂,保温反应至NCO达到理论值后,降温至45~50℃,加入中和剂,搅拌0.5~1 h,将产品高速分散于水中同时加入扩链剂进行扩链,均匀分散稳定后,得到PU分散体产品[2,3]。 在上述工艺中,亲水性扩链剂的作用是在对端异氰酸酯基的聚氨酯预聚体进行扩链的同时,引入亲水性基团。根据亲水基团的类型,亲水性扩链剂可分为阴离子型扩链剂、阳离子型扩链剂和非离子性扩链剂。现在工业上最常用的是阴离子型扩链剂2,2-二羟甲基丙酸(DMPA)。 作为水性聚氨酯合成过程的重要组分,亲水型扩链剂的种类、用量、加入方式等将直接影响PU分散体系及其涂膜的性能。本文将通过分析亲水性扩链剂DMPA结构和性质,解释其对PU分散体性能的影响,并对比DMPA和DMBA两种不同亲水性扩链剂制得的PU分散体系。 1DMPA介绍 2,2-二羟甲基丙酸,又称α,α-双羟甲基丙酸,英文缩写为DMPA是一种多功能化合物,其结构如图1所示。

聚氨酯分散体

1.为什么使用聚氨酯分散体? 水性聚氨酯分散体(PUDs)含有极低或不含任何挥发性有机物(VOC),而且为配方设计师提供了多种减少和消除溶剂配方的选择。同时这种基于聚氨酯分散体技术的配方也符合许多国家和地区日益严格的环境法规。 向聚氨酯分散体技术的转型不会影响传统配方的技术性能,因为聚氨酯分散体也能满足传统配方绝大部分的技术要求。 聚氨酯分散体为何如此独特? ?低溶剂用量(或者在很多种情况不含溶剂) ?气味小 ?分子量大,粘度低 ?单组分(1K)应用可有多种选择 ?低温干燥 ?优异的聚氨酯性能 聚氨酯分散体,在木器、水泥、金属、塑料、纸张、纺织品和橡胶以及其它高性能基材上具有卓越的涂覆性和附着性。 2.环保解决方案 此挥发性有机物(VOCs)在涂料工业上的大量使用,让人们越来越关注这些物质对环境造成的影响。许多国家和地区的环境权威部门已经加强对VOC水平的限制,同时制定法律限制某些溶剂(如NMP)的使用。这些限制希望在将来变得会越来越严格。 配方设计师们目前所面临的挑战就是在不降低技术性能,并保证产量的基础上,开发出可替换的分散体体系。 水性的聚氨酯分散体为这种严苛的问题提供了解决方案。B ayhydrol?、Baybond? 和Impranil?等系列分散体产品,可以被用来调制1K 或2K的高性能且对环境友好的聚氨酯涂料。 a)低气味配方

传统上,大多数传统涂料含有极高的VOCs(挥发性有机物),导致在使用时散发出强烈的溶剂气味。这些VOCs不仅使空气质量变差,而且还有可能造成对健康环境的潜在危害。如今,替代的生产技术和原材料可以开发出低VOC甚至无VOC的涂料体系,这样就可充分限制有害气味的散发。 很多情况下,仅少量的低气味助溶剂需要被添加到基于聚氨酯分散体(PUDs)的涂料中。这样就使得低VOC且低气味的配方也能达到很高的化学和机械性能。在很多应用环境中,比如水泥表面或木地板表面修整,使用低气味聚氨酯分散体的涂料可提供显著的好处: ?在常规工作时间施工,减少了对施工建筑物内居住者的影响 ?操作更加安全 ?保持良好的空气质量 ?符合大多数严格的环境法规要求,同时确保了工人的安全 水性聚氨酯分散体从本质上来说十分适合低气味涂料配方体系,同时还能保持极高的性能标准。 b)无NMP 很多聚氨酯分散体含有N-甲基吡咯烷酮(NMP),因为在生产过程它是一种必需的组分,同时有利于促进成膜。加利福尼亚65号决议和欧洲相关法规规定,产品中必须标明NMP的含量。以欧洲为例,产品中NMP含量超过5%就必须标明为刺激和有毒物质。从涂料配方中除去NMP是全球涂料工业的发展趋势。 基于丙酮工艺开发出了新一代高性能且不含任何溶剂的聚氨酯分散体。该工艺用丙酮取代NMP,并在生产工艺最后阶段去除丙酮。Bayhydrol?系列产品目前还包括许多无溶剂的聚氨酯分散体。任何溶剂可能被应用的唯一原因,就是它会对成膜性能有帮助。 在许多情况下,无NMP配方的总溶剂含量远低于常规配方。 c)符合VOC法规 世界各地的涂料配方设计师都在不断地寻找既可以显著降低挥发性有机物(VOC)含量又保持高性能水平的方法。水性涂料配方设计师用聚氨酯分散体来调制既符合VOC又具有与高VOC含量的同类产品一样性能的涂料。

高中物理力学图解动态平衡问题与相似三角形问题

图解法分析动态平衡问题 所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。 题型特点:(1)物体受三个力。(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。 解题思路:(1)明确研究对象。(2)分析物体的受力。(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。(4)正确找出力的变化方向。(5)根据有向线段的长度变化判断各个力的变化情况。 注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。 (2)正确判断力的变化方向及方向变化的围。 (3)力的方向在变化的过程中,力的大小是否存在极值问题。 【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是( ) A.增大B.先减小,后增大 C.减小D.先增大,后减小 解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出: FAB cos 60°=FB C sin θ, FAB sin 60°+FB C cos θ=FB,

联立解得FBC sin(30°+θ)=FB/2, 显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大. 答案:B 变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N 的大小变化情况是( ) A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大 D.F逐渐减小,T先减小后增大,F N逐渐减小 解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面 对球的支持力F N′逐渐增大,对斜面受力分析如图乙所示,可知F=F N″sinθ,则F 逐渐增大,水平面对斜面的支持力F N=G+F N″·cos θ,故F N逐渐增大. 答案:C 利用相似三角形相似求解平衡问题 2.相似三角形法: 当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。 【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( ) A.F N先减小,后增大B.F N始终不变 C.F先减小,后增大D.F始终不变 解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N 与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此

力学图解动态平衡问题与相似三角形问题----学生版

图解法分析动态平衡问题 【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是() A.增大B.先减小,后增大 C.减小D.先增大,后减小 变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N 的大小变化情况是() A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大 D.F逐渐减小,T先减小后增大,F N逐渐减小 利用相似三角形相似求解平衡问题 2.相似三角形法: 当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。 【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是() A.F N先减小,后增大B.F N始终不变 C.F先减小,后增大D.F始终不变 变式2-1如图2-4-5所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点O、A之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为() A.F1>F2 B.F1=F2 C.F1

力学中的动态平衡问题优选稿

力学中的动态平衡问题集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也 可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大 小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球对木板的 压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中() A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法

特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二 个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是()。 A.N变大,T变小 B.N变小,T变大 C.N变小,T先变小后变大 D.N不变,T变小 3、辅助圆法 特点:三个力中一个为恒力,其它两个力方向和大小均发生变化,但其夹角不变,通常情况下可以采用辅助圆法 分析技巧:先对物体进行受力分析,将三个力的矢量首尾相连构成闭合三角形,然后作闭合三角形的外接圆,以恒力所在边为定弦,按题目要求移动定弦所对圆周角,观察其它两个力的变化情况 5.如图所示,直角尺POQ竖直放置,其中OP部分竖直,OQ部分水平,

力学中的动态平衡问题

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通 过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球 对木板的压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()

A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法 特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO 所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小

阳离子水性聚氨酯

阳离子水性聚氨酯 更新时间:2012-12-26 9:23:35 浏览次数:1189次 水性聚氨酯树脂和其他树脂一样, 其最终制品的性能是由内部结构决定的。阳离子型水性聚氨酯是将叔胺官能团引入到聚氨酯的大分子中而制得的。通常用含叔胺基的二醇作扩链剂, 用烷基化剂或合适的酸进行季铵化而得到离子基团。和普通的聚氨酯一样可用不同种类的多元醇、不同结构的二异氰酸酯、不同类型的扩链剂、不同类型的中和剂和采用不同的合成方法进行合成。阳离子型水性聚氨酯的骨架上带有阳离子基团, 这就使其具有了一些独特的性能, 在皮革、涂料、胶粘剂、纺织和造纸等领域有着较好的应用。此外, 阳离子水性聚氨酯对水的硬度不敏感, 且可以在酸性条件下使用。因此, 开发出性能优异的阳离子水性聚氨酯, 其市场前景非常广阔。 1 阳离子水性聚氨酯的合成 1.1 合成机理 合成阳离子水性聚氨酯时, 一般通过两种途径引入阳离子。一是用卤素元素化合物引入阳离子,该机理先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 加入卤素元素化合物( 如2,3-二溴丁二酸) 扩链, 然后再加入溶剂降低粘度, 加入三乙胺季铵化, 搅拌离子化, 将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是SN2(亲核取代反应) ; 二是用叔胺化合物引入阳离子, 该机理首先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 用叔胺化合物( 如N- 甲基二乙醇胺) 扩链, 再加入溶剂降低粘度, 然后加入离子化试剂如乙酸, 搅拌离子化。将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是酸碱中和。 1.2 合成方法 阳离子水性聚氨酯的合成与阴离子水性聚氨酯的合成最大的不同就是阳离子水性聚氨酯需加酸成盐, 因此一般不在水中用胺扩链, 所以阳离子水性聚氨酯一般不用阴离子水性聚氨酯常用的预聚体混合法。从国内外近年来的研究来看, 阳离子水性聚氨酯的合成主要有熔融法和丙酮法。 熔融法是无溶剂制备水性聚氨酯的重要方法。它把二异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。反应的第一步是合成含亲水基团的端异氰酸酯基预聚体。然后在高温下, 该预聚体和过量的脲反应生成缩二脲。该产品分散在水中之后, 再和甲醛反应生成甲醇基, 通过降低pH 值可促进缩聚反应进行扩链和交联。熔融法的优点是不需要大量溶剂, 避免了相对分子质量快速增长而带来的问题,工艺简单, 易于控制, 也不需要特殊设备。但是用该 法合成水性聚氨酯时需要强力搅拌, 因为即使在100 ℃左右的温度下, 预聚体的粘度也很高。用该法制得的水性聚氨酯通常是枝化的和相对分子质量较 低的树脂。乳液中残存的甲醛气味比较大, 且有较强的毒性, 在环保要求越来越高的今天, 它将被摒弃。 丙酮法也叫溶液法。就是在低沸点的能和水混合的惰性溶剂(如丙酮、甲乙酮、四氢呋喃等) 中, 制得含亲水基团的高相对分子质量的聚氨酯乳液, 然后用水将该溶液稀释。先形成油包水的以溶剂为连续相的乳液, 然后再加入大量的水, 发生相倒转, 水变成连续相并形成分散液。脱去溶剂后得到无溶剂的高相对分子质量的聚氨酯- 脲的分散液。该法操作简单, 重复性好。 1.3 原料选择 1.3.1 多异氰酸酯类化合物的选择 二异氰酸酯有TDI(甲苯二异氰酸酯)、MDI(二苯基甲烷二异氰酸酯)、IPDI(异佛尔酮二异氰酸酯) 、HDI(六亚甲基二异氰酸酯) 等10余种产品, 其中的脂肪类二异氰酸酯(HDI,IPDI等) 抗

力学的动态平衡问题

【解答】BD 由于物体a 、b 均保持静止,各绳间角度保持不变,对a 受力分析得,绳的拉力T =m a g ,所以物体a 受到绳的拉力保持不变.由滑轮性质,滑轮两侧绳的拉力相等,所以连接a 和b 绳的张力大小、方向均保持不变,C 选项错误;a 、b 受到绳的拉力大小、方向均不变,所以OO′的张力不变,A 选项错误;对b 进行受力分析,如图所示.由平衡条件得:Tcos β+f =Fcos α,Fsin α+F N +Tsin β=m b g.其中T 和m b g 始终不变,当F 大小在一定范围内变化时,支持力在一定范围内变化,B 选项正确;摩擦力也在一定范围内发生变化,D 选项正确. 3.(2017·河北冀州2月模拟)如图所示,质量为m(可以看成质点)的小球P ,用两根轻绳OP 和O′P 在P 点拴结后再分别系于竖直墙上相距0.4 m 的O 、O′两点上,绳OP 长0.5 m ,绳O′P 长0.3 m ,今在小球上施加一方向与水平成θ=37°角的拉力F ,将小球缓慢拉起.绳O′P 刚拉直时,OP 绳拉力为T 1,绳OP 刚松弛时,O′P 绳拉力为T 2,则T 1∶T 2为(sin 37°=0.6;cos 37°=0.8)( ) A .3∶4 B .4∶3 C .3∶5 D .4∶5 【解答】C 绳O′P 刚拉直时,由几何关系可知此时OP 绳与竖直方向夹角为37°,小球受力如图甲,则T 1= 4 5mg.绳OP 刚松驰时,小球受力如图乙,则T 2=4 3 mg.则T 1∶T 2=3∶5,C 项正确. 1. (多选)(2017·全国卷Ⅰ)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N.初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>π 2).现将重物向右上方缓慢拉起,并保持夹角α 不变.在OM 由竖直被拉到水平的过程中( ) A .MN 上的张力逐渐增大 B .MN 上的张力先增大后减小 C .OM 上的张力逐渐增大 D .OM 上的张力先增大后减小 【解答】AD 设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN .开始时,T O M =mg ,T MN =0.由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向. 如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定理得: T OM α-β =mg sin θ , (α-β)由钝角变为锐角,则T OM 先增大后减小,选项 D 正确; 同理知 T MN sin β=mg sin θ ,在β由0变为π 2 的过程中,T MN 一直增大,选项A 正确. 2.(多选)(2016·全国卷Ⅰ)如图所示,一光滑的轻滑轮用细绳OO′悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a ,另一端系一位于水平粗糙桌面上的物块b.外力F 向右上方拉b ,整个系统处于静止状态.若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( ) A .绳OO′的张力也在一定范围内变化 B .物块b 所受到的支持力也在一定范围内变化 C .连接a 和b 的绳的张力也在一定范围内变化 D .物块b 与桌面间的摩擦力也在一定范围内变化

聚氨酯分散体

1.为什么使用聚氨酯分散体? I ------------- - 水性聚氨酯分散体(PUDs)含有极低或不含任何挥发性有机物(VOC),而且为配方设计师提供了多种减少和消除溶剂配方的选择。同时这种基于聚氨酯分散体技术的配方也符合许多国家和地区日益严格的环境法规。 向聚氨酯分散体技术的转型不会影响传统配方的技术性能,因为聚氨酯分散体也能满足传统配方绝大部分的技术要求。 聚氨酯分散体为何如此独特? 低溶剂用量(或者在很多种情况不含溶剂)气味小 分子量大,粘度低 单组分(1K)应用可有多种选择低温干燥 优异的聚氨酯性能 聚氨酯分散体,在木器、水泥、金属、塑料、纸张、纺织品和橡胶以及其它高性能基材上具有卓越的涂覆性和附着性。 2■环保解决方案 此挥发性有机物(VOCs)在涂料工业上的大量使用,让人们越来越关注这些物质对环境造成的影响。许多国家和地区的环境权威部门已经加强对VOC水平的限制,同时制定法 律限制某些溶剂(如NMP)的使用。这些限制希望在将来变得会越来越严格。 配方设计师们目前所面临的挑战就是在不降低技术性能,并保证产量的基础上,开发出可替换的分散体体系。 水性的聚氨酯分散体为这种严苛的问题提供了解决方案。Bayhydrol?、Baybond?和Impranil?等系列分散体产品,可以被用来调制1K或2K的高性能且对环境友好的聚氨酯涂料。 a)低气味配方传统上,大多数传统涂料含有极高的VOCs(挥发性有机物),导致在使用时散发出强烈的溶剂气味。这些VOCs不仅使空气质量变差,而且还有可能造成对健康环境的潜在危害。如今,替代的生产技术和原材料可以开发出低VOC甚至无VOC的涂料体系,这样就可充分限制有害气味的散发。 很多情况下,仅少量的低气味助溶剂需要被添加到基于聚氨酯分散体(PUDs)的涂料中。这样就使得低VOC且低气味的配方也能达到很高的化学和机械性能。在很多应用环境中,比如水泥表面或木地板表面修整,使用低气味聚氨酯分散体的涂料可提供显著的好处: 在常规工作时间施工,减少了对施工建筑物内居住者的影响操作更加安全 保持良好的空气质量

力学动态平衡专题

力学动态平衡专题 一、矢量三角形法 特点:物体受三个力作用, 一为恒力,大小、方向均不变(通常为重力,也可能是其它力); 一为定力,方向不变,大小变化; 一为变力,大小、方向均发生变化。 分析技巧:正确画出物体所受的三个力,先作出恒力F3,通过受力分析确定定力F1的方向,并通过F3作一条直线,与另一变力F2构成一个闭合三角形。看这个变力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形长短的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不 计摩擦,在此过程中() A.N1始终增大,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若

固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小 D.OB绳上的拉力先减小后增大 3.质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中(?) A.F逐渐变大,T逐渐变大 B.F逐渐变大,T逐渐变小 B.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小 4.如图所示,小球用细绳系住,绳的另一端固定于O点。现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是 () 5. A、FN保持不变,FT不断增大 B、FN不断增大,FT不断减小 C、FN保持不变,FT先增大后减小 D、FN不断增大,FT先减小后增大 二、相似三角形法 特点:物体所受的三个力中,一为恒力,大小、方向不变(一般是重力),其它两个力的方向均发生变化。

水性聚氨酯的一个配方

水性聚氨酯的一个配方 环氧树脂工业级国产NMPAN- 甲基-2-吡咯烷酮分析纯国产Acetone丙酮分析纯国产DEG一缩二乙二醇分析纯国产去离子水自制实验装置反应装置:三口烧瓶、回流冷凝管、滴液漏斗、温度计搅拌装置:单相串联电动搅拌机搅拌桨,自制高速分散机,进口加热装置:电炉、触点温度计、加热锅检测仪器NDJ-1 型旋转黏度仪,国产Nicolet MAGNA-IR550 型红外光谱仪,进口MINITEST 测厚仪,德国XLL-100A 型拉力试验机,国产AG-I 电子万能实验机,进口涂膜附着力测定仪,QF2-Ⅱ,天津实验机厂涂膜柔韧性测定器,QTX-1, 天津实验机厂涂膜冲击试验器, R1J3-3K1,天津材料试验厂涂膜杯突试验器,QBU-60,日本偏光显微镜,OLYMPUS BX51,进口表面张力测定仪,dataphsics DCAT21,进口实验原理水性聚氨酯的制备一般包含两个主要步骤:(1)由低聚物多元醇与异氰酸酯类化合物,形成高分子量的聚氨酯或中高分子量的聚氨酯预聚体;(2)在剪切力作用下于水中分散。利用二羟甲基丙酸对预聚物进行亲水改性,在聚氨酯分子链上引入离子基团,使其实现自乳化,得到贮存稳定、性能良好的水性聚氨酯。水性聚氨酯的合成概述将甲苯二异氰酸酯装入配有温度计、搅拌器1L 的三口烧瓶中,向烧瓶中滴加聚醚多元醇和二羟甲基丙酸,于70-80℃左右反应约3 小时,反应过程中可用丙酮调节体系的黏度。最后用正二丁胺法滴定异氰酸根的浓

度。所得的亲水改性聚氨酯预聚体用一缩二乙二醇扩链约1-2 小时,最后降温至室温,用溶有三乙胺的去离子水在高速分散机上乳化,可得到淡黄色、半透明的水性聚氨酯分散体。

力学动态平衡问题

力学动态平衡问题 所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢的变化,而在这个过程中物体又始终处于一系列的平衡状态中。 解决动态平衡问题的思路是,①明确研究对象。②对物体进行正确的受力分析。③观察物体受力情况,认清哪些力是保持不变的,哪些力是改变的。④选取恰当的方法解决问题。 根据受力分析的结果,我们归纳出解决动态平衡问题的三种常用方法,分别是“图解法”,“相似三角形法”和“正交分解法”。 1、图解法 在同一图中做出物体在不同平衡状态下的力的矢量图,画出力的平行四边形或平移成矢量三角形,由动态力的平行四边形(或三角形)的各边长度的变化确定力的大小及方向的变化情况。 适用题型: (1)物体受三个力(或可等效为三个力)作用,三个力方向都不变,其中一个力大小改变。 例1、重G 的光滑小球静止在固定斜面和竖直挡板之间,若对小球施加一通过球心竖直向下的力F 作用,且F 缓慢增大,问在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2如何变化? 解析:选取小球为研究对象,小球受自身重力G ,斜面对小球的支持力F1,挡板对小球的弹力F2和竖直向下的压力F 四个力作用,画出受力示意图如图1-2所示。因为力F 和重力G 方向同为竖直向下,所以可以将它们等效为一个力,设为F ,这样小球就等效为三个力作用,力的示意图如图1-3所示。画出以F1和F2为邻边的力的平行四边形,因为三力平衡,所以F1和F2的合力F 合与F 等大反向(如图1-4所示)。各力的方向不变,当F 增大,F 合应随之增大,对应平行四边形的对角线变长,画出另一个状态的力的矢量图(如图1-5所示),由图中平行四边形边长的变化可知F1和F2都在增大。 根据物体在三个力的作用下平衡时,这三个力一定能构成一个封闭的矢量三角 形。这样也可以将上述三个力F 、F1、F2平移成矢量三角形(如图1-6所示),由F 增大,可画出另一个状态下的矢量三角形,通过图像中三角形边长的变化容易看出 F1和F2都在增大。 图1-1 图1-2 图1-3 图1-4 图1-5 图 1-6

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.doczj.com/doc/7313921618.html,ki.china.coatings.2008.07.007

相关主题
文本预览
相关文档 最新文档