当前位置:文档之家› 普通遗传学课后习题解答

普通遗传学课后习题解答

普通遗传学课后习题解答
普通遗传学课后习题解答

第一章遗传的细胞学基础(p32-33)

4.某物种细胞染色体数为2n=24,分别指出下列各细胞分裂期中的有关数据:

(1)有丝分裂后期染色体的着丝点数。(2)减数分裂后期I染色体着丝点数。(3)减数分裂中期I的染色体数。(4)减数分裂末期II的染色体数。

[答案]:(1)48;(2)24;(3)24;(4)12。

[提示]:如果题目没有明确指出,通常着丝点数与染色体数都应该指单个细胞或细胞核内的数目;为了“保险”(4)也可答:每个四分体细胞中有12条,共48 条。具有独立着丝点的染色体才称为一条染色体,由复合着丝点联结的两个染色体单体只能算一条染色体。5.果蝇体细胞染色体数为2n=8,假设在减数分裂时有一对同源染色体不分离,被拉向同一极,那么:

(1)二分子的每个细胞中有多少条染色单体?

(2)若在减数分裂第二次分裂时所有的姊妹染色体单体都分开,则产生的四个配子中各有多少条染色体?

(3)用n 表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数?

[答案]:(1)两个细胞分别为6 条和10 条染色单体。

(2)四个配子分别为3条、3 条、5条、5 条染色体。

(3)n=4 为完整、正常单倍染色体组;少一条染色体的配子表示为:n-1=3;多一条染色体的配子表示为:n+1=5。

[提示]:正常情况下,二价体的一对同源染色体分离并分配到两个二分体细胞。在极少数情况下发生异常分配,也是染色体数目变异形成的原因之一。

6. 人类体细胞染色体2n=46,那么,

(1)人类受精卵中有多少条染色体?

(2)人的初级精母细胞、初级卵母细胞、精子、卵细胞中各有多少条染色体?

[答案]:(1)人类受精卵中有46 条染色体。

(2)人的初级精母细胞、初级卵母细胞、精子、卵细胞中分别有46 条、46 条、23 条、23条染色体。

7.水稻细胞中有24条染色体,小麦中有42条染色体,黄瓜中有14条染色体。理论上它们各能产生多少种含不同染色体的雌雄配子?

[答案]:理论上,小稻、小麦、黄瓜各能产生=4096、=2097152、=128 种不同

含不同染色体的雌雄配子。

[提示]:水稻、黄瓜为二倍体,2n 条染色体配对形成n 个二价体;小麦虽然是六倍体但三种染色体组来源于不同的二倍体物种——是异源六倍体(参见第七章),因此正常情况下42 条染色体仍然配对形成21 个二价体。中期l 每个二价体有两种排列方式,配子中有两种

染色体组成。非同源染色体在形成配子时自由组合,因此有种配子染色体组合。

第二章遗传物质的分子基础(p58)

8.如果DNA的一条链上(A+G)/(T+C)=0.6,那么互补链上的同一个比率是多少?

[答案]:其互补链上的(A+G)/(T+C)为1/0.6=1.7。

10. 有几种不同的mRNA可以编码氨基酸序列met-leu-his-gly?

[答案]:根据遗传密码字典,有 1 种密码子编码met、6 种密码子编码leu、2 种密码子编码组氨酸、4 种密码子编码gly;因此有1×6×2×4=48 不同的mRNA可以编码该氨

基酸序列。分别为:

[提示]:有的同学把起始密码子和终止密码子也考虑进去,尤其是终止密码子。个人认为也不应该算错,说明你考虑问题更深一层;如果再深一层考虑题述本来就是一个片段,而不是一个完整的基因,所以可以不考虑。

第三章孟德尔遗传(p80-81)

1.小麦毛颖基因P为显性,光颖基因p为隐性。写出下列杂交组合的亲本基因型。(1)毛颖×毛颖,后代全部毛颖。

(2)毛颖×毛颖,后代3/4 毛颖: 1/4光颖。

(3)毛颖×光颖,后代1/2 毛颖: 1/2 光颖。

[答案](1)PP×P_或P_×PP (2)Pp×Pp (3)Pp×pp

[提示]此类题目的分析思路(在作练习题与考试时,应该适当反映分析过程!):首先是根据亲本及后代的表现型及性状(基因)的显隐性关系,初步推断其基因型;然后根据亲子代关系进一步推断基因型。如本题(2):根据表现型可知:毛颖(P_)×毛颖(P_)---3/4毛颖(P_): 1/4光颖(pp);光颖后代的两个p基因分别来自双亲,可知双亲均具有隐性p 基因、为杂合体;即:双亲基因型为:Pp×Pp

2.小麦无芒基因A为显性,有芒基因a为隐性。写出下列各杂交组合中F1的基因型和表现型。每一组合的F1群体中,出现无芒或有芒个体的机会各为多少?

(1)AA×aa (2) AA×Aa (3)Aa×Aa (4)Aa×aa (5)aa×aa

[答案](1)基因型全部为Aa,表现型全部为无芒;

(2)基因型分别为:AA、Aa;表现型全部为:无芒。

(3)基因型分别为:AA、Aa 和aa;前两种表现型为无芒,机会为3/4;后者表现型为有芒,机会为1/4;

(4)基因型分别为:Aa、aa;前者表现型为无芒,机会为1/2;后者表现型为有芒,机会为1/2。

(5)基因型全部为aa,表现型全部为有芒。

3.小麦有稃基因H为显性,裸粒基因h为隐性。现以纯合的有稃品种(HH)与纯合的裸粒品种(hh)杂交,写出其F1和F2的基因型和表现型。在完全显性情况下,其F2基因型和表现型的比例怎样?

[答案] 有稃品种(HH)×裸粒品种(hh)

F1 基因型:Hh 在完全显性时表现为:有稃

F2 基因型:1/4 HH + 2/4 Hh 1/4hh

F2 表现型:3/4 有稃1/4 裸粒

[提示]要特别注意不能把F1、F2 的表现型说成是:有稃品种、裸粒品种;品种是一个特定的概念,不是表现型。

5. 玉米是异花授粉作物,靠风力传播花粉。一块纯种甜粒玉米繁殖田收获时,发现有的甜粒玉米果穗上结有少数非甜粒种子,而另一种非甜粒玉米繁殖田收获时,非甜粒果穗上却找不到甜粒的种子。如何解释这种现象?怎样验证解释?

[答案]现象解释:(1)由于玉米是雌雄异花的异花授粉植物,甜粒纯种(susu)与非甜粒纯种(SuSu)相邻种植会由于风媒传粉而大量相互授粉杂交,两种植株上都会形成杂种籽粒(甜粒纯种植株上杂种籽粒胚的基因型:Susu,胚乳的基因型:Sususu;非甜粒植株上杂种籽粒胚基因型:Susu,胚乳基因型:SuSusu)。(2)非甜/甜是籽粒胚乳性状,由于直感现象籽粒胚乳表现型由胚乳基因型决定,由于非甜对甜为显性,因此两种植株上的杂种籽粒均表现为非甜粒。验证:甜粒植株上的非甜粒种子种植并进行自交或与非甜粒测交,后代会出现性状分离。非甜植株上的种子种植并进行自交或与非甜粒亲本测交,部分个体(杂种)自交、测交后代也会出现性状分离。

6. 花生种皮紫色(R)对红色(r)为显性,厚壳(T)对薄壳(t)为显性。R-r和T-t是独立遗传的。指出下列各种杂交组合的:①亲本的表现型、配子种类和比例。②F1的基因型种类和比例、表现型种类和比例。

(1)TTrr×ttRR (2)TTRR×ttrr (3)TtRr×ttRr (4)ttRr×Ttrr

[提示]注意在分析亲本配子种类和比例时,不能把两个亲本的配子混在一起。因为杂交过程中,其中一个是母本只提供雌配子,另一个是父本只提供雄配子,雌雄配子当然不能混在一起分析。

7. 番茄的红果(Y)对黄果(y)为显性,二室(M)对多室(m)为显性。两对基因是独立遗传的。当一株红果、二室的番茄与一株红果、多室的番茄杂交后,子一代(F1)群体内有:3/8的植株为红果、二室的,3/8是红果、多室的,1/8是黄果、二室的,1/8是黄果、多室的。试问这两个亲本植株是怎样的基因型?

[答案]红果、二室亲本的基因型:YyMm,红果、多室亲本的基因型:Yymm。

[提示]应该体现分析思路(类似第1题):

(1)根据亲本的表现型可知:红果、二室Y_M_,红果、多室Y_mm;

(2)后代中红果: 黄果=3 : 1,因此两个亲本均为果色基因型均为杂合型;

(3)后代中二室: 多室=1 : 1,因此前一个亲本子房室数基因型为杂合型。

综上所述,两亲本的基因型分别为:YyMm, Yymm

10.光颖、抗锈、无芒(ppRRAA)小麦和毛颖、感锈、有芒(PPrraa)小麦杂交,希望从F3选出毛颖、抗锈、无芒的小麦株系(PPRRAA)的小麦10个株系,试问F2群体中至少应选择表现型为毛颖、抗锈、无芒(P_R_A_)的小麦从少株?

[答案]杂种F1 为3 对基因杂合体(PpRrAa),在独立遗传情况下,自交后代中表现型为:毛颖、抗锈、无芒(P_R_A_)个体的比例为:?×?×?=27/64,而其中基因型纯合(PPRRAA)个体的

比例为:?×?×?=1/64。因此在F2 选择毛颖、抗锈、无芒个体中,自交可得到纯合F3 株系的占1/64÷27/64=1/27;要得到10 个纯合毛颖、抗锈、无芒F3 株系,应选择:10÷1/27=270(株)。

[提示]株系指一个植株自交产生的后代群体;F3株系是一个F2 植株所有自交后代。纯合株系(纯系):株系内个体均纯合、个体间基因型相同,是一个纯合个体自交后代(也即第九章所谓纯系)。

12.萝卜块根的形状有长形的,圆形的,椭圆形的,以下是不同类型杂交的结果:

长形×圆形---595 椭圆形

长形×椭圆形---205 长形,201 椭圆形

椭圆形×圆形---198 椭圆形,202 圆形

椭圆形×椭圆形---58 长形,121 椭圆形,61 圆形

说明萝卜块根形状属于什么遗传类型,并自定基因符号,标明上述各杂交组合亲本及其后裔的基因型。

[答案]萝卜块根形状的遗传类型属于受一对基因控制、不完全显性遗传;一对基因分别用L, l 表示,4 个杂交组合及后代的基因型分别为:

(1)LL×ll --- Ll (2)LL×Ll --- 1/2 LL + 1/2 Ll

(3)Ll×ll---1/2 Ll + 1/2 ll (4)Ll×Ll--- 1/4 LL + 1/2 Ll + 1/4 ll

[提示]遗传类型在不同的环境中可以有不同的含义,可以指遗传组成(静态):基因型,纯合、杂合;遗传方式(动态):细胞质遗传、细胞核遗传,单基因、多基因(或特定的互作类型),质量性状、数量性状,等。本题中,一个单位性状具有3 种表现型类型,可能是:一对不完全显性基因控制,两对基因抑制、隐性上位性、显性上位性或积加作用。但在质量性状遗传分析中,都首先考虑一对基因的情况,只有在不能够用一对基因控制的各种情况解释的时候,才考虑两对基因控制。根据几个杂交组合后代表现来看,基本符合一对基因不完全显性控制(必要时可以用Х2测验进行检验)所以不再考虑两基因的情况。事实上,在这种情况下,也不会符合两对基因互作的各种情况。用基因型分析杂交组合的时候,通常应用理论比例。部分同学在以基因型表示的时候,也抄录题目的实际后代数目,如:(2)LL×Ll ---205 LL + 201 Ll。

14.设玉米籽粒有色是独立遗传的三显性基因互作的结果,基因型为A_C_R_的籽粒有色,其余基因型的籽粒均无色。一个有色籽粒植株与以下三个纯合品系分别获得下列结果:(1)与aaccRR 品系杂交,获得50%有色籽粒。

(2)与aaCCrr 品系杂交,获得25%有色籽粒。

(3)与AAccrr 品系杂交,获得50%有色籽粒。

试问这个有色籽粒是怎样的基因型?

[答案] 该植株表现为有色,因此基因型为:A_C_R_。在各杂交纯合中:

(1)A_C_R_×aaccRR---50%有色籽粒。如果A 基因显性纯合(AA),后代籽粒A 位点为Aa,此时R 位点为R_;后代产生籽粒色呈1:1分离比例只能由 C 基因分离产生?AACcR_。反之,若A基因杂合(Aa),则C 基因必然纯合?AaCCR_。

(2)A_C_R_×aaCCrr---25%有色籽粒。一个亲本为CC 纯合,因此后代C 位点总带有

C 基因,只有当:该个体A 基因杂合后代Aa:aa=1:1,该个体R 基因杂合后代Rr:rr=1:1;后代表现为1/4AaC_Rr 有色,其余均为无色。即该有色籽粒的基因型可以为:AaC_Rr。

(3)与组合1 类似,有色籽粒应为:A_CCRr或A_CcRR。

综合 3 个杂交组合的结果,同时满足三个条件的基因型为:AaCCRr。

第四章连锁遗传与性连锁(p103-104)

2. 在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐性纯合体测交,其后代为:带壳、散穗201 株裸粒、散穗18 株带壳、密穗20 株裸粒、密穗203 株

试问,这2 对基因是否连锁?交换值是多少?要使F2 出现纯合的裸粒散穗20 株,至少要种多少株?

[答案] (1)F1的基因型为NnLl,表现型为带壳散穗。

(2)由题可知:测交后代群体明显不符合1 : 1 : 1 : 1 的分离比例(无需进行Χ2检验),亲本型数目多,而重组型数目少,所以两对基因为不完全连锁。

(3)交换值= ((18+20)/(201+18+20+203))×100% = 8.6%

(4)F1 的两种重组配子Nl和nL各为8.6% / 2 = 4.3%,亲本型配子NL和nl各为(1-8.6%)/2=45.7%;在F2 群体中出现纯合类型nnLL基因型的比例为:4.3%×4.3% = 18.49/10000。设要出现20株纯合裸粒散穗至少需要种植的株数为X,则:18.49/10000 = 20/X ? X = 10817。故要使F2 出现纯合的裸粒散穗20 株,至少应种10817 株。

3. 在杂合体AByabY内,a和b之间的交换值为6%,b和y之间的交换值为10%。在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子?在符合系数为0.26时,配子的比例如何?

[答案]由于三个基因两两间均为不完全连锁,因此这个杂合体能产生8 种类型的配子:ABy、abY、aBy、AbY、ABY、aby、Aby、aBY。在符合系数为0.26 时,实际双交换值为:0.26×0.06×0.1×100 = 0.156%,每种双交换型配子的比例为:0.156% / 2 = 0.078%;

两种a-b 单交换型配子比例均为:(6% - 0.156%) / 2 = 2.922%;

两种b-y 单交换型配子比例均为:(10% - 0.156%) / 2 = 4.922%;

两种亲本型配子比例均为:[1-(6% - 0.156%)-(10% - 0.156%)-0.156%]/2 = 42.078%。

即该杂合体配子比例为:Aby 42.078 : abY 42.078 : aBy 2.922 : AbY 2.922 : ABY 4.922 : aby

4.922 : Aby 0.078 : aBY 0.078。

[提示]题目中“这个杂合体自交,能产生几种类型的配子”有点不好理解,其实它产生多少种类型配子与其后是自交还是测交并没有关系。AByabY或ABy//abY 书写方式也表明3 个基因在染色体上的排列顺序:a-b-y。此类题目分析各种类型配子比例就是三点测验的反推,要从两基因间交换值中减去双交换的值才是单交换。

4. 设某植物的3个基因t、h、f依次位于同一染色体上已知t-h相距10cM,h-f相距14cM,现有如下杂交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例是多少?②符合系数为0时,后代基因型为thf/thf的比例是多少?

试求这3 个基因排列的顺序、距离和符合系数。

[答案] (1)由题知3 个基因连锁,杂合体与纯隐性亲本测交后代(杂合体产生的配子)按表现型(配子基因型)相对、数目相近可分为4 组(如下表),各组间数目差异很大,因此3 个基因间不存在完全连锁的情况。

(2)其中第一组数目最多为亲本型、第四组数目最少为双交换型;另外两组分别为两组单交换型。

(3)将双交换型与亲本型比较,可知两组中不同的基因位点是a,因此3 个基因在染色体上的排列顺序为:b-a-c;单交换 1 与亲本型比较,b 位点不同,因此单交换1 为a-b 间单交换;单交换2 与亲本型比较,c 位点不同,为a-c 间单交换。

6.已知某生物的两个连锁群如下图(图略),试求杂合体AaBbCc可能产生的配子类型和比例。

[提示] 本题有3 个问题需要注意:

(1)如何读连锁遗传图,确定连锁关系与遗传距离。本题中两个连锁群的连锁遗传图,各连锁群上的基因连锁,不同连锁群上基因间自由组合;b-c 间遗传距离为43-36 = 7(cM)。

(2)尽管两连锁群上均标记多个基因,但就本题而言,只需要考虑b-c 间连锁交换及a 与b-c间的自由组合。

(3)题述AaBbCc 杂合体并没有显示b-c基因间是相引相(BC//bc)还是相斥相(Bc//bC),

因此可分别假设两种可能进行分析;至少指出有两种可能性,然后就其中一种可能进行分析。

7. 纯合的匍匐、多毛、白花的香豌豆与丛生、光滑、有色花的香豌豆杂交,产生的F1全是匍匐、多毛、有色花。如果F1与丛生、光滑、白色花又进行杂交,后代可望获得近于下列的分配,试说明这些结果,求出重组率。

匍、多、有6% 丛、多、有19% 匍、多、白19% 丛、多、白6%

匍、光、有6% 丛、光、有19% 匍、光、白19% 丛、光、白6%

[答案]由于3 对性状杂合体产生8 种类型配子(测交后代),表明基因间不存在完全连锁。(分析思路1)8种配子类型(测交后代)按比例多少可分为两组,第一组4 种比例均为19%:匍、多、白19% 丛、多、有19% 匍、光、白19% 丛、光、有19% 。第二组 4 种比例均为6%:匍、多、有6% 丛、多、白6% 匍、光、有6% 丛、光、白6% 。对比分析两组的性状类型组合可以发现第一组只有匍、白和丛、有两种组合,第二组中只有匍、有和丛、白两种组合,表明3 对基因中植株生长习性(匍匐对丛生为显性)与花色(有色花对白色花为显性)两对基因连锁,交换值= 6%+6%+6%+6% = 24%。而绒毛有无(多毛对光滑为显性)与这两对基因间自由组合,因此每组中均包含4 种组合。

(分析思路2)分别分析性状两两间组合结果:

生长习性与绒毛有无:测交后代中4 种组合:

匍、多= 6%+19% = 25% 丛、多= 19%+6% = 25%

匍、光= 6%+19% = 25% 丛、光= 19%+6% = 25%

因此,两对性状间自由组合。

生长习性与花色:测交后代中4 种组合:

匍、有= 6%+6% = 12% 丛、有= 19%+19% = 38%

丛、白= 6%+6% = 12% 匍、白= 19%+19% = 38%

因此,两对性状间连锁,交换值= 12%+12% = 24%

同理可知,绒毛有无与花色间为自由组合:

多、有= 6%+19% = 25% 多、白= 19%+6% = 25%

光、有= 6%+19% = 25% 光、白= 19%+6% = 25%

8.基因a、b、c、d位于果蝇的同一染色体上。经过一系列杂交后得出如下交换值:a-c 40% a-d 25% b-d 5% b-c 10% 试描绘出这4 个基因的连锁遗传图。

[提示]根据交换值、遗传距离作连锁遗传图的基本过程就是教材介绍两点测验时的作图方法,需要根据多个基因两两间的遗传距离来确定基因间的排列顺序。上图中同时用了两种遗传图的距离标注方式,如果题目明确要求应采用相应方法。

9. 脉胞菌的白化型(al)产生亮色子囊孢子,野生型产生灰色子囊孢子。将白化型与野生型杂交,结果产生:129个亲本型子囊——孢子排列为4亮: 4灰,141个交换型子囊——孢子排列为2:2:2:2或2:4:2。问:al基因与着丝点之间的交换值是多少?

[提示] 题目中给出孢子排列实属多余,因为亲本型有2 种排列(不考虑排列方向就是4:4)、交换型有4 种排列(其中2:2:2:2 两种、2:4:2 两种)。

10. 果蝇的长翅(Vg)对残翅(vg)是显性,该基因位于常染色体上;红眼(W)对白眼(w)是显性,该基因位于X染色体上。现在让长翅红眼的杂合体与残翅白眼纯合体杂交,所产生的基因型如何?

[答案] 根据题述,残翅白眼纯合体的基因型应该为:vgvgXwXw,为雌性;长翅红眼杂合体应该为雄性,基因型:VgvgXWY。两亲本产生配子类型及杂交后代组合、基因型见下表:

第五章基因突变(p125-126)

3. 兔子毛色受3个复等位基因控制:正常毛色基因C、喜马拉雅白化基因Ch和白化基因Ca,它们的显性关系可表示为:C>Ch>Ca。试写出兔子有哪几种毛色基因型和表现型。

[答案] 兔子是二倍体生物,基因成对存在3 个复等位基因可形成如下表所示的基因型和表现型:

6. 有性繁殖和无性繁殖、自花授粉和异花授粉与突变性状表现有什么关系?

[答案] 由于基因自然突变率一般很低,一对等位基因同时突变的可能性就更低,因此突变当代一般是杂合体。显性突变基因的突变性状可以直接表现,而隐性突变基因则只有通过有性生殖产生纯合体之后才会表现突变性状。因此,生物繁殖、授粉方式极大影响突变性状,尤其是隐性突变的性状表现。杂合体突变细胞经过有丝分裂(无性繁殖)可以产生突变细胞群或后代个体。显性突变可能表现为突变体区,经过芽变选择与保留获得突变个体;隐性突变则不能表现突变性状,也无法根据性状表现进行选择,形成突变个体。

杂合突变细胞经过有性繁殖,形成带突变基因的雌雄配子,当两者结合时可能产生突变纯合体。显性突变可以在突变当代表现,而隐性突变也可以在突变后代中表现出来。

同为有性繁殖,植物突变杂合体自花授粉产生突变纯合体的机率远远高于异花授粉方式,因而更有利于隐性突变性状的表现。异花授粉隐性突变基因可能在群体中长期以杂合形式存在而并不表现。

8. 在种植高秆小麦品种的田间发现一矮秆植株,怎样验证它是由于基因突变,还是由于环境影响产生的?

[答案] 生物性状变异的来源可以分为环境变异和遗传变异,遗传变异又分可为:遗传重组、基因突变(有时包括细胞质基因突变)、染色体变异(可分为染色体结构变异、染色体数目变

异)。

本题变异个体发现于小麦——自花授粉植物品种群体(纯合群体),因此可以排除遗传重组的可能;通常栽培环境之中,产生染色体变异的频率比基因突变的频率更低,因此矮秆植株可能产生于环境变异和基因突变。

为鉴定变异体属于上述哪种变异来源,可令矮秆植株与原始高秆类型植株自交(自花授粉植物,无需采用特别的控制授粉措施),分别收获籽粒。排除可能影响其株高的环境因素,在土壤和栽培管理一致的条件下种植,考察株高表现:如果变异体后代与原始材料间无差异,为环境变异;如果差异依然存在,推测为遗传变异——本例中为基因突变。

10.利用花粉直感现象测定突变频率,在亲本性状配置上应该注意什么问题?

[答案] 应该以隐性性状亲本为母本。原因:以显性性状亲本为母本,无论花粉粒是否发生基因突变,F1 均表现显性性状,不能鉴定是否突变。

13. DNA损伤修复途径有哪些?其中哪些途径能够避免差错?哪些允许差错并产生突变?[答案] DNA损伤修复途径包括:错配修复、直接修复、切除修复、双链断裂修复、复制后修复和倾向差错修复。DNA损伤修复主要有结构完整性修复与序列正确性修复两方面的作用。结构完整性修复是所有修复途径最根本功能,是保证细胞、生物体生存的最首要前提。错配修复、直接修复和切除修复途径在修复结构的同时通常也能够修复序列正确性,从而避免DNA损伤导致基因突变产生,因此也称为避免差错修复。在DNA损伤比较严重的情况下,修复途径为了最大限度地修复DNA分子结构的完整性,可能容忍、甚至倾向产生序列差错,从而导致基因突变的产生。其中双链断裂修复、复制后修复属于容忍差错修复,SOS 修复

为倾向差错修复。

第六章染色体结构变异(p146-147)

2.某植株是隐性aa纯合体,用显性AA纯合体的花粉给它授粉杂交,在500株F1中,有2株表现型为隐性a。如何证明和解释这个杂交结果?

[答案]两纯合体杂交后代产生隐性性状后代个体有两种可能:

(1)显性个体发生基因突变,产生含突变、隐性基因的雄配子;(2)显性性状个体产生染色体缺失(尤其是顶端缺失)突变,丢失显性基因所在区段,杂种后代表现假显性现象。两者的区别在于:前者染色体形态结构没有改变,也后者会导致缺失染色体长度和着丝粒相对位置的改变。因此,进一步验证的方法是:对隐性性状杂种F1 进行细胞学鉴定。

[提示] 本题目中变异率达0.4%,通常基因和染色体结构变异自然产生的频率都应该没有这么高,因此还可以认为只有经过诱变处理才产生上述结果。如果用紫外线进行诱变的话,产生染色体结构变异的频率要低得多;而电离辐射诱变处理的话,两种结果的可能性均存在。

3.某玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C等位的无色基因c在正常染色体上。玉米的缺失染色体一般是不能通过花粉而遗传的。在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,得到10%有色的杂交籽粒。试解释发生这种现象的原因。

[答案]该杂合体花粉母细胞减数分裂时,第9染色体上C基因与缺失点之间发生交换,形成产生了带C 基因的正常染色体。这此配子可育,参与授粉产生有色籽粒。同时表明缺失点与 C 基因间的遗传距离为10cM。分析过程如下:用 D 表示缺失染色体的缺失点,d 表示正常染色体对应点,则该杂合体的基因型为CD//cd,性母细胞中染色体组成如图所示:

若C、D 间不发生交换,该杂合体产生两种类型花粉粒(CD、cd)各占50%,但仅cd 可

育,因此以之为父本与ccdd 个体杂交后代均为无色。当C、D间发生非姊妹染色体单体交换,该杂合体花粉母细胞产生配子类型如下:

设4 种配子的比例分别为P1, P2, P3, P4,则:

P1=P2;P3=P4 P2/(P2+P4)×100%=10%RfCD=[(P2+P4)/(P1+P2+P3+P4)]×100%=10% 综上所述,缺失点与C基因间遗传距离为10cM。

[提示] 本题不仅要解释有色籽粒产生的原因,而且要解释有色籽粒产生的比例。

8. 某个体的某一对同源染色体的区段顺序有所不同,一个是abcde·fg,另一个是adcbe·fg (“·”代表着丝粒)。试回答下列问题:

(1)这对染色体在减数分裂时是怎样联会的?

(2)如果在减数分裂时,b-c 之间发生一次非姊妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出所产生的配子的育性。

(3)如果在减数分裂时,着丝粒与 e 之间和b-c之间各发生一次交换,但两次交换所涉及的非姊妹染色单体不同,试图解说明二分子和四分子的染色体结构,并指出所产生的配子的育性。

[答案](1)该个体为臂内倒位杂合体,联会时这对染色体形成倒位圈,如图所示:

(2)如下图所示,打“*”的四分子形成配子不育。

(3)如下图所示,打“*”的四分子形成配子不育。

9. 某生物有3个不同的变种,各变种的某染色体的区段顺序分别为:ABCDEFGHIJ, ABCHGFIDEJ,

ABCHGFEDIJ。试分析这3个变种的进化关系。

[答案] 三个变种染色体顺序可能是由一种染色体顺序先后经过两次染色体倒位形成的两

个不同变

种:ABCDEFGHIJ 发生DEFGH 区段倒位形成ABCHGFEDIJ,后者再次发生EDI 区段倒位

形成ABCHGFIDEJ。

15. 玉米第6染色体的一个易位点(T)距离黄胚乳基因(Y)较近,T与Y之间的重组率(交换值)为20%,以黄胚乳的易位纯合体与正常的白胚乳纯系(yy)杂交,再以F1与白胚乳纯系测交,试解答以下问题:

(1)F1 和白胚乳纯系分别产生哪些可育配子?图解分析。

(2)测交子代(Ft)的基因型和表现型(黄粒或白粒,完全不育或半不育)的种类和比例如何?图解说明。

[答案] 根据题意,设带Y 的易位染色体、正常6 染色体分别如图所示(其中第6 染色体与m 染色体易位):

可知:杂种F1 与白胚乳个体的相关染色体组成分别为:杂种F1:66mmm6(相互易位杂合体) 白胚乳个体:66mm(正常染色体组成)则杂种F1 交替式分离产生有效(可育)配子,而白胚乳个体配子只有一种,如图所示:

16. 用叶基边缘有条纹(f)和叶中脉棕色(bm2)的玉米品系(ffbm2bm2)与叶基边缘和中脉色都正常的易位纯合体(FFBm2Bm2TT)杂交,F1植株的叶边缘和脉色都正常,但为半不育。检查发现该F1的孢母细胞内在粗线期有十字形的四重体。再用隐性纯合亲本与F1

测交,测交子代(Ft)的分离见下表。已知F-f和Bm2-Bm2本来连锁在染色体1的长臂上,问易位点(T)与这两对基因的位置关系如何?

[答案] 根据题意,该杂交、测交过程可表示如下:

按三点测验分析如下:

(1)双交换组与亲本组间比较,双交换类型的bm2 与其它基因连锁关系改变,可知:bm2 基因位于f 与易位点之间;单交换1 为f与bm2 间单交换产生;单交换2 为bm2 与易位点间单交换产生;

第七章染色体数目变异(p170-171)

2. 糖槭和羽叶槭都是二倍体植物2n=2x=26。它们是同一个属的不同种。它们之间的杂种是不育的。试解释原因并提出使杂种成为可育的办法。

[答案]种间杂种不育的原因是:杂种两个染色体组来自不同的物种,减数分裂前期I 两个染色体组26 条染色体均以单价体的形式存在;后期I 单价体不可能呈均等分配,要么随机分配到二分体细胞之一,要么发生后期I 姊妹染色单体分离后期II 染色单体随机分配,要么单价体微过氧化物酶体;因此,四分体细胞中一般不具有染色体组的完整组成,丧失染色体组的整体和均衡,导致配子不育。使杂种成为可育的办法:可以通过体细胞染色体加倍获得双二倍体。双二倍体具有糖槭和羽叶槭各两个染色体组,染色体(组)成对存在;减数分裂前期I能够正常配对形成二价体,后期I同源染色体均等分配;四分体细胞具有糖槭和羽叶槭染色体组各一个,配子育性会显著提高。

3.杂种F1与隐性性状亲本回交后,得到显性性状与隐性性状之比为5[A] : 1[a]的后代,因此可以肯定该杂种是同源四倍体,对吗?试说明。

[答案] 不对。从理论上讲,如果A 基因所在的染色体有4 条,两个纯合体杂种F1 基因型为 A 基因的复式杂合体:AAaa,当A基因按染色体随机分离时可以得到5[A] : 1[a]的测交后代表现型分离。但除了同源四倍体之外,如果杂种为A基因所在染色体的四体,也会得到相同的理论结果。因此,需要进一步对其进行细胞学鉴定才能确定杂种是同源四倍体还是四体。

6. 在小麦中发现1个叶绿素异常的隐性基因a,纯合体的叶子为黄绿色,试用单体分析法确定a基因位于哪个染色体上。

[答案] 用黄绿色纯合体作父本分别与21种正常绿色单体自交,杂交种子种植得到21个

杂种F1群体,考察F1 植株颜色表现;20个F1 群体全部表现为绿色,表明该基因与对应单体染色体无关;1 个F1 群体有两种植株色表现:绿色和黄绿色;对黄绿色植株进行细胞学分析,黄绿色个体均为单体,而绿色个体均为双体;表明该基因就在此单体对应用染色体上。

7.普通小麦的某一单位性状的遗传常常是由3对独立分配的基因共同决定,这是什么原因?用小麦属的二倍体种、异源四倍体种和异源六倍体种进行电离辐射的诱变处理,哪个种的突变型出现频率最高,哪个最低?为什么?

[答案] 普通小麦是异源六倍体,其中6 个染色体组分别来源于野生一粒小麦、拟斯卑尔脱山羊草和方穗山羊草3 个二倍体物种,这3 个物种间亲缘关系很近,具有很多相似的性状和基因;因此普通小麦一个性状常常由3 对基因决定,并且分别位于A、B、D不同的染色体组上,独立遗传。

电离辐射诱变通常会破坏已有基因结构和功能,因此以隐性突变为主;而基因突变是独立发生的,对多个基因控制的性状,各基因同时突变产生突变纯合体,表现突变型的频率很低,对于染色体组间具有部分同源性的异源多倍体而言显然四倍体的频率低于二倍体,而六倍体低于四倍体。

11.同源多倍体和异源多倍体都是原来物种的染色体数加倍。若有一种4x的植物,你怎样从细胞学

上确定它是同源多倍体还是异源多倍体?

[提示] 有丝分裂染色体形态观察和减数分裂配对观察都要分析到。

第八章数量性状的遗传(p190)

第九章近亲繁殖和杂种优势(p203)

3. 假设有3对独立遗传的异质基因,自交5代后群体中3对基因杂合(个体)的比例是多少?3对基因中2对基因杂合、1对基因纯合(个体)的比例是多少?3对基因均纯合(个体)的比例是多少?

9.A、B、C、D是4个高粱自交系,其中A和D是姊妹自交系,B和C是姊妹自交系。四个自交系可配成6个单交种,为了使双杂种的杂种优势最强,你将选哪两个单交种进行杂交,为什么?

[答案] 影响杂种优势最主要的因素是双亲间基因型差异,双亲间基因型差异越大,杂种的杂合程度越高,杂种优势越强;同时,亲本的纯合度越高,杂种群体的整齐度越高,杂种优势最明显。单交种A×D 与单交种B×C 均由姊妹自交系产生,具有较高的纯合度;同时两个单交种间的遗传差异最大;因此双交种(A×D)×(B×C)的杂种优势最强

第十一章细胞质遗传(p254-255)

3. 如果正反杂交试验获得的F1表现不同,这可能是由于:①性连锁。②细胞质遗传。③母性影响。你如何用试验方法确定它属于哪一种情况?

[答案] X染色体上基因控制的性状:以纯合显性母本与隐性父本杂交时,F1 代雌雄个体均表现为显性;以隐性母本与显性父本杂交时,F1 代雌性表现为显性,雄性表现为隐性。因此,只需要考察正反F1 代性状表现与性别间的关系。就可以确定是否属于性连锁遗传。

正反交F1 分别进行自交,考察F2 性状表现:如果两种F2 群体均一致表现为同一种性状,则属于母性影响;如果两个F2 群体分别表现两种不同的性状(与对应的F1 一致),则属于细胞质遗传。

4. 玉米埃形条纹叶(ijij)与正常绿叶(IjIj)植株杂交,F1的条纹叶(Ijij)作母本与正常绿色叶植株(IjIj)回交。将回交后代作母本进行下列杂交,请写出后代的基因型和表现型。(1)绿叶(Ijij)♀×♂条纹叶(Ijij)

(2)条纹叶(IjIj)♀×♂绿叶(IjIj)

(3)绿叶(Ijij)♀×♂绿叶(Ijij)

[答案] F1 的条纹叶核基因型为:Ijij,细胞质有两种基因型:+/-。回交后代遗传组成与表型如下:+(IjIj)绿叶+(Ijij)绿叶

-(IjIj)白化-(Iji)白化

+/-(IjIj)条纹叶+/-(Ijij)条纹叶

(1)绿叶(Ijij)回交后代细胞质全部为正常叶绿体基因+,杂交后代基因型及表现型分别为:+(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因?+/-(ijij)为条纹叶或白(2)条纹叶(IjIj)产生的后代可能有3 种细胞质细胞类型,但核基因均为IjIj,即:+(IjIj)为绿色、-(IjIj)为白化苗和+/-(IjIj)为条纹叶。

(3)绿叶(Ijij)细胞质全部为正常叶绿体基因,杂交后代:+(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因?+/-(ijij)为条纹叶或白化。

5. 大麦的淡绿色叶片可由细胞质因子(L1=正常绿叶,L2=淡绿叶)引起,也可由隐性核基因(vv=淡绿叶)引起。请预测下列各组合中子代的基因型和表现型:

(1)纯合正常♀×♂L1(vv)

(2)L1(vv)♀×♂纯合正常

(3)纯合正常♀×♂L2(vv)

(4)L2(vv)♀×♂纯合正常

(5)来自(1)的F1 ♀×♂来自(4)的F1

(6)来自(4)的F1 ♀×♂来自(1)的F1

[答案] (1)亲代遗传组成及子代基因型与表现型:L1(VV)♀×♂L1(vv)? L1(Vv)为正常绿叶

(2)L1(vv)♀×♂L1(VV)? L1(Vv)为正常绿叶

(3)L1(VV)♀×♂L2(vv)? L1(Vv)为正常绿叶

(4)L2(vv)♀×♂L1(VV)? L2(Vv)为淡绿叶

(5)L1(Vv)♀×♂L2(Vv)? L1(VV)与L1(Vv)为正常绿叶;L1(vv)为淡绿叶(6)L2(Vv)♀×♂L1(Vv)? L2(VV)、L2(Vv)、L2(vv)均为淡绿叶

7. 不同组合的不育植株与可育植株杂交得到以下后代:

(1)1/2可育,1/2不育。

(2)后代全部可育。

(3)后代仍然保持不育。写出各杂交组合中父本的遗传组成。

[答案](1)N(Rfrf)或S(Rfrf)(2)N(RfRf)或S(RfRf)(3)N(rfrf)

12.如果你发现了一株雄性不育植株,你如何确定它是究竟是单倍体、远缘杂交F1、生理不育、核不育还是细胞质不育?

[提示] 单倍体雌雄配子均不育,且可通过体细胞染色体数目鉴定;远缘杂交F1 同样雌雄配子均不育,且可通过体细胞染色体数目与减数分裂染色体配对鉴定;生理不育通常雄配子不育,雌配子可育,但后代不会表现不育特征;核不育通常雄配子不育,雌配子可育,后代育性能够恢复、不能保持;细胞质不育通常雄配子不育,雌配子可育,后代能够保持、不

能恢复。

[答案](1)小心取部分根尖(不影响植株生存),进行细胞学鉴定,能鉴定是否单倍体;(2)如果还有部分花序处于减数分裂,进行减数分裂制片观察,可鉴定是否远缘杂交F1;(3)分别用已知具有广泛恢复力的质核互作雄性不育恢复系和具有广泛保持能力的质核互作雄性不育保持系的可育花粉给不育植株授粉(分花序或单穗分别授粉并挂牌标记):若均不能得到杂交种子,应该属于单倍体或远缘杂交F1;

(4)得到杂交种子,进行种植。若恢复系、保持系授粉后代均可育,且其后代不发生育性分离,则更可能是生理不育;

(5)若后代均可育,但其后代发生育性分离,则更可能是细胞核不育;若后代均不育则更可能是细胞质不育;

(6)其后恢复系授粉后代可育,保持系授粉后代不育,则应该是质核互作核性不育。13.用某不育系与恢复系杂交,得到F1全部正常发育。将F1的花粉再给不育系亲本授粉,后代中出现90株可育株和270株不育株。试分析该不育系的类型及遗传基础。

[提示]细胞质不育育性不能得到恢复,不适用于本题;质核互作雄性不育系的不育胞质在与F1 回交时传递给每一个回交后代,因此与后代育性分离无关,本例中也不能进行深入分析;因此本例主要应该考虑不育系的细胞核基因遗传;如果为显性核不育,回交后代应该全部可育;如果不育系与恢复系间存在一对育性基因差异,则后代中育性应该表现1:1 的分离比例;如果两对无互作隐性不育基因控制,回交后代应该表现为3:1 的可育株:不育株。上述情况均不能解释本题结果。

[答案] 该不育系的花粉败育受2 对独立遗传隐性不育基因(ms1ms1ms2ms2)控制,可育基因显性互作时雄性可育,杂种F1 基因型为(Ms1ms1Ms2ms2)产生四种类型的配子:Ms1Ms2、Ms1ms2、ms1Ms2、ms1ms2,且比例相等;第一种酏子回交形成可育株,后三种回交形成不育株。

14.现有一个不育材料,找不到它的恢复系。一般的杂交后代都是不育的。但有的F1不育株也能产生极少量的花粉,自交得到少数后代,呈3:1不育株与可育株分离。将F1不育株与可育亲本回交,后代呈1:1不育株的分离。试分析该不育材料的遗传基础。

[提示] 分析过各与上题类似,从简单到复杂,各种可能一一进行分析,直到找到可以解释的遗传基础。找不到恢复系:可能是显性核不育或细胞质不育,细胞质不育后代不会表现育性分离。

普通遗传学(第2版)杨业华课后习题及答案

1 复习题 1. 什么是遗传学?为什么说遗传学诞生于1900年? 2. 什么是基因型和表达,它们有何区别和联系? 3. 在达尔文以前有哪些思想与达尔文理论有联系? 4. 在遗传学的4个主要分支学科中,其研究手段各有什么特点? 5. 什么是遗传工程,它在动、植物育种及医学方面的应用各有什么特点? 2 复习题 1. 某合子,有两对同源染色体A和a及B和b,你预期在它们生长时期体细胞的染色体组成应该是下列哪一种:AaBb,AABb,AABB,aabb;还是其他组合吗? 2. 某物种细胞染色体数为2n=24,分别指出下列各细胞分裂时期中的有关数据: (1)有丝分裂后期染色体的着丝点数 (2)减数分裂后期I染色体着丝点数 (3)减数分裂中期I染色体着丝点数 (4)减数分裂末期II的染色体数 3. 假定某杂合体细胞内含有3对染色体,其中A、B、C来自母体,A′、B′、C′来自父本。经减数分裂该杂种能形成几种配子,其染色体组成如何?其中同时含有全部母亲本或全部父本染色体的配子分别是多少? 4. 下列事件是发生在有丝分裂,还是减数分裂?或是两者都发生,还是都不发生? (1)子细胞染色体数与母细胞相同 (2)染色体复制 (3)染色体联会 (4)染色体发生向两极运动 (5)子细胞中含有一对同源染色体中的一个 (6)子细胞中含有一对同源染色体的两个成员 (7)着丝点分裂 5. 人的染色体数为2n=46,写出下列各时期的染色体数目和染色单体数。 (1)初级精母细胞(2)精细胞(3)次级卵母细胞(4)第一级体(5)后期I (6)末期II (7)前期II (8)有丝分裂前期(9)前期I (10)有丝分裂后期 6. 玉米体细胞中有10对染色体,写出下列各组织的细胞中染色体数目。 (1)叶(2)根(3)胚(4)胚乳(5)大孢子母细胞

普通遗传学第十一章 核外遗传 自出试题及答案详解第二套_.

一、名词解释: 1、母性影响 2、细胞质遗传 3、核外遗传 4、植物雄性不育 5、核不育型 二、填空题 : 1、以条斑玉米 ijij 与正常绿色玉米 (IjIj杂交,产生的后代为条斑(Ijij ,再与绿色玉米 IjIj 回交,其后代的表现型和基因型有 _______________________。 2、“三系” 配套中的“三系” 是指雄性不育的保持系、和不育系。雄性的育性是基因共同作用的结果。 S (rf rf是控制系基因型, N (RfRf 是控制系的基因型。 3、植物的雄性不育系自交表现为 ______________,不育系与保持系杂交,后代表现为 _______________,不育系与恢复系杂交,后代表现为 _______________。 4、细胞核基因存在于 _________________,细胞质基因存在于 ________________。 5、核基因所决定的性状,正反交的遗传表现 ______,胞质基因所决定的性状,正反交的遗传表现往往 ____________。 6、各种细胞器基因组主要包括有 __________基因组和 _________基因组。 7、属母性影响的性状受基因控制,后代表现型是由决定的,在代表现出孟德尔比例。 8、属持久母性影响的锥实螺F1代的外壳旋向表型与

正反交均为旋,F3代左右旋比例为。 三、选择题: 1、玉米条纹叶的性状受叶绿体基因和核基因共同控制。今以 IjIj (绿为母本,与ijij (条纹杂交, F2 代个体性状表现及比例为 ( A 、 3绿色:1条纹或白化 B 、 1绿色:2条纹:1白化 C 、全是条纹 D 、绿色:条纹:白化是随机的 2、高等生物细胞质遗传物质的载体有:( A、质粒 B、线粒体 C、质体 D、噬菌体 3、下列那种叙述不是细胞质遗传所特有的( A 、遗传方式是非孟德尔遗传 B 、 F1代的正反交结果不同 C 、细胞质遗传属母性遗传因此也称母性影响 D 、不能在染色体上进行基因定位 4、下列有关 C 质基因叙说中,哪一条是不正确的( A 、细胞质质基因也是按半保留方式进行自我复制,并能转录 mRNA ,最后在核糖体合成蛋白质。 B 、细胞质基因也能发生突变,并能把产生的变异传给后代,能引起核基因突变的因素, 也能诱发细胞质基因突变。 C 、细胞质基因在细胞分裂时的分配是随机的,在子代的分布是不均等的。 D 、细胞质基因通过雄配子传递。 5、当放毒型草履虫(K/K+卡巴粒与敏感型草履虫(k/k杂交,如果接合的时间长,后代的情况为(

操作系统习题及答案二

习题二处理器管理 一、单项选择题 1、操作系统中的作业管理是一种()。 A.宏观的高级管理 B.宏观的低级管理 C.系统刚开始加电 D.初始化引导完成 2、进程和程序的本质区别是(). A.存储在内存和外存 B.顺序和非顺序执行机器指今 C.分时使用和独占使用计算机资源 D.动态和静态特征 3、处于后备状态的作业存放在()中。 A.外存 B.内存 C.A和B D.扩展内存 4、在操作系统中,作业处于()时,已处于进程的管理之下。 A.后备 B.阻塞 C.执行 D.完成 5、在操作系统中,JCB是指()。 A.作业控制块 B.进程控制块 C.文件控制块 D.程序控制块 6、作业调度的关键在于()。 A.选择恰当的进程管理程序 B.选择恰当的作业调度算法 C.用户作业准备充分 D.有一个较好的操作环境 7、下列作业调度算法中,最短的作业平均周转时间是()。 A.先来先服务法 B. 短作业优先法 C. 优先数法 D. 时间片轮转法 8、按照作业到达的先后次序调度作业,排队等待时间最长的作业被优先调度,这是指() 调度算法。 A.先来先服务法 B. 短作业优先法 C.时间片轮转法 D. 优先级法 9、在批处理系统中,周转时间是()。 A.作业运行时间 B.作业等待时间和运行时间之和 C.作业的相对等待时间 D.作业被调度进入内存到运行完毕的时间 10、为了对紧急进程或重要进程进行调度,调度算法应采用()。 A.先来先服务法 B. 优先级法 C.短作业优先法 D. 时间片轮转法 11、操作系统中,()负责对进程进行调度。 A.处理机管理 B. 作业管理 C.高级调度管理 D. 存储和设备管理 12、一个进程被唤醒意味着()。 A.该进程重新占有了CPU B.进程状态变为就绪 C.它的优先权变为最大 D.其PCB移至就绪队列的队首 13、当作业进入完成状态,操作系统(). A.将删除该作业并收回其所占资源,同时输出结果 B.将该作业的控制块从当前作业队列中删除,收回其所占资源,并输出结果

操作系统课后习题答案

第一章 1.设计现代OS的主要目标是什么? 答:(1)有效性(2)方便性(3)可扩充性(4)开放性 4.试说明推劢多道批处理系统形成和収展的主要劢力是什么? 答:主要动力来源于四个方面的社会需求与技术发展: (1)不断提高计算机资源的利用率; (2)方便用户; (3)器件的不断更新换代; (4)计算机体系结构的不断发展。 12.试从交互性、及时性以及可靠性方面,将分时系统不实时系统迚行比较。答:(1)及时性:实时信息处理系统对实时性的要求与分时系统类似,都是以人所能接受的等待时间来确定;而实时控制系统的及时性,是以控制对象所要求的开始截止时间或完成截止时间来确定的,一般为秒级到毫秒级,甚至有的要低于100微妙。 (2)交互性:实时信息处理系统具有交互性,但人与系统的交互仅限于访问系统中某些特定的专用服务程序。不像分时系统那样能向终端用户提供数据和资源共享等服务。 (3)可靠性:分时系统也要求系统可靠,但相比之下,实时系统则要求系统具有高度的可靠性。因为任何差错都可能带来巨大的经济损失,甚至是灾难性后果,所以在实时系统中,往往都采取了多级容错措施保障系统的安全性及数据的安全性。 13.OS有哪几大特征?其最基本的特征是什么? 答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。 第二章 2. 画出下面四条诧句的前趋图: S1=a:=x+y; S2=b:=z+1; S3=c:=a –b;S4=w:=c+1; 8.试说明迚程在三个基本状态之间转换的典型原因。 答:(1)就绪状态→执行状态:进程分配到CPU资源 (2)执行状态→就绪状态:时间片用完 (3)执行状态→阻塞状态:I/O请求 (4)阻塞状态→就绪状态:I/O完成

普通遗传学习题集

一、什么叫细胞质遗传?它有哪些特点?试举例说明之。 二、何谓母性影响?试举例说明它与母性遗传的区别。 三、如果正反杂交试验获得的F1表现不同,这可能是由于(1)性连锁;(2)细胞质遗传;(3)母性影响。你如何用试验方法确定它属于哪一种情况? 四、细胞质遗传的物质基础是什么? 五、细胞质基因与核基因有何异同?二者在遗传上的相互关系如何? 六、试比较线粒体DNA、叶绿体DNA和核DNA的异同。 七、植物雄性不育主要有几种类型?其遗传基础如何? 八、一般认为细胞质的雄性不育基因存在于线粒体DNA上,为什么? 九、如果你发现了一株雄性不育植株,你如何确定它究竟是单倍体、远缘杂交F1、生理不育、核不育还是细胞质不育? 十、用某不育系与恢复系杂交,得到F1全部正常可育。将F1的花粉再给不育系亲本授粉,后代中出现90株可育株和270株不育株。试分析该不育系的类型及遗传基础。 十一、现有一个不育材料,找不到它的恢复系。一般的杂交后代都是不育的。但有的F1不育株也能产生极少量的花粉,自交得到少数后代,呈3:1不育株与可育株分离。将F1不育株与可育亲本回交,后代呈1:1不育株与可育株的分离。试分析该不育材料的遗传基础。 (参考答案) 一、 (P273-274)遗传方式为非孟德尔式,后代无一定比例.正交和反交的遗传表现不同。 (核遗传:表现相同,其遗传物质完全由雌核和雄核共同提供的;质遗传:表现不同,某些性状只表现于母本时才能遗传给子代,故胞质遗传又称母性遗传。) 连续回交,母本核基因可被全部置换掉,但由母本细胞质基因所控制的性状仍不会消失; 由细胞质中的附加体或共生体决定的性状,其表现往往类似病毒的转导或感染,即可传递给其它细胞。 基因定位困难。 ∵带有胞质基因的细胞器在细胞分裂时分配是不均匀的。 二、 (P274-276)。 母性影响:由核基因的产物积累在卵细胞中的物质所引起的一种遗传现象。 ∴母性影响不属于胞质遗传的畴,十分相似而已。 特点:下一代表现型受上一代母体基因的影响。 三、 连续进行自交。F 2出现分离则属于性连锁;若F 2 不分离,F 3 出现3:1分离则属于母 性影响;若F 2、 F 3 均不分离,则属于细胞质遗传。 四、真核生物有性过程: 卵细胞:有细胞核、大量的细胞质和细胞器(含遗传物质); ∴能为子代提供核基因和它的全部或绝大部分胞质基因。 精细胞:只有细胞核,细胞质或细胞器极少或没有; ∴只能提供其核基因,不能或极少提供胞质基因。 ∴一切受细胞质基因所决定的性状,其遗传信息只能通过卵细胞传给子代,而不能通过精细胞遗传给子代。 五、共同点:

《普通遗传学》2004试题及答案

《普通遗传学》试题(A) 闭卷适用专业年级:生物类专业2004级本科生姓名学号专业班级 2.试卷若有雷同以零分计。 客观题答题卷 [客观题题目] 一、选择题(请将答案填入首页表中)(每小题2分,共34分) 1.狄·弗里斯(de Vris, H.)、柴马克(Tschermak, E.)和柯伦斯(Correns, C.)三人分别重新发现 孟德尔(Mendel, G. L.)遗传规律,标志着遗传学学科建立的年份是(B)。 A. 1865 B. 1900 C. 1903 D. 1909 2.真核生物二价体的一对同源染色体相互排斥的时期是减数分裂的(D)。 A. 前间期 B. 细线期 C. 偶线期 D. 双线期 3.某被子植物,母本具有一对AA染色体,父本染色体为aa。通过双受精形成的种子子 叶细胞的染色体组成是(B)。 A. aa B. Aa C. Aaa D. AAa 4.生物在繁殖过程中,上下代之间传递的是(A)。 A. 不同频率的基因 B. 不同频率的基因型 C. 亲代的性状 D. 各种表现型

5.人类中色素缺乏症(白化病)受隐性基因a控制,正常色素由显性基因A控制。表现型 正常的双亲生了一个白化病小孩。他们另外两个小孩均患白化病的概率为(A)。 A. 1/16 B. 1/8 C. 1/4 D. 1/2 6.小麦高秆(D)对矮秆(d)为显性,抗锈病(R)对感锈病(r)为显性,现以高秆抗锈×矮秆感 锈,杂交子代分离出15株高秆抗锈,17株高秆感锈,14株矮秆抗锈,16株矮秆感锈,可知其亲本基因型为(C)。 A. Ddrr×ddRr B. DdRR×ddrr C. DdRr×ddrr D. DDRr×ddrr 7.果蝇的红眼(W)对白眼(w)为显性,这对基因位于X染色体上。红眼雌蝇杂合体和红眼 雄蝇交配,子代中眼色的表现型是()。 A. 雌果蝇:? 红眼、?白眼 B. 雌果蝇:?红眼、?白眼 C. 雄果蝇:? 红眼、?白眼 D. 雄果蝇:?红眼、?白眼 8.染色体的某一部位增加了自身的某一区段的染色体结构变异称为()。 A. 缺失 B. 易位 C. 倒位 D. 重复 9.对一生物减数分裂进行细胞学检查,发现后期I出现染色体桥,表明该生物可能含有 ()。 A. 臂间倒位染色体 B. 相互易位染色体 C. 臂内倒位染色体 D. 顶端缺失染色体 10.缺失杂合体在减数分裂联会时形成缺失环中包含()。 A. 一条缺失染色体 B. 两条缺失染色体 C. 一条正常染色体 D. 两条正常染色体 11.通常把一个二倍体生物配子所具有的染色体称为该物种的()。 A. 一个同源组 B. 一个染色体组 C. 一对同源染色体 D. 一个单价体 12.有一株单倍体,已知它具有两个染色体组,在减数分裂时发现其全部为二价体,说明 它是来自一个()。 A. 同源四倍体 B. 异源四倍体 C. 三体植株 D. 四体植株 13.假定在一个植物株高由A, a和B, b两对独立遗传基因决定,基因效应相等且可累加。 双杂合体(AaBb)自交后代中与F1植株高度相等植株约占()。 A. 1/16 B. 4/16 C. 6/16 D. 15/16

(完整版)操作系统课后题答案

2 . OS的作用可表现在哪几个方面? 答:(1)0S作为用户与计算机硬件系统之间的接口;(2)0S作为计算机系统资源的管理者;(3)0S实现了对计算机资源的抽象。 5 .何谓脱机I/O 和联机I/O ? 答:脱机I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。该方式下的输入输出由外围 机控制完成,是在脱离主机的情况下进行的。而联机I/O方式是指程序和数据的输入输出 都是在主机的直接控制下进行的。 11 . OS有哪几大特征?其最基本的特征是什么? 答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。 20 .试描述什么是微内核OS。 答:(1)足够小的内核;(2)基于客户/服务器模式;(3)应用机制与策略分离原理;(4)采用面向对象技术。 25 ?何谓微内核技术?在微内核中通常提供了哪些功能? 答:把操作系统中更多的成分和功能放到更高的层次(即用户模式)中去运行,而留下一个尽 量小的内核,用它来完成操作系统最基本的核心功能,称这种技术为微内核技术。在微内核 中通常提供了进程(线程)管理、低级存储器管理、中断和陷入处理等功能。 第二章进程管理 2.画出下面四条语句的前趋图: S仁a : =x+y; S2=b : =z+1; S3=c : =a - b ; S4=w : =c+1; 7 ?试说明PCB的作用,为什么说PCB是进程存在的惟一标志? 答:PCB是进程实体的一部分,是操作系统中最重要的记录型数据结构。作用是使一个在 多道程序环境下不能独立运行的程序,成为一个能独立运行的基本单位,成为能与其它进程 并发执行的进程。OS是根据PCB对并发执行的进程进行控制和管理的。 11 .试说明进程在三个基本状态之间转换的典型原因。 答:(1)就绪状态T执行状态:进程分配到CPU资源;(2)执行状态T就绪状态:时间片用 完;(3)执行状态T阻塞状态:I/O请求;(4)阻塞状态T就绪状态:I/O完成. 19 ?为什么要在OS中引入线程? 答:在操作系统中引入线程,则是为了减少程序在并发执行时所付出的时空开销,使OS具

遗传学复习题及答案

2005年本科遗传学试卷(A卷) 一、名词解释(×10=15): 联会复合体核小体相斥相亚倍体顺反子 QTL RFLP母性影响ClB染色体复等位基因 二、填空和选择(2×15=30): 1. ____________年,____________规律的重新发现,标志着遗传学学科的建立。在遗传学的发展史上,许多科学家由于其突出的学术贡献,先后获得了诺贝尔奖金,____________因为他用____________作为实验材料,创立了基因理论,证明基因位于染色体上,而成为第一个因在遗传学领域的突出贡献获得诺贝尔奖金的科学家。 2.和于1953年提出了DNA分子结构模型。 3.孟德尔遗传规律最常用的验证方法有:和。 4. 植物的10个花粉母细胞可以形成花粉粒,精核,管核。植物的10个胚囊母细胞可以形成卵细胞,极核。 5. 西瓜(2n=22),无籽西瓜的体细胞染色体数目为______________。 6. 缺失杂合体、重复杂合体和倒位杂合体减数分裂染色体配对时会形成瘤状突起,但是它们突起的成分是不同的:缺失环是____________,重复环是____________,倒位圈则是____________。 体细胞中有___________ 7. 普通小麦(AABBDD)与圆锥小麦(AABB)杂交,其F 1 孢母细胞减数分裂时形成___________二价染色体组,共有_______染色体。F 1 体和__________单价体。 8.植物基因转化的方法有、等。 9.相互易位杂合体自交将形成、和三种后代。其比例为,其中的产生的配子是半不育

的。 10. (n-1)II+I是; (n-1)II+III是; (n-2)II+I+I是。 产生nI和(n-1)I两种配子的非整倍体是;产生(n+1)I和nI 两种配子的个体是。 11.植物的数量性状遗传研究中进行遗传力计算时,广义遗传力为与之比;狭义遗传力则为与之比。12.简写下列符号代表的遗传学含义。♂ ;♀ ; P ; F t ; BC ; V A ; V D . 13.减数分裂前期I最复杂,根据染色体(质)的形态和运动特点,可以按时间先后划分为____________、____________、____________、____________、____________5个时期,其中,交换发生在____________。 14.某一对夫妇,丈夫患有色盲,妻子正常,他们的子女中男性和女性患色盲的最大几率分别是: A:男性50%和女性50%;B:男性50%和女性0;C:男性100%和女性0;D:男性0和女性0。() 15.观察玉米(2n=20)植物花粉母细胞减数分裂时发现有9个联会体,后期I 还看到有染色体桥出现,则表明该玉米的染色体发生了:A. 臂内倒位;B. 易位;C. 臂间倒位和易位;D. 臂内倒位和易位。() 三、问答与分析(7×5=35) 1.何谓孢子体雄性不育和配子体雄性不育请自拟基因型说明其花粉的育性表现。 2.以红花豌豆为材料进行辐射诱变处理,在M 2 代发现甲、乙两株白花豌豆。将 它们分别与红花亲本杂交,F 1均为红花,F 2 均出现3:1的红花与白花的分离。 但将甲、乙两个白花豌豆杂交时,F 1均为红花,F 2 则出现351株红花、267株白 花的分离。请用你自己假设的基因符号,推断以上有关植株的基因型,利用基因符号写出上述试验过程,并简要说明这一遗传现象。

普通遗传学试题及答案

《普通遗传学》试题 姓名学号专业班级 2.试卷若有雷同以零分计。 客观题答题卷 [客观题题目] 一、选择题(请将答案填入首页表中)(每小题2分,共34分) 1.狄·弗里斯(de Vris, H.)、柴马克(Tschermak, E.)和柯伦斯(Correns, C.)三人分别重新发现 孟德尔(Mendel, G. L.)遗传规律,标志着遗传学学科建立的年份是(B)。 A. 1865 B. 1900 C. 1903 D. 1909 2.真核生物二价体的一对同源染色体相互排斥的时期是减数分裂的(D)。 A. 前间期 B. 细线期 C. 偶线期 D. 双线期 3.某被子植物,母本具有一对AA染色体,父本染色体为aa。通过双受精形成的种子子 叶细胞的染色体组成是(B)。 A. aa B. Aa C. Aaa D. AAa 4.生物在繁殖过程中,上下代之间传递的是(A)。 A. 不同频率的基因 B. 不同频率的基因型 C. 亲代的性状 D. 各种表现型 5.人类中色素缺乏症(白化病)受隐性基因a控制,正常色素由显性基因A控制。表现型

正常的双亲生了一个白化病小孩。他们另外两个小孩均患白化病的概率为(A)。 A. 1/16 B. 1/8 C. 1/4 D. 1/2 6.小麦高秆(D)对矮秆(d)为显性,抗锈病(R)对感锈病(r)为显性,现以高秆抗锈×矮秆感锈, 杂交子代分离出15株高秆抗锈,17株高秆感锈,14株矮秆抗锈,16株矮秆感锈,可知其亲本基因型为(C)。 A. Ddrr×ddRr B. DdRR×ddrr C. DdRr×ddrr D. DDRr×ddrr 7.果蝇的红眼(W)对白眼(w)为显性,这对基因位于X染色体上。红眼雌蝇杂合体和红眼 雄蝇交配,子代中眼色的表现型是()。 A. 雌果蝇:? 红眼、?白眼 B. 雌果蝇:?红眼、?白眼 C. 雄果蝇:? 红眼、?白眼 D. 雄果蝇:?红眼、?白眼 8.染色体的某一部位增加了自身的某一区段的染色体结构变异称为()。 A. 缺失 B. 易位 C. 倒位 D. 重复 9.对一生物减数分裂进行细胞学检查,发现后期I出现染色体桥,表明该生物可能含有 ()。 A. 臂间倒位染色体 B. 相互易位染色体 C. 臂内倒位染色体 D. 顶端缺失染色体 10.缺失杂合体在减数分裂联会时形成缺失环中包含()。 A. 一条缺失染色体 B. 两条缺失染色体 C. 一条正常染色体 D. 两条正常染色体 11.通常把一个二倍体生物配子所具有的染色体称为该物种的()。 A. 一个同源组 B. 一个染色体组 C. 一对同源染色体 D. 一个单价体 12.有一株单倍体,已知它具有两个染色体组,在减数分裂时发现其全部为二价体,说明 它是来自一个()。 A. 同源四倍体 B. 异源四倍体 C. 三体植株 D. 四体植株 13.假定在一个植物株高由A, a和B, b两对独立遗传基因决定,基因效应相等且可累加。 双杂合体(AaBb)自交后代中与F1植株高度相等植株约占()。 A. 1/16 B. 4/16 C. 6/16 D. 15/16 14.在估算异花授粉植物广义遗传率时,可以用来估计性状环境方差的是()。

操作系统课后习题答案2知识分享

2. 进程和线程的管理 例题解析 例2.2.1 试说明进程和程序之间的区别和联系。 解进程和程序是既有区别又有联系的两个概念。 进程是动态的,程序是静态的。程序是一组有序的指令集合,是一个静态的概念;进程则是程序及其数据在计算机上的一次执行,是一个动态的集合。离开了程序,进程就失去了存在的意义,但同一程序在计算机上的每次运行将构成不同的进程。程序可看作是电影的胶片,进程可以看作电影院放电影的过程。 一个进程可以执行多个程序,如同一个电影院的一场电影可放映多部影片。 一个程序可被多个进程执行,如同多个影院同时利用一个电影的胶片放映同一部电影。 程序可以长期保存,进程只能存在于一段时间。程序是永久存在的,而进程有从被创建到消亡的生命周期。 例2.2.2 举例说明多道程序系统失去了封闭性和再现性。 解例如,有两个循环程序A和B,共享一个变量N。程序A每执行一次时,都要做N:=N+1操作;程序B则每执行一次时,都要执行print(N)操作,然后再将N的值置成“0”。程序A 和B在多道程序系统中同时运行。假定某时刻变量N的值为n,可能出现下述三种情况:N:=N+1 在print(N)和N:=0之前,此时得到N值变化过程为n+1、n+1、0; N:=N+1 在print(N)和N:=0之后,此时得到N值变化过程为n 、0 、1; N:=N+1 在print(N)之后和N:=0之前,此时得到N值变化过程为n、n+1、0。 所以,在A、B程序多次执行过程中,虽然其每次执行时的环境和初始条件都相同,但每次得到的结果却不一定相同。 例2.2.3 为什么将进程划分成执行、就绪和阻塞三个基本状态? 解根据多道程序执行的特点,进程的运行是走走停停的。因此进程的初级状态应该是执行和等待状态。处于执行状态的进程占用处理机执行程序,处于等待状态的进程正在等待处理机或者等待其它某种事件的发生。但是,当处理机空闲时,并不是所有处于等待状态的进程都能放到处理机上执行,有的进程即使分配给它处理机,它也不能执行,因为它的执行的条件没有得到满足。因此,将等待状态的进程分成两部分,一部分是放在处理机上就能立即执行,这就是就绪的进程;另一部分是仍需等某种事件发生的进程,即使放在处理机上也不能执行的进程,这就是阻塞进程。 例2.2.4 进程的挂起状态与进程的阻塞状态和就绪状态有何异同? 解相同点是它们都没有占用处理机。不同点是挂起状态的进程是处于一种静止状态,不会参与对资源的竞争,在解除挂起之前,进程不会有新的资源要求,也不会有占用处理机的机会;阻塞状态和就绪状态的进程均处于活动状态,它们都有获得处理机的机会,都可能有新的资源要求。 例2.2.5 两个并发进程P1和P2的程序代码在下面给出。其中,A、B、C、D和E均为原语。 P1: begin P2: begin A; D; B; E; C; end end 请给出P1、P2两个进程的所有可能执行的过程。

操作系统课后题及答案

第一章 1 .设计现代OS 的主要目标是什么? 答:(1)有效性(2)方便性(3)可扩充性(4)开放性 2 .OS 的作用可表现在哪几个方面? 答:(1)OS作为用户与计算机硬件系统之间的接口 (2)OS 作为计算机系统资源的管理者 (3)OS 实现了对计算机资源的抽象 4 .试说明推动多道批处理系统形成和发展的主要动力是什么?答:主要动力来源于四个方面的社会需求与技术发展: (1)不断提高计算机资源的利用率; (2)方便用户; (3)器件的不断更新换代; (4)计算机体系结构的不断发展。 7 .实现分时系统的关键问题是什么?应如何解决?答:关键问题是当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。 解决方法:针对及时接收问题,可以在系统中设置多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配置缓冲区,暂存用户键入的命令或数据。针对及时处理问题,应使所有的用户作业都直接进入内存,并且为每个作业分配一个时间片,允许作业只在自己的时间片内运行,这样在不长的时间内,能使每个作业都运行一次。 12 .试从交互性、及时性以及可靠性方面,将分时系统与实时系统进行比较。 答:( 1 )及时性:实时信息处理系统对实时性的要求与分时系统类似,都是以人所能接受的等待时间来确定;而实时控制系统的及时性,是以控制对象所要求的开始截止时间或完成截止时间来确定的,一般为秒级到毫秒级,甚至有的要低于100 微妙。 (2)交互性:实时信息处理系统具有交互性,但人与系统的交互仅限于访问系统中某些特定的专用服务程序。不像分时系统那样能向终端用户提供数据和资源共享等服务。 (3)可靠性:分时系统也要求系统可靠,但相比之下,实时系统则要求系统具有高度 的可靠性。因为任何差错都可能带来巨大的经济损失,甚至是灾难性后果,所以在实时系统中,往往都采取了多级容错措施保障系统的安全性及数据的安全性。 13 .OS 有哪几大特征?其最基本的特征是什么?答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。

普通遗传学期末考试复习题及参考答案-专升本

《普通遗传学》复习题 一、名词解释 1. 同源染色体 2. 不完全显性 3. 干扰(干涉) 4. 伴性遗传 5. 狭义遗传率 6. 复等位基因 7. 转座因子 8. 部分二倍体 9. 母性影响 10. 隔裂基因 11. 联会 12.等位基因 13.位置效应 14.数量性状15.回交 16.同源染色体 17.转化 18.雄性不育 19.基因频率 20. 双三体 二、填空题 1. 以豌豆为材料进而提出分离与组合定律的是,利用果蝇研究提出提 出基因论是,比德尔利用为研究对象提出一个基因一个酶的假说。 2.基因型AABbDdEeFfGG的个体可产生种配子,自交可产生种基因 型类型,其中纯合基因类型种。 3. 人白化症由常染色体隐性单基因(a)控制遗传,某白化症患者的正常双亲 基因型为和。 4. 家蚕和蝗虫的性染色体组成分别为型和型,而蝴蝶的性染 色体为型。 5.遗传学中重组率也称为__ _。两对基因独立遗传时,重组率为___ _, 当两对基因为完全连锁时,重组率为__ __。 6. A与B连锁,则AABB和aabb杂交称为,aaBB和AAbb杂交称 为。 7. 在染色体结构变异中,、和杂合体性母细胞在减 数分裂的前期I都可以形成凸隆起来的瘤状物或环状形象。 8. 马铃薯单倍体减数分裂时可形成12个二价体,因此马铃薯属于倍 体。 9. PCR反应的基本步骤是、、。 10.死细菌与活细菌混合在一起后基因实现了重组,这叫。两种细菌以 噬菌体为媒介实现了基因重组是。 11.减数分裂过程中,同源染色体在__ __期配对,在___ ___期分开,染色单体在___ ___期分离。 12.大麦现有纯合密穗染病(AAbb)材料和稀穗抗病(aaBB)材料,两基因自由组合。想用这两个材料杂交以选育稳定的密穗抗病品种,所需类型第___ 代就会出

《普通遗传学》2004试题参考答案

《普通遗传学》试题(A)参考答案 适用专业年级:生物科学相关专业 三、解释下列各对名词(每小题4分,共16分) 1. 不完全显性是指F1表现为两个亲本的中间类型。 共显性是指双亲性状同时在F1个体上表现出来。 2. 同义突变:由于遗传密码的简并性,当DNA分子上碱基发生替换后产生新的密码子仍然编码原来的氨基酸,从而不会导致所编码的蛋白质结构和功能的改变。这种突变称为同义突变。 3. 外源DNA先吸附在感受态细菌细胞上,细胞膜上的核酸酶把一条单链切出后,使另一条单链进入细胞,并通过部分联会置换受体对应染色体区段,稳定的整合到受体DNA中的这一过程就是转化。(某一基因型的细胞从周围介质中吸收来自另一基因型的DNA而使它的基因型和表现型发生相应变化的现象)。 致育因子F因子通过菌株细胞结合,单向的从雄性供体细胞转移到雌性受体细胞并整合到受体细胞的这一过程就是结合。(遗传物质从供体[donor]转移到受体[receptor]的重组过程)。 4. 倒位杂合体:一对同源染色体中,一条是倒位染色体,另一条是正常染色体,这样的个体称为倒位杂合体。 四、简答题(每小题6分,共24分) 1. 答:性状的变异有连续的和不连续的两种,表现不连续的变异的性状称为质量性状,表现连续变异的性状称为数量性状。 数量性状特征:遗传基础是微效多基因系统控制,遗传关系复杂(0.5分);呈连续性变异(0.5分);数量性状的表现容易受环境影响(0.5分);主要是生产、生长性状(0.5分);在群体的水平用生物统计的方法研究数量性状(0.5分)。 质量性状特征:遗传基础是少数主基因控制的,遗传关系较简单(0.5分);呈不连续变异(0.5分);质量性状的表现对环境不敏感(0.5分);主要是品种特征外貌特征等性状(0.5分);在家庭的水平通过系谱分析、概率论方法研究质量性状(0.5分)。 2. 答:雄性不育性是植物界的一个普遍现象,它是指植株在形成花粉或雄配子时,由于自身或环境的原因不能形成正常的雄配子或不能形成雄配子现象(2分)。可遗传的雄性不育性有三种遗传类型:核不育型是由核基因决定的不育类型(1分);细胞质不育型是由细胞质因子控制的不育类型(1分);核质互作不育型是由核基因和细胞质基因相互作用共同控制的雄性不育类型(1分)。 3. 简述减数分裂的遗传学意义。 答:(1)保证了亲代与子代之间染色体数目的恒定性。这是因为:性母细胞(2n)通过减数分裂形成染色体数目减半的雌雄配子(n),然后雌雄配子(n)通过受精结合又形成子一代染色体数目与亲本数

计算机操作系统课后题答案(高等教育出版社)

练习题(一) Ⅰ问答题 1. 操作系统的两个主要目标是什么? 答:方便性与有效性。 2. 试说明操作系统与硬件、其它系统软件以及用户之间的关系? 答: 与硬件的关系:操作系统是位于硬件层上的第一层软件,它直接管理着计算机的硬件,合理组织计算机工作流程,并提高了硬件的利用率。。 与其他系统软件的关系:操作系统是系统软件,但它不同于其它系统软件和应用软件,它为其它系统软件和应用软件提供接口。应用软件要使用操作系统所提供的服务方可方便使用计算机。 与用户之间的关系:操作系统是为改善人机界面、提供各种服务,为用户使用计算机提供良好运行环境的一种系统软件。 3. 试论述操作系统是建立在计算机硬件平台上的虚拟计算机系统。 答:没有任何软件支持的计算机称为裸机,即使其硬件功能再强,也必定是难于使用的。而实际呈现在用户面前的计算机系统是经过若干层软件改造的计算机。裸机位于最里层,它的外面是操作系统,经过操作系统提供的资源管理功能和方便用户的各种服务功能,将裸机改造成功能更强、使用更方便的机器,通常把覆盖了软件的机器称为扩充机器,又称之为虚拟机(Virtual Machine ),这样的计算机系统是概念上和逻辑上的计算机,不是物理上的真实计算机。 4. 什么是操作系统?它有哪些基本功能与基本特征? 答:操作系统是位于硬件层之上,所有其它软件层之下的一种系统软件,它控制和管理计算机系统资源、合理组织计算机工作流程、提供用户与计算机系统之间的接口。 操作系统的基本功能有:处理器管理、存储器管理、设备管理、文件管理和提供用户接口。 操作系统的基本特征有:并发性、共享性、虚拟性和不确定性。 5. 请叙述并发和并行两个概念的区别? 答:并发性是指两个或多个程序在同一时间段内同时执行,是宏观上的同时。而并行性是从硬件意义上考虑,是不同硬件部件(如CPU与I/O)在同一时刻的并行,即微观上,多个程序也是同时执行的。 6. 什么是多道程序设计? 在操作系统中使用这种技术有什么好处? 答:多道程序设计是指在计算机内存中同时存放若干道已开始运行尚未结束的程序,它们交替运行,共享系统中的各种硬、软件资源,从而使处理机得到充分利用。 好处: ①提高了CPU的利用率。各道程序是轮流占用一个CPU,交替地执行。 ②改进了系统的吞吐量(系统吞吐量是指计算机系统在单位时间内完成的总工作量)。 ③充分发挥了系统的并行性,使CPU与I/O并行工作。提高CPU、设备、内存等各种资源的利用率,从而提高系统效率。

计算机操作系统课后习题答案第二章

第二章 1. 什么是前趋图?为什么要引入前趋图? 答:前趋图(Precedence Graph)是一个有向无循环图,记为DAG(Directed Acyclic Graph),用于描述进程之间执行的前后关系。 2. 画出下面四条诧句的前趋图: S1=a:=x+y; S2=b:=z+1; S3=c:=a-b; S4=w:=c+1; 答:其前趋图为: 3. 为什么程序并发执行会产生间断性特征? 程序在并发执行时,由于它们共享系统资源,以及为完成同一项任务而相互合作,致使在这些并发执行的进程之间,形成了相互制约的关系,从而也就使得进程在执行期间出现间断性。 4. 程序并发执行时为什么会失去封闭性和可再现性? 因为程序并发执行时,是多个程序共享系统中的各种资源,因而这些资源的状态是由多个程序来改变,致使程序的运行失去了封闭性。而程序一旦失去了封闭性也会导致其再失去可再现性。 5. 在操作系统中为什么要引入进程概念?它会产生什么样的影响? 为了使程序在多道程序环境下能并发执行,并能对并发执行的程序加以控制和描述,从而在操作系统中引入了进程概念。影响: 使程序的并发执行得以实行。 6. 试从动态性,并发性和独立性上比较进程和程序? a. 动态性是进程最基本的特性,可表现为由创建而产生,由调度而执行,因得不到资源而暂停执行,以及由撤销而消亡,因而进程由一定的生命期;而程序只是一组有序指令的集合,是静态实体。 b. 并发性是进程的重要特征,同时也是OS的重要特征。引入进程的目的正是为了使其程序能和其它建立了进程的程序并发执行,而程序本身是不能并发执行的。 c. 独立性是指进程实体是一个能独立运行的基本单位,同时也是系统中独立获得资源和独立调度的基本单位。而对于未建立任何进程的程序,都不能作为一个独立的单位来运行。 7. 试说明PCB的作用?为什么说PCB是进程存在的唯一标志? a. PCB是进程实体的一部分,是操作系统中最重要的记录型数据结构。PCB中记录了操作系统所需的用于描述进程情况及控制进程运行所需的全部信息。因而它的作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位,一个能和其它进程并发执行的进程。 b. 在进程的整个生命周期中,系统总是通过其PCB对进程进行控制,系统是根据进程的PCB而不是任何别的什么而感知到该进程的存在的,所以说,PCB是进程存在的唯一标志。 11.试说明进程在三个基本状态之间转换的典型原因。 答:(1)就绪状态→执行状态:进程分配到CPU资源(2)执行状态→就绪状态:时间片用完(3)执行状态→阻塞状态:I/O请求(4)阻塞状态→就绪状态:I/O完成 12.为什么要引入挂起状态?该状态有哪些性质? 答:引入挂起状态处于五种不同的需要: 终端用户需要,父进程需要,操作系统需要,对换需要和负荷调节需要。处于挂起状态的进程不能接收处理机调度。10.在进行进程切换时,所要保存的处理机状态信息有哪些?答:进行进程切换时,所要保存的处理机状态信息有:(1)进程当前暂存信息(2)下一指令地址信息(3)进程状态信息(4)过程和系统调用参数及调用地址信息。13.在进行进程切换时,所要保存的处理机状态信息有哪些? 答:进行进程切换时,所要保存的处理机状态信息有: (1)进程当前暂存信息 (2)下一指令地址信息 (3)进程状态信息 (4)过程和系统调用参数及调用地址信息。 14.试说明引起进程创建的主要事件。答:引起进程创建的主要事件有:用户登录、作业调度、提供服务、应用请求。 15.试说明引起进程被撤销的主要事件。答:引起进程被撤销的主要事件有:正常结束、异常结束(越界错误、保护错、非法指令、特权指令错、运行超时、等待超时、算术运算错、I/O 故障)、外界干预(操作员或操作系统干预、父进程请求、父进程终止)。 16.在创建一个进程时所要完成的主要工作是什么? 答:(1)OS 发现请求创建新进程事件后,调用进程创建原语Creat();(2)申请空白PCB;(3)为新进程分配资源;(4)初始化进程控制块;(5)将新进程插入就绪队列. 17.在撤销一个进程时所要完成的主要工作是什么? 答:(1)根据被终止进程标识符,从PCB 集中检索出进程PCB,读出该进程状态。(2)若被终止进程处于执行状态,立即终止该进程的执行,臵调度标志真,指示该进程被终止后重新调度。(3)若该进程还有子进程,应将所有

计算机操作系统习题及答案

第3章处理机调度1)选择题 (1)在分时操作系统中,进程调度经常采用_D_ 算法。 A. 先来先服务 B. 最高优先权 C. 随机 D. 时间片轮转 (2)_B__ 优先权是在创建进程时确定的,确定之后在整个进程运行期间不再改变。 A. 作业 B. 静态 C. 动态 D. 资源 (3)__A___ 是作业存在的惟一标志。 A. 作业控制块 B. 作业名 C. 进程控制块 D. 进程名 (4)设有四个作业同时到达,每个作业的执行时间均为2小时,它们在一台处理器上按单道方式运行,则平均周转时间为_ B_ 。 A. l小时 B. 5小时 C. 2.5小时 D. 8小时 (5)现有3个同时到达的作业J1、J2和J3,它们的执行时间分别是T1、T2和T3,且T1<T2<T3。系统按单道方式运行且采用短作业优先算法,则平均周转时间是_C_ 。 A. T1+T2+T3 B. (T1+T2+T3)/3 C. (3T1+2T2+T3)/3 D. (T1+2T2+3T3)/3 (6)__D__ 是指从作业提交给系统到作业完成的时间间隔。 A. 运行时间 B. 响应时间 C. 等待时间 D. 周转时间 (7)下述作业调度算法中,_ C_调度算法与作业的估计运行时间有关。 A. 先来先服务 B. 多级队列 C. 短作业优先 D. 时间片轮转 2)填空题 (1)进程的调度方式有两种,一种是抢占(剥夺)式,另一种是非抢占(非剥夺)式。 (2)在_FCFS_ 调度算法中,按照进程进入就绪队列的先后次序来分配处理机。 (3)采用时间片轮转法时,时间片过大,就会使轮转法转化为FCFS_ 调度算法。 (4)一个作业可以分成若干顺序处理的加工步骤,每个加工步骤称为一个_作业步_ 。 (5)作业生存期共经历四个状态,它们是提交、后备、运行和完成。 (6)既考虑作业等待时间,又考虑作业执行时间的调度算法是_高响应比优先____ 。 3)解答题 (1)单道批处理系统中有4个作业,其有关情况如表3-9所示。在采用响应比高者优先调度算法时分别计算其平均周转时间T和平均带权周转时间W。(运行时间为小时,按十进制计算) 表3-9 作业的提交时间和运行时间

遗传学复习题

1、医学遗传学是遗传学与医学相结合的一门边缘学科。是研究遗传病发生机制、传递方式、诊断、治疗、预后,尤其是预防方法的一门学科,为控制遗传病的发生和其在群体中的流行提供理论依据和手段,进而对改善人类健康素质作出贡献。 2、什么是遗传病?包括哪些类型? 答:遗传病是遗传物质改变所导致的疾病。类型有①单基因病;②多基因病;③染色体病;④体细胞遗传病,线粒体遗传病。 3、先天性疾病、遗传病和家族遗传病有何关系?遗传病,家族性疾病与先天性疾病的关系:有许多遗传病是先天性疾病,但并不是所有的先天性疾病都是遗传病;遗传病往往具有家族性疾病,但并不是所有家族性疾病都是遗传病,也许不是所有的遗传病都具有家族性.区别:遗传病是指遗传物质改变所引起的疾病,先天性疾病是指个体出生后即表现出来的疾病,家族性疾病指某些表现出家族聚集现象的疾病. 4、名词解释。 罗伯逊易位:两个近端着丝粒染色体在着丝粒部位或着丝粒附近部位发生断裂后,二者的长臂和短臂各形成一条新的染色体。 同义突变:为碱基被替换之后,产生了新的密码子,但新旧密码子是同义密码子,所编码的氨基酸种类保持不变,因此同义突变并不产生突变效应。 无义突变:无义突变是编码某一种氨基酸的三联体密码经碱基替换后,变成不编码任何氨基酸的终止密码UAA、UAG或UGA。 错义突变:错义突变是编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子,从而使多肽链的氨基酸种类和序列发生改变。 移码突变:移码突变是由于基因组DNA链中插入或缺失1个或几个(非3或3的倍数)碱基对,从而使自插入或缺失的那一点以下的三联体密码的组合发生改变,进而使其编码的氨基酸种类和序列发生变化。 动态突变:动态突变为串联重复的三核苷酸序列随着世代的传递而拷贝数逐代累加的突变方式。 基因突变:是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因表达产物--蛋白质中的氨基酸发生变化,从而引起表型的改变。 点突变:指DNA链中一个或一对碱基发生的改变。 基因组印记:又称遗传印记或亲代印记,是指在人或?某些组织细胞中,决定某一表型的同一等位基因根据其是母方还是父方的来源不同而差异性表达。 Ph染色体(Philadelphia chromosome):在慢性粒细胞性白血病(CML)中发现了一条比G组染色体还小的异常染色体,称为Ph染色体。约95%的慢性粒细胞性白血病细胞携有Ph染色体,它可以作为CML的诊断依据。 肿瘤抑制基因(tumor suppressor gene,TSG):指正常细胞中抑制肿瘤发生的基因,也称抑癌基因或隐性癌基因,例如p53, p16等。 癌基因(oncogene)能够使细胞发生癌变的基因,例如src ,H-RAS等 表现度(expressivity) 表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 基因的多效性(pleiotropy):基因的多效性是指一个基因可以决定或影响多个性状。 遗传异质性(genetic heterogeneity) :与基因多效性相反,遗传异质性是指一

相关主题
文本预览
相关文档 最新文档