当前位置:文档之家› zemax非顺序系设计教程

zemax非顺序系设计教程

zemax非顺序系设计教程
zemax非顺序系设计教程

如何创建一个简单的非顺序系统

建立基本系统属性

我们将创造出一个带点光源的非序列系统,抛物面反射镜和一个平凸透镜镜头耦合成一个长方形光管灯,如下面的布局显示。

我们还将跟踪分析射线探测器获得光学系统中的各点照度分布。下面是我们最终将产生:

如果ZEMAX软件没有运行,启动它。

默认情况下,ZEMAX软件启动顺序/混合模式。要切换到纯非连续模式,运行ZEMAX软件,然后点击文件“>非序列模式。

一旦纯非连续模式,在编辑器窗口的标题栏将显示非连续组件编辑器而不是在连续模式时只用于连续或混合模式系统的镜头数据编辑。

对于本练习,我们会设置系统波长,点击系统>波长,指定波长0.587微米。

我们还将在系统设置单位,System>General /Unit tab “一般组标签如下(默认)(default).。

除辐射辐照装置单位如Watt.cm -2外,您可以指定光度和能源单位,如lumen.cm -2或joule.cm -2。我们将选择默认为这项工作辐射单位。

创建反射

按键盘上的“插入”(insert)插入几行非序列编辑器。

在设计的第一部分,我们将创建一个由抛物面反射镜准直的线光源。然后,我们将在+ Z上放置探测器对象和看光照在探测器上的分布。

建立第一个对象通过抛物面反射镜。在编辑器对象1列“对象类型”(Object type)双击(右击一下)下,打开对象的属性窗口。根据类型选项卡类型设置为标准的表面(Standard Surfauce),然后单击确定。

在编辑器,请在标准表面对象相应的地方列下列参数。对于某些参数,您可能需要滚动到编辑器的右方以看到标题列,显示所需参数的名称。

Material: Mirror

Radius: 100

Conic: -1 (parabola抛物线)

Max Aper: 150

Min Aper: 20 (center hole in the reflector在反射中心孔)

所有其他参数缺省

您可以通过“分析>布局”>NSC三维布局菜单,或NSC阴影模型(分析“布局”>NSC阴影模型)打开NSC 三维布局,看看反射镜样子。

创建源

更改对象#2类型(目前是空对象),在编辑器第2行重复前面的步骤并在属性窗口选择线光源(Source Filament)。

我们要把线光源放在在抛物反射面的焦点处以使光束准直平行。灯丝线圈有10匝,总长度为20毫米,转弯半径为5毫米。

为在编辑器中输入光源相应参数:

Z position: 50 (focus of the parabolic reflector)

# Layout Rays 20

# Analysis Rays 5000000

Length: 20

Radius 5

Turns 10

按一下更新NSC 3D按钮更新三维布局。

布局显示从灯源丝产生的20射线,如#Layout Rays参数指定光线数。

旋转源

光源沿Z轴是定向的,但假设我们希望它的方向沿X轴,我们就需要绕Y轴旋转光源90度。在(tilt about Y)参数输入90。

默认YZ平面视图显示灯丝定向沿X轴,但是,XZ平面视图显示灯丝是+ X轴延伸。为了旋转布局,在布局设置窗口布局菜单(单击设置click Settings in the Layout menu)改变布局视图角度。您还可以通过按下键盘上的上下左右或Page Up and Page Down来旋转绘图。

离心的原因是因为源长丝的旋转轴是不是在对象的中心而是在最后。为了事灯丝源的中心在X轴,请在X 位置列输入-10。

更新的布局,现在将显示灯丝位置和方向。

放置一个探测器

下一步是在离光源一定距离放置探测器,以研究光照在该位置辐射分布。

请在第三行编辑器中放置的“探测器整流器”(Detector Rect),并输入以下参数第三对象,方法如前面所说。

Z position: 800

Material: Blank (do not type the word "Blank" but leave the cell empty不要输入单词“空白”,让它空置)

X Half Width: 150 Y Half Width: 150

# X Pixels: 150 # Y Pixels: 150

Color: 1 (detector displays inverse greyscale探测器显示反转灰度)

所有其他参数为默认

该YZ平面显示(默认布局):

观察到的布局显示射线穿过探测器,该探测器完全透明的,因为这种探测器材料是空气(编辑器中的探测器材料空白)。

跟踪分析射线的探测器

要看到在探测器的光强,我们需要通过点击分析>探测器>检测器查看器(Analysis > Detectors > Detector Viewer)。

你会发现,探测器查看器总功率为零的空白,即使我们看到射线已经到达探测器。原因是因为布局和探测器探测器的光线追踪是分开的。我们需要跟踪分析光线(# Analysis Rays)到探测器上以得到结果。该追溯到探测器中的射线数在线光源编辑器中参数列“#分析的射线”(“# Analysis Rays)被指定,这通常是一个很大的数字:在这种情况下500.00万。记住,布局射线不影响探测器浏览器的结果,只有分析射线才影响。

要追迹分析射线(“# Analysis Rays)到探测器,打开探测器控制窗口下的分析“>探测器”光线跟踪/检测器控制。(Analysis>Detectors>Ray Trace / Detector Control)

永远记住按清除检测按钮清除探测器,如果你不希望添加从以前的跟踪结果到下一次追迹。按清除探测器然后追迹按钮然后退出。

该探测器浏览器将显示辐射分布,展示了丝源造成的热点。

如果你的检测器样子不同,打开检测器设置窗口,并确保设置如下。

您还可以在NSC阴影示范布局中通过选择“最后的分析颜色的像素”(Color pixels by last analysis)中的设置选项看到检测微量选择,在的结果。

添加普莱诺——凸透镜

现在,我们有一个光源和反射镜,我们将增加一个折射普莱诺——凸透镜镜头在检测器右方10mm处(+ ?)。在检测器后的编辑器中插入一行后,并符合以下参数的类型标准镜头值。

Ref Object: 3

Z Position: 10

Material: N-BK7

Radius 1: 300

Clear 1: 150

Edge 1: 150

Thickness: 70

Clear 2: 150

Edge2 : 150

更新的三维布局

注意我们引用探测器镜头的位置是通过输入的参考对象列Ref Object的值3,并规定Z位置的值为10实现,而不是参照全局顶点(参考对象Ref Object = 0),并指定Z位置参数810毫米实现。以探测器

为参照定位镜头,镜头将永远是在探测器的右方10毫米(+ ?)而不论探测器的位置。这就是相对的对象位置在非连续模式中指定。

要了解聚焦光束的情况,另设探测器在标准镜头右方650毫米处(+ z),参数如下。

Ref Object: 4

Z position: 650

Material: Blank

X Half Width: 100

Y Half Width: 100

# X Pixels: 150

# Y Pixels: 150

Color: 1

所有其他参数:默认

更新的三维布局

射线跟踪分析和会计极化损失

通过单击分析Analysis>Detectors>Detector Viewer打开另一个探测器查看窗口,使检测器的设置如下。

现在,我们已经准备好跟踪分析射线探测器了。因为N - BK7镜头是没有镀膜的,我们需要考虑它的反射损失(菲涅尔反射),因而需要在Detector Control窗口选择启用“使用两极分化”(Use Polarization)。(请注意,我们无法在此时间分裂射线,所以我们考虑了反射损失,但反射的能量没有得到传播。点击“Split Rays”将创建子射线带走反射的能量。)

现在在检测器查看器报告中的总功率说明镜头的反射损失和大量的体吸收。

添加一个矩形ADAT光纤

作为最后一步,我们将在第五个面(探测器)的右方(+ z)20毫米处增加一个矩形ADAT光纤。

在编辑器中添加Rectangular Volume object矩形对象卷后,5号探测器,具有以下参数:

Ref Object: -1 (使用相对对象作为Rectangular Volume的参考)

Z position: 20

Material: Acrylic

X1 Half Width 70

Y1 Half Width: 70

Z length: 2000

X2 Half Width: 70

Y2 Half Width: 70

所有其他参数:默认

当输入压克力材料类型,您可能会收到以下消息。单击是,ZEMAX软件将添加有丙烯酸材料的文件到玻璃目录。

这一次,我们确定了参考对象(Ref Object)的参数为-1,这代表了编辑器前一个对象(比如对象#5)。这和在上述列键入参数5等效。在编辑器中对同一个或不同一个非序列的复制或粘贴时,用负数指定相对参考对象时是非常有用的。

另一探测器对象(Detector Rect)#7,其具有以下参数。

Ref Object: -1 (使用相对对象Rectangular Volume作为参考)

Z position: 0 (这个量我们以后再赋值)

Material: Absorb

X Half Width: 100

Y Half Width: 100

# X Pixels: 150

# Y Pixels: 150

颜色:1

所有其他参数默认

使用PICKUP 解决的位置,探测器

更新三维布局后将显示如下

布局明显显示,该材料的类型设置为吸收后使探测器的不透明,而不是透明的。

由于我们所引用的检测器#7以Rectangular Volume作为参考,并设置Z位置为0,所以该探测器是位于的矩形光管前表面。我们希望把这个探测器放置在矩形光管右方10毫米处(+ ?),因此Z位置值应取2010年毫米(矩形右方10mm)。如果我们改变矩形光管Rectangular Volume厚度为不同的值,探测器#7的Z位置也应有所改变。为方便,不在编辑器中输入值2010,我们将为探测器的Z位置设置“Pickup solve”。然后,不管对象6的厚度为何值,对象7的Z位置值会自动相对于#6加10。

双击或右键点击对象#7的Z Position编辑器,打开该窗口。

键入下面的参数。

参数#0在非序列元件编辑器对应的“material”一栏,所以对于Rectangular Volume对象,参数#3对应为“Z Length”。

按OK后,一个字母“P”在参数旁边出现。

射线追踪整个系统

打开第三个探测器查看器查看#7探测器,再跟踪检测器。请记住使用偏振选项polarization option,追迹前在探测器控制窗口清除前面的追迹结果。

跟踪在Dell Precision 370工作站运行Windows XP专业版,3.4 GHz奔腾4和1GB内存的机器约2分钟的时间。

检测器查看器中的结果表明光导管有效地消除光热点,使光强分布几乎均匀。

ZEMAX课程设计心得照相机物镜设计【模版】

ZEMAX课程设计——照相机物镜设计 一、(课题的背景知识,如照相机镜头的发展概况,类型及其主要技术参数的简要说明) 二、课程设计题目 设计一个照相物镜, 1)光学特性要求:f’=100mm;2=30;;D/f’=1:3.5. 2)成像质量要求:弥散斑直径小于0.05mm;倍率色差最好不超过0.01mm;畸变小于3%。 三、设计课题过程 1、参考Ernostar和Tessar联合型物镜设计相关数据,对其进行相关改进。 Ernostar和Tessar联合型物镜设计相关数据如下表1(其中焦距f’=75.68mm;相对孔径D Radius/r Thickness/d 折射率/n 玻璃阿贝数/ν 38.339 3.57 1.71289 53.9 50.988 0.32 35.192 5.49 1.71289 53.9 197.94 4.83 -96.144 1.87 1.6362 35.3 26.53 8 -1074.1 1.38 1.53246 45.9 37.053 7.6 -49.135 1.72904 54.8 表1 2、根据焦距曲率镜片厚度之间的比例关系,即f1/f2=r1/r2=d1/d2,得到焦距100mm,相Radius/r Thickness/d 折射率/n 玻璃阿贝数/ν 50.659 4.717 1.71289 53.9 67.373 0.423 46.501 7.254 1.71289 53.9 261.548 6.382 -127.040 2.471 1.6362 35.3 35.055 10.571 -1419.262 1.824 1.53246 45.9 48.960 10.042 -64.925 1.72904 54.8 表2 3、启动ZEMAX,将表1数据输入到LDE,相关步骤由以下图给出

Zemax非序列光线追迹模板

非序列光线追迹 非序列光线追迹是 Zemax 中的核心技术。它是用于在具有多个光学路径的系统中对光线进行追迹的一种强大通用技术。典型用例包括: 1.照明系统,尤其是具有多个或复杂光源的照明系统 2.干涉仪这类系统,其中穿过几个不同光学系统的光线必须以相干方式重组 3.其他序列光学系统中的杂散光分析 非序列范式是任何光线都没有预定义路径。光线射出并投射到光路中的任意物体上,随后可能反射、折射、衍射、散射、分裂为子光线等。与序列光线追迹相比,这是一项更为通用的技术,因此在光线追迹速度方面要慢一些。 在非序列元件编辑器中提供了物体列表。此列表中的物体顺序没有意义(对此有几个例外情况:有关详细信息,请参见几何形状创建一节)。 光线从光源物体开始传播,直至投射到某个物体上,在该点可能会部分反射、透射、散射或衍射:

的 N-BK7 棱镜面反射,大约 50% 的能在此例中,大约 1% 的能量被涂有 MgF 2 量被两个棱镜相接触的直角斜边面上的膜层反射/透射。系统会发起新光线(称为“子”光线)以带走这部分能量,从而生成能量在系统中的去向的完整视图。 物体 Zemax 中的非序列光线追迹以三维物体为基础。(注意:要求所有程序均支持非序列光线追迹是不现实的。)在 Zemax 中,非序列物体完全由定义该物体所需的所有表面组成。例如,标准透镜物体由正面和背面、连接两面的柱体和边缘上的斜面组成。 多数 Zemax 物体均实现了参数化,这表示这些表面通过下列等式进行了定义。因此,创建和修改很方便,而且仅占用非常少的内存空间。此外,还可以进行优化并确定公差。 有些 Zemax 物体未实现参数化,如 CAD 物体。这些物体只是作为数据文件存在。由于 Zemax 将所有物体均视为三维体,而不是表面集合,所以很容易进行光线追迹和管理大型 CAD 文件。基于表面的代码可能需要成千上万个表面来表示复杂的 CAD 物体:在 Zemax 中,它就是一个物体。但是,不同的表面材料和膜层可应用到一个物体的任何表面,不论使用多少 CAD 实体来予以表示。Zemax 支持 80 多种物体,包括透镜、非球面透镜、棱镜、全息图、Zernike 物体、衍射光栅等。支持物体的完整列表如下所示。此外,还有一系列“运算符”物体,可以从现有物体生成复杂的几何图形。例如,您可以对本地 Zemax 物体

光学工程课程设计——照相物镜的ZEMAX设计

光学工程 课程设计 班级:T1003-3班 学号:20100030305 姓名:李金鑫

一.光学设计软件ZEMAX 的使用 设计要求: 1. 镜头镜片数小于10片 2. 图像传感器(CCD)指标 像素:1200×960,像元:3.8 3.8m m μμ? 。 3. 物镜 定焦,焦距28.0mm ,畸变 < 3.5%焦距280.2f mm mm '=±,相对孔径/1/3.5D f '= 轴上点100/lp mm 的MTF 值在0.3以上,轴外0.707视场 100/lp mm 的MTF 值在0.15以上, 渐晕:中心相对照度 > 65 % 在可见光波段设计(取d 、F 、C 三种色光,d 为主波长)。 4.计算过程: 成像面积:(1200*3.8)*(960*3.8)=4.56*3.648mm 2 对角线长度:22648.356.4+=5.84mm 像高:5.84/2=2.92mm 无限远入射光线的半视场角为: 96.5)arctan(''==f y w CCD 的特征频率为:1/(2*0.038)=131.6 lp/mm 有效焦距长度:'f =28mm 由于相对孔径'13.5 D f =,所以8D mm =。

软件设计结果: 1.透镜结构参数,视场、孔径等光学特性参数: GENERAL LENS DATA: Surfaces : 12 Stop : 6 System Aperture : Entrance Pupil Diameter = 8 Glass Catalogs : SCHOTT Ray Aiming : Off Apodization : Uniform, factor = 0.00000E+000 Effective Focal Length : 28.0008(in air at system temperature and pressure) Effective Focal Length : 28.0008(in image space) Back Focal Length : 17.49979 Total Track : 40.26 Image Space F/# : 3.499992 Paraxial Working F/# : 3.499992 Working F/# : 3.498718 Image Space NA : 0.1414217 Object Space NA : 4e-010 Stop Radius : 2.446367

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

基于ZEMAX的照相物镜的设计

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 学号学生姓名专业(班级) 10级仪表三班设计题目 设 计技术参数 1、焦距:f’=15mm; 2、相对孔径:1/2.8; 3、在可见光波段设计(取d、F、C三种色光) 4、视场角2w=74° 设计要求 1、简述照相物镜的设计原理和类型; 2、确定照相物镜的基本性能要求,并确定恰当的初始结构; 3、输入镜头组数据,设置评价函数操作数,进行优化设计和像差结果分析; 4、给出像质评价报告,撰写课程设计论文 工作量 查阅光学设计理论和像差分析的相关文献和资料,提出并较好地的实施方案设计简单透镜组,并用zemax软件对初级像差进行分析和校正,从而对镜头进行优化设计 工作计划 第一天、第二天:熟悉ZEMAX软件的应用,查阅资料,确定设计题目进行初级理论设计 第三天、第四天:完善理论设计,运用ZEMAX软件进行设计优化,撰写报告 第五天:完善过程,进行答辩 参考资料《光学设计》,西安电子科技大学出版社,刘钧,高明,2006,10 《几何光学像差光学设计》,浙江大学出版社,李晓彤,岑兆丰,2003.11 《实用光学技术手册》,机械工业出版社,王之江,2007.1 指导教师签字基层教学单位主任 签字

摘要 (1) 第一章简述照相物镜的设计原理和类型 (2) 第二章设计过程 (4) 2.1根据参数要求确定恰当的初始结构 (4) 2.2优化设计过程 (5) 2.3 优化结果像差结果分析 (8) 第四章课设总结 (13) 参考文献

人们早就有长期保存各种影像的愿望。在摄影技术尚未发明前的公元四世纪时,人们按投影来描画人物轮廓像的方法达到了全盛时代,至今这种方法仍然作为剪纸艺术流传着。后来,人们让光线通过小孔形成倒立像,进而将小孔改为镜片,并加装一只暗箱。只要在暗箱底板上放一张纸,不仅可以画出轮廓,还可以画出像上的各个部分。这就形成了照相机的机构雏形。随着科学技术的发展,照相机的发展日益迅速,有着显著的飞跃。照相物镜是照相机的眼睛,它的精度和分辨率直接影响到照相机的精度与成像质量。要保证所设计的照相物镜达到较高的技术要求,在设计时就必须达到更高的精度与分辨率。 本文所讨论的照相物镜,它主要采用后置光阑三片物镜结构,其中第六面采用非球面塑料,其余面采用标准球面玻璃,应用ZEMAX软件设计了一组焦距f '= 15mm的照相物镜,相对孔径D/ f’=2. 8,镜头总长为15.1366mm,整个系统球差0.000192,慧差0.000432,像散0.002716。完全满足设计要求。 关键字:照相物镜ZEMAX 设计

zemax非序列混编实例

混合式非序列(NSC with Ports) zemax 目录 [隐藏] ?1混合式非序列(NSC with Ports) zemax ?21-1 混合式非序列 ?31-2 例子-混合式非序列 ?41-3 出口埠 ?51-4 非序列组件 ?61-5 对象属性 ?71-6 非序列性透镜对象 ?81-7 复制对象 ?91-8 定义多焦透镜 ?101-9 表面折射 ?111-10 空气透镜 ?121-11 调整焦距参数 ?131-12 多焦透镜 ?141-13 运行优化 ?151-14 带状优化 ?161-15 目标局部 ?171-16 光线目标 ?181-17 系统性能 ?191-18 运行影像分析性能之优化 ?201-19 设罝变数 ?211-20 最终设计 混合式非序列(NSC with Ports) zemax

1-1 混合式非序列 在NSC with Port的设计中,系统使用序列性模式中所定义的系统孔径(System Aperture)与场(Field)。光线从每个被定义的场点(Field Point)射向系统孔径,并且穿越非序列性表面(NSC Surface)前的所有 序列性表面。 随后光线进入非序列性模式的入口端口(Entry Port),并开始在非序列对象群(NSC Group)中进行传播。 当光线离开出口埠(Exit Port)将继续追迹剩余的序列性表面,直至成像面。 非序列性对象群可透过多个非序列性表面进行定义。NSC with Ports常常被用来仿真不易建立于序列性模式的光学组件。在此我们将着重在多焦透镜(Multi-Focal Lens)上:曲率半径为孔径位置的函数之 光学组件。这个透镜将有四个不同的局部。 1-2 例子-混合式非序列 在功能列中单击「New」按钮来开启新的LDE(Lens Data Editor)。 开启一般资料对话框(General Data Dialog,System->General),在孔径页里设罝: l 孔径型态:入瞳直径(Entrance Pupil Diameter); l 孔径尺寸:38 mm。

ZEMAX入门教学

课程设计安排 本课程设计着眼于应用光学的基本理论知识、光学设计基本理论和方法,侧重于典型系统具体设计的思路和过程,加强学生对光学设计的切身领会和理解,将理论与实际融合、统一,以提高学生综合分析及解决问题能力的培养。 结合<>、<<工程光学课程设计>>和课件《光学设计软件应用课件》中的内容熟悉zemax软件和光学设计内容:特别要掌握zemax软件中以下菜单的内容: 1 输入透镜参数对话框:lens data editor, 2 system菜单下的输入光学系统数据: general, field wavelength 3. 光学性能分析(Analysis)中Lay out,Fan,RMS,MTF Seidel 像差系数各菜单 4 Merit Function Editor:优化函数构建和作用 在学习过以上内容的基础上,在ZEMAX软件上设计以下镜头设计(通过设计镜头熟悉zemax和光学设计理论知识,设计时需要不断去重新学习课本和课件知识,切记软件只是帮助你设计镜头,而不是代替你设计镜头):

ZEMAX入门教学 例子 1 单透镜(Singlet) (3) 例子 2 座标变换(Coordinate Breaks)................................18例子 3 牛顿式望远镜(Newtonian Telescope). (26) 例子4消色差单透镜(Achromatic Singlet) (40) 例子5变焦透镜(Zoom Lens) (47)

1-1单透镜 这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。 这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等 曲率半径(Radius of Curvature) 表面厚度(Thickness):与下一个表面之间的距离 材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料 表面半高(Semi-Diameter):决定透镜表面的尺寸大小 上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。 1-2设罝系统孔径 首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。点击「GEN」或透过菜单的System->General来开启General的对话框。S 点击孔径标签(Aperture Tab)(默认即为孔径页)。因为我们要建立一个焦距100 mm、

zemax非顺序系设计教程

如何创建一个简单的非顺序系统 建立基本系统属性 我们将创造出一个带点光源的非序列系统,抛物面反射镜和一个平凸透镜镜头耦合成一个长方形光管灯,如下面的布局显示。 我们还将跟踪分析射线探测器获得光学系统中的各点照度分布。下面是我们最终将产生:

如果ZEMAX软件没有运行,启动它。 默认情况下,ZEMAX软件启动顺序/混合模式。要切换到纯非连续模式,运行ZEMAX软件,然后点击文件“>非序列模式。 一旦纯非连续模式,在编辑器窗口的标题栏将显示非连续组件编辑器而不是在连续模式时只用于连续或混合模式系统的镜头数据编辑。

对于本练习,我们会设置系统波长,点击系统>波长,指定波长0.587微米。 我们还将在系统设置单位,System>General /Unit tab “一般组标签如下(默认)(default).。

除辐射辐照装置单位如Watt.cm -2外,您可以指定光度和能源单位,如lumen.cm -2或joule.cm -2。我们将选择默认为这项工作辐射单位。 创建反射 按键盘上的“插入”(insert)插入几行非序列编辑器。 在设计的第一部分,我们将创建一个由抛物面反射镜准直的线光源。然后,我们将在+ Z上放置探测器对象和看光照在探测器上的分布。 建立第一个对象通过抛物面反射镜。在编辑器对象1列“对象类型”(Object type)双击(右击一下)下,打开对象的属性窗口。根据类型选项卡类型设置为标准的表面(Standard Surfauce),然后单击确定。

在编辑器,请在标准表面对象相应的地方列下列参数。对于某些参数,您可能需要滚动到编辑器的右方以看到标题列,显示所需参数的名称。 Material: Mirror Radius: 100 Conic: -1 (parabola抛物线) Max Aper: 150 Min Aper: 20 (center hole in the reflector在反射中心孔) 所有其他参数缺省 您可以通过“分析>布局”>NSC三维布局菜单,或NSC阴影模型(分析“布局”>NSC阴影模型)打开NSC 三维布局,看看反射镜样子。 创建源 更改对象#2类型(目前是空对象),在编辑器第2行重复前面的步骤并在属性窗口选择线光源(Source Filament)。

zemax-课程设计

目录 第一章引言 (1) 第二章镜头结构的设计指标 (2) 2.1相关规格的确定 (2) 2.2镜头总像素与COMS像素的匹配 (2) 2.3透镜材料及结构的选择 (2) 2.4材料的厚度 (3) 2.5 设计指标 (3) 第三章zemax软件 (3) 3.1 zemax软件简介 (3) 3.1.1软件特色 (4) 3.2zemax软件界面介绍 (4) 3.2.1 Lens Data Editor(LDE) (4) 3.2.2 Aperture(光圈) (5) 3.2.3 Wavelength Data(波长设定) (5) 3.3 zemax软件功能简介 (6) 第四章500万像素手机镜头设计 (6) 4.1初始结构选择 (6) 4.1.1 500万像素手机镜头4P专利结构简介 (7) 4.2设计结果 (7) 4.2.1光路图 (7) 4.2.2详细参数 (8) 第五章结果分析,误差调试 (9) 5.1误差调试 (9) 5.2优化后的分析 (10) 5.2.1场曲和畸变 (10) 5.2.2球差 (10) 5.2.3.色差 (11) 5.2.4 RMS Radius(均方根半径) (12) 5.2.5 MTF(光学调制传递函数) (13) 5.2.6 本设计达到指标 (14) 第六章结论 (15) 参考文献 (16)

第一章引言 从手机开始配备拍照功能以来,手机摄像头的像素以很快的速度上涨,从最初的10万像素到30万像素、100万像素、200万像素、300万像素、500万像素,再到现在的800万像素,1000万像素。09年6月三星推出了全球首款1200万像素手机Pixonl2(M8910),采用1200万像素CMOS图像传感器及289mm广角镜头,提供了足以媲美数码相机的拍照等多项功能,可见手机大有将时尚卡片DC取而代之的劲头。不过据调查,虽然像素一直在涨,但是500万以上像素手机由于价格比较高,市场占有率很低,现在200万像素和300万像素仍是摄像手机市场主流,而500万像素的市场增长速度已显著增加。本文在合理选取初始结构的基础上,优化设计了一款500万像素的手机镜头,本设计流程图如图一。 图1 手机镜头设计流程图

ZEMAX中如何能优化非序列光学系统(翻译)

ZEMAX中如何优化非序列光学系统(翻译) 优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。推荐的方法如下: The recommended approach is: ?在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。 ?使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。这些'Moment of Illumination' 数据优化起来比任何特定的 像素点的值平缓的多。 ?在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammer optimizers)提炼结果。正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。首先使用正交下降优化法。 作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。 Damped Least Squares vs Orthogonal Descent ZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。 如下是一个NS系统的the merit function的一条扫描线,该function 仅有一个变量。

实验九 创建一个简单的非序列系统

实验十创建一个简单的非序列系统 一、实验目的: (1)学习如何在非序列编辑器中输入和编辑非序列对象; (2)学习如何在布置图上绘制光线; (3)学习如何跟踪大量射线以获得系统性能的定量数据。 二、实验环境: (1)硬件环境:普通PC机 (2)软件环境:ZEMAX软件平台 三、实验内容: 创建一个不连续的系统,一个灯丝源,一个抛物线反射器和一个普莱诺凸透镜,把光耦合到一个长方形的光管中。 要求按组撰写实验报告,实验报告命名应规范:Optical System CAD-2015110101-Biyang-Lab2。 四、实验步骤: (1)启动ZEMAX,打开Non-Sequential模式 点击File>Non-Sequential,打开非序列模式。 (2)设置波长 设置波长为0.587μm。点击system>wavelength>d(0.587)(select->中)>select->

(3)设置单位 点击system>general>units设置如图所示参数。 (4)在非序列组件编辑器中插入几行镜面 点击insert插入三个镜面。 (5)编辑器打开对象1属性窗口将类型设置为“标准曲面”,并键入下列参数。在对象1的Object Type下双击鼠标左键,选择standard surface。

输入下列参数:Material: Mirror Radius: 100 Conic: -1(parabola) Max Aper: 150 Min Aper: 20 (6)查看NSC三维布局 点击analysis>layout>NSC 3D layout。 (7)编辑器打开对象2属性窗口将类型设置为“Source Filament”,键入下列参数,并查看三维布局。 Z position: 50 # Layout Rays: 20 # Analysis Rays: 5000000

照相物镜基于ZEMAX课程设计报告实例

应用光学课程设计 课题名称:照相物镜镜头设计与像差分析专业班级:2009级光通信技术 学生学号: 学生姓名: 学生成绩: 指导教师:

课题工作时间:2011.6.20 至2011.7.1 武汉工程大学教务处

课程设计摘要(中文) 在光学工程软件ZEMAX 的辅助下, 配套采用大小为1/2.5英寸的CCD 图像传感器, 设计了一组焦距f '= 12mm的照相物镜, 镜头视场角33.32°, 相对孔径D/f’=2. 8, 半像高3.6 mm ,后工作距9.880mm,镜头总长为14.360mm。使用后置光阑三片物镜结构,其中第六面采用非球面塑料,其余面采用标准球面玻璃。该组透镜在可见光波段设计,在Y-field 上的真值高度选取0、1.08、1.8、2.5452,总畸变不超过0.46%,在所选视场内MTF轴上超过60%@100lp/mm,轴外超过48%@100lp/mm,整个系统球差-0.000226,慧差-0.003843,像散0.000332。完全满足设计要求。 关键词:ZEMAX;物镜;调制传递函数 ABSTRACT By the aid of optical engineering software ZEMAX,A focal length f '= 12mm camera lens matched with one CCD of 1/2.5 inch was designed。Whose FOV is 33.32°, Aperture is 2. 8,half image height is 3.6 mm,back working distance is9.880mm and total length is 14.360 mm. Using the rear aperture three-lens structure,a aspherical plastic was used for the sixth lens while standard Sphere glasses were used for the rest lenses。The group Objective lenses Designed for the visible light,Heights in the true value as Y-field Defined as 0、1.08、1.8、2.5452,total distortion is less than 0.41%,Modulation transfer function of shade in the selected field of view to meet the axis is greater than 60% @ 100 lp / mm, outer axis than 48% @ 100 lp / mm,The sum of the whole system spherical aberration -0.000226,Coma is

怎样在ZEMAX非序列模式里进行公差分析

怎样在ZEMAX非序列模式里进行公差分析 摘要这篇文章以自由形(freeform)通光管为例,详述了在ZEMAX非序列模式里进行公差分析的方法。 作者Akash Arora 发布时间2010年9月14日 译者YOng 导语 公差分析是系统地将制造、装配、材料等误差引入到光学系统,并判断它们对系统性能的影响的过程。如果你是第一次接触“公差分析”,或者你想知道更多公差分析过程背后的理论,请先阅读”How to Perform a Sequential Tolerance Analysis”。ZEMAX手册第16章也包含“公差分析”的详细内容。这篇文章的目的是介绍非序列系统里的公差分析的方法。 公差操作数及设置 在非序列系统里,三个公差操作数(TNPS,TNPA和TNMA)可以得到任意感兴趣的微扰值。它们分别被用来设置非序列物体的位置/倾斜,参数及材料特性的公差。两个补偿器操作数(CNPS和CNPA)提供了指定调节方式(allocate adjustment)的全面方法。这两个操作数允许分别指定非序列物体的位置/倾斜及参数为补偿器。另外,操作数TMCO及CMCO允许设置多重结构数据作为公差项和补偿器。你可以从ZEMAX手册第16章得到全面而详细的公差操作数介绍。 非序列公差分析使用用户自定义的绩效函数作为公差准据(toleranc

-ing criterion),包括绩效函数和使用一系列已保存绩效函数的用户脚本。这种做法的优势是绩效函数极有可能被用于优化过程,对于评估系统系能而言,这些已经足够。关于非序列优化及绩效函数的构建,请阅读文章“How to Optimize Non-sequential Optical Systems”。 下面是非序列公差分析需要注意的事项: ?忽略补偿器的最小/最大边界限制,因为绩效函数和用户脚本是唯一的准据。 作为替代,使用绩效函数边界操作数(NPGT,NPLT等)限制补偿器的边界值; ?操作数TOLR可以用于非序列模式里的优化,但是用户脚本始终是唯一的合 法准据。选择绩效函数作为准据将会导致无限循环。因此,需要确保由用户脚本加载的绩效函数不包含操作数TOLR; ?在非序列系统里没有意义的公差设置(光线瞄准,不同视场/结构等)不适用; ?当对多重结构系统的进行公差分析时,为了考虑每一重结构,绩效函数一定 要包含CONF操作数; ?加速公差分析的小提示: a.NSDD对计算RMS宽度、质心等总体数据(aggregate data)的采样噪声相 对不敏感,因此分析光线不要超过必须数量; b.如果可以,对光源使用Sobol采样; c.简化系统:如果可以,不要使用散射或者CAD/布尔物体; 对自由形物体进行公差分析 作为样例,我们将使用文章“How to Perform Freeform Optical Design”里创建并完成优化的freeform-z通光管。这个完成优化的系统包含一个OSRAM LED 及自由形通光管,并且在探测器上得到了最大的准直功率。这个系统包含在文章

工程光学课程设计报告

工程光学课程设计 设计名称:工程光学课程设计 院系名称:电气与信息工程学院 专业班级: 学生XX: 学号: 指导教师: 工程学院教务处制 2013年12 月

工程光学课程设计评分表 题目名称25×显微物镜 实习时间2013年12月23 日至2013 年12 月31 日共 2 周实习地点实验楼513 设计报告得分序号评价项目 满 分 得分 1 应用文献资料能力及综合运用知识能力 2 设计说明书撰写水平;插图质量 3 设计(实验)能力及创新性 设计报告得分总计 实物制作效果 评语: 指导教师签字:年月日 学生XX 班级学号 平时表现 (20分) 答辩 (20分) 综合评定得分实习成绩

注:最后成绩的评定以优(90100)、良(8089)、中(7079)、及格(6069)和不及格(少于60分)五级给出。 一、ZEMAX软件介绍 美国ZEMAX Development Corporation研发ZEMAX 是一套综合性的光学设计软件,集成了光学系统所有的概念、设计、优化、分析、公差分析和文件管理功能。ZEMAX所有的这些功能都有一个直观的接口,它们具有功能强大、灵活、快速、容易使用等优点。ZEMAX 有两种不同的版本:ZEMAX-SE和ZEMAX-EE,有些功能只在EE版本中才具有。 ZEMAX 可以模拟序列性(Sequential)和非序列性(non-sequential)系统,分别针对成像系统和非成像系统。ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。

大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。 序列性系统需定义视场角(field of view)、波长范围(wavelength range)和表面数据(surface date)。序列性设计的最重要参数之一,为系统孔径(system aperture)。系统孔径,常指入瞳(entrance pupil) 或孔径光栏(STO),它限制可从已定义视场入射光学系统的光线。光学表面可以是折射、反射或绕射。透镜可以是由均匀或渐变折射率材质所制成。表面的下弯(sag) 可以是球面、圆锥面(conic)、非球面(aspheric)或藉由多项式或其它参数函数

ZEMAX课程设计——照相机物镜设计

Z E M A X课程设计——照相机物镜设计一、(课题的背景知识,如照相机镜头的发展概况,类型及其主要技术参数的简要说明) 二、课程设计题目 设计一个照相物镜, 1)光学特性要求:f’=100mm;2ω=30?;;D/f’=1:3.5. 2)成像质量要求:弥散斑直径小于0.05mm;倍率色差最好不超过0.01mm;畸变小于3%。 三、设计课题过程 1、参考Ernostar和Tessar联合型物镜设计相关数据,对其进行相关改进。 Ernostar和Tessar联合型物镜设计相关数据如下表1(其中焦距f’=75.68mm;相对孔径D/f’=1:2.4;视场 表1 2、根据焦距曲率镜片厚度之间的比例关系,即f1/f2=r1/r2=d1/d2,得到焦距100mm,相对孔径D/f’=1: 3.5的透镜数据如下表2。 3、启动ZEMAX,将表1数据输入到LDE,相关步骤由以下图给出 (1)打开ZEMAX。 (2)输入数据。 在主选单system下,圈出wavelengths,依喜好键入所要的波长,同时可选用不同波长,本实验中在第一列键入0.486,单位为microns,第二第三列分别键入0.587、0.656。在primary中点击选1,即用第一个波长为近轴波长。(3)输入孔径大小。 由相对孔径为1:3.5,焦距为100mm得到,孔径D=100/3.5=28.57143mm。在主选单system菜单中选择general

data,在aper value上键入28.57143。 (4)输入视场角。 (5)输入曲率,面之间厚度,玻璃材质。 本实验中共有5组透镜,其中最后两组为双胶合透镜,故共有9个面,回到LDE,可以看到三个surface,STO (孔径光阑)、OBJ(物点或光源)、IMA(像屏),在STO前后插入几组surface,除IMA外共计9组surface,输入数据。最后根据参考实验图确定STO在第6面上。 ①点击layout,画出2D图形 ②点击spot diagram ,画出点阵图 由图看出光波在波长1、2、3下的弥散斑直径大小分别为33.625、54.419、64.768(单位:微米),其中第2、3波长弥散斑大小大于50微米,不符合要求,故需要改进。 ③在analysis里面的miscellaneous中点击field curv/dist,得到图形如下,其中distortion即为畸变 由图知畸变约为0.125%,小于3%,已到要求。 ④同③点击lateral color,即为倍率色差。 由图知倍率色差约为10微米,基本要求。 综上所述,我们所要做的就是对原始数据进行优化,是它的弥散斑直径符合要求。 优化一 (6)优化。(说明:优化并无严格规则,可根据具体情况灵活处理) 在本实验中,选择曲率半径为优化对象,双击surface1,出现 在solve type下拉框中选择variable,如图 剩下的8个面如法炮制,另外为了使弥散斑尽量聚焦于一点,但不改变透镜厚度和镜组之间距离,将surface9名下的thickness也改为variable。得到 接着设置优化功能,在system的editors中选取merit function,进入tools,再点击default merit function,即我们选用default merit function,这还不够,我们还要规定给merit function一个focal length为100的限制,所以在merit function editor第1列中往后插入一列,即显示第2列,代表suface2,在此列中的type上键入EFFL,同列中的target项中键入100,weight中键入1。 跳出merit function editor,在tools 中选optimization项,按automatic,完毕后跳出来,此时已完成最佳化设计,如前,重新检验畸变倍率色差即弥散斑大小是否符合要求。 可以看到弥散斑大小均符合要求 畸变小于3%,符合要求 倍率色差小于10um符合要求。 透镜的2D图如下: 可以看出,虽然透镜组附符合物理设计但是第一个镜片为凹镜,不符合给出的组合镜要求,故仍需要进行优化。

基于ZEMAX的照相物镜的设计 推荐

燕山大学 课程设计说明书题目:基于ZEMAX的照相物镜设计 学院(系):电气工程学院 年级专业: 10级仪表三班 学号: 学生姓名: 指导教师: 教师职称:副教授

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 学号学生姓名专业(班级) 10级仪表三班设计题目 设 计技术参数 1、焦距:f’=15mm; 2、相对孔径:1/2.8; 3、在可见光波段设计(取d、F、C三种色光) 4、视场角2w=74° 设计要求 1、简述照相物镜的设计原理和类型; 2、确定照相物镜的基本性能要求,并确定恰当的初始结构; 3、输入镜头组数据,设置评价函数操作数,进行优化设计和像差结果分析; 4、给出像质评价报告,撰写课程设计论文 工作量 查阅光学设计理论和像差分析的相关文献和资料,提出并较好地的实施方案设计简单透镜组,并用zemax软件对初级像差进行分析和校正,从而对镜头进行优化设计 工作计划 第一天、第二天:熟悉ZEMAX软件的应用,查阅资料,确定设计题目进行初级理论设计 第三天、第四天:完善理论设计,运用ZEMAX软件进行设计优化,撰写报告 第五天:完善过程,进行答辩 参考资料《光学设计》,西安电子科技大学出版社,刘钧,高明,2006,10 《几何光学像差光学设计》,浙江大学出版社,李晓彤,岑兆丰,2003.11 《实用光学技术手册》,机械工业出版社,王之江,2007.1 指导教师签字基层教学单位主任 签字

目录 摘要 (1) 第一章简述照相物镜的设计原理和类型 (2) 第二章设计过程 (4) 2.1根据参数要求确定恰当的初始结构 (4) 2.2优化设计过程 (5) 2.3 优化结果像差结果分析 (8) 第四章课设总结 (13) 参考文献

相关主题
文本预览
相关文档 最新文档