当前位置:文档之家› 线性代数重要知识点总结

线性代数重要知识点总结

线性代数重要知识点总结
线性代数重要知识点总结

线性代数

N阶行列式

定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质

性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

注2:交换i,j两列,记为ri?ri(ci?cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开

余子式:Mij 代数余子式:Aij=(-1)i+j Mij

引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即

D=aijAij

定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k2个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的

(i1+i2+…+i k+j1+j2+…+j k)次方,

称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。(注:行列式的k阶子式与其代数余子式之间有类似行列式按行(列)展开的性质。)

定理(拉普拉斯定理):在n阶行列式D中,任意取定k行(列)(1≤k≤n-1),由这k行(列)组成的所有k阶子式与它们的代数余子式的乘积之和等于行列式D。

克莱姆法则

含有n个未知数x1,x2,x3,…,x n的线性方程组

称为n元线性方程组。当其右端的常数项b1,b2,…,b n不全为零时,方程组(1)称为非齐次线性方程组,当b1,b2,…,b n全为零时,方程组(1)称为齐次线性方程组,即

线性组方程(1)的系数a ij构成的行列式称为该方程组的系数行列式D,即

定理(克莱姆法则):若线性方程组(1)的系数行列式D≠0,

则线性方程组(1)有唯一解,其解为x j=D j/D(j=1,2,…,n)

其中,行列式D j(j=1,2,…,n)是把D中的第j列元素a1j,a2j,a3j,…,a nj对应的换为方程组的常数项b1,b2,…,b n而其余各列保持不变所得到的行列式。

定理1:如果线性方程组(1)的系数行列式D≠0,则线性方程组(1)一定有解,且解是唯一的。

定理2:如果线性方程组(1)无解或解不是唯一的,则它的系数行列式必为零。

定理3:如果齐次线性方程组(2)的系数行列式D≠0,则齐次线性方程组(2)只有零解。

定理4:如果齐次线性方程组(2)有非零解,则它的系数行列式D=0。

矩阵

特殊矩阵:n阶方阵;

行矩阵:只有一行的矩阵称为行矩阵(或行向量);

列矩阵:只有一列的矩阵称为列矩阵(或列向量);

零矩阵:元素全是零的矩阵称为零矩阵,可记作0;

对角阵:对角线非零非1,其余元素全为零的n阶方阵称为n阶对角阵;

单位阵:对角线元素为1,其余元素全为零的n阶矩阵称为n阶单位阵,记作E n;

数量矩阵:对角线全为元素a,其余元素全为零的n阶矩阵称为n阶数量矩阵。

加减法运算:前提:A、B矩阵行数相等且列数相等,称为同型矩阵。

加减法则:对应元素相加减(PS:行列式为对应不同行列相加),且遵循交换律与结合律。-A为矩阵A的负矩阵。

数乘:数λ与m×n矩阵的乘积记作λA或Aλ

数乘法则:每个元素都乘λ(PS:行列式为某一行或某一列乘以λ),且遵循结合律与分配率。

乘法:前提:前面矩阵的列数与后面矩阵的行数相等。(任意行列式均可相乘)。

乘法法则:前面矩阵的行与后面矩阵的对应列的对应元素相乘,下标ij行取前面矩阵对应的行,列取后面矩阵对应的列。

单位矩阵在矩阵乘法中的作用类似于数1

矩阵的乘法不满足交换率与消去律。(例:矩阵A≠0,B≠0却有A=0,B=0)

分块矩阵:

分块对角矩阵:除了对角线上的矩阵之外,其余矩阵均为零。

分块对角矩阵性质:∣A∣=∣A1∣∣A2∣…∣A n∣

若对角线矩阵不为零,则该方块矩阵不为零。

对矩阵求逆矩阵,等于给对角线的方块矩阵求逆矩阵。

同结构的分块对角矩阵的和,差,积,数乘及逆仍是方块对角矩阵,且运算表现为对应子块的运算。

分块上三角及下三角矩阵(对角线必须是方阵):

同结构的分块上(下)三角矩阵的和,差,数乘及逆仍是分块上(下)三角矩阵。

矩阵的初等变换

矩阵初等变换:

1.初等行变换:①对调两行,记作r i ?r j②以非零常数k乘某一行的所有元素,记作

r i×k③某一行加上另一行的k倍,记作r i+kr j。

2.初等列变化:把上述定义行变成列即可。

3.初等变换的逆变换也是初等变换。

矩阵之间的等价关系:

定义:矩阵A经过有限次初等变换为矩阵B,则称矩阵A与B等价。

性质:

1.自反性A-A

2.对称性若A-B,则B-A

3.传递性若A-B,B-C,则A-C

初等变换后几种特殊矩阵关系:

1.行阶梯形矩阵:通过有限次初等行变换形成→可画出一条阶梯线,线下元素全为零;

每个台阶只有一行;阶梯线的竖线后面非零行的第一个元素非零。

2.行最简形矩阵:由行阶梯型矩阵经过初等行变换→满足行阶梯性矩阵;非零行的第

一个非零元为1;首非零元所在的列的其它元素都为零。

3.标准形矩阵:行最简形矩阵初等列变换→行最简形矩阵;左上角为单位矩阵,其它

元素全为零。

关系:行阶梯形矩阵>行最简形矩阵>标准形矩阵

初等变换的相关定理:

1.任意一矩阵经过有限次初等变换,可以换为标准形矩阵

任意一矩阵经过有限次初等行变换,可以化为行阶梯形矩阵,进而可以化为行最简形矩阵。变换得到的矩阵。

2.如果A为n阶可逆矩阵,则矩阵A经过有限次初等变换可化为单位矩阵。

初等矩阵:对单位矩阵E经过一次初等变换的矩阵称为初等矩阵。

第一类:i行(列)与j(列)行互换, E(i,j)

第二类:i行(列)乘以非零数k,E(i(k))

第三类:第j行乘以数K加到第i行,或第i列乘以数k加到第j列,E(i,j(k))

初等矩阵基本性质:

E(i,j)-1=E(i,j);E(i(k))-1=E(i(1/k));E(ij(k)-1)=E(ij(-k))

定理2:设A是一个m*n矩阵,对A施行一次某种初等行(列)变换,相当于用同种变换的m(n)阶初等矩阵左(右)乘A。

求逆矩阵的初等变换法:

定理3:n阶矩阵A可逆的充分必要条件是A可以表示为若干初等矩阵的乘积。

初等变换求逆矩阵:求n阶矩阵A的逆矩阵:1.构造n*2n矩阵(A E)2.(A∣E)初等行变换

为(E∣A-1)。或初等列变换(上下写A与E)

解矩阵方程AX=B→X=A-1B

步骤:1.构造n*(n+m)矩阵(A B)2.(A B)初等行变换为(E A-1B)。或初等列变换X=A-1B求(上下些A与B)

矩阵的秩

K阶子式:在m*n行矩阵A中,任取k行k列不改变这k2个元素在A中所处位置的次序而得的k阶行列式,称为矩阵A的k阶子式。

秩:设A为m*n矩阵,如果存在A的r阶子式D不为零,而任何r+1阶子式(如果存在的话)皆为零,则称D为矩阵A的最高阶非零子式,数r为矩阵A的秩,记为r(A)(或R(A)),并规定零矩阵的秩等于零。

矩阵秩的性质:

(1)若矩阵A中有某个s阶子式不等于零,则r(A) ≧s

(2)若矩阵A中的所有t阶子式等于零,则r(A) <t

(3)若A为m*n阶矩阵,则0≦r(A)≦min(m,n)

(4)若r(A)=min(m,n),则A为满秩矩阵,否则称为降秩矩阵

(5)r(A)=r(A T) A与A T的子式对应相等

(6)行阶梯形矩阵的秩就等于非零行的行数

矩阵秩的求法:

定理1:若A→B,则r(A)=r(B)

步骤:1.矩阵A经过初等行变换变为行阶梯形矩阵2.行阶梯形矩阵中非零行的行数就是该矩阵的秩。

几个常用的矩阵秩的性质:

1.Max{r(A),r(B)}≦r(A,B)≦r(A)+r(B)

2.r(A+B) ≦r(A)+r(B)

3.r(AB)≦min{r(A),r(B)}

4.若Am*nBn*l=0,则r(A)+r(B) ≦n

线性方程组

线性方程组阶的判断及解法

消元法的实质:对系数与常数构成的矩阵做初等变换。

消元法实施的具体方法,就是把系数与常数构成的矩阵化为行最简形。

增广矩阵(A b):系数与常数构成的矩阵,记作?(应该是A上一条短横线)

线性方程组有解就是相容的,无解就是不相容的。

1.齐次线性方程组解的判定(只有零解和非零解)

设A=(a ij)mn,n元齐次线性方程组Ax=0

有非零解的充分必要条件是:系数矩阵A是秩r(A) <n

系数矩阵行最简形非零行行数=未知量个数→最简方程组方程的个数=未知量个数2.非齐次线性方程组

设A=(a ij)mn,n元非齐次线性方程组Ax=b

有解的充分必要条件是:系数矩阵A的秩等于增广矩阵的秩r(A)=r(?).

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数知识点总结归纳

线性代数知识点总结归纳 第一章行列式 知识点1:行列式、逆序数 知识点2:余子式、代数余子式 知识点3:行列式的性质 知识点4:行列式按一行(列)展开公式 知识点5:计算行列式的方法 知识点6:克拉默法则 第二章矩阵 知识点7:矩阵的概念、线性运算及运算律 知识点8:矩阵的乘法运算及运算律 知识点9:计算方阵的幂 知识点10:转置矩阵及运算律 知识点11:伴随矩阵及其性质 知识点12:逆矩阵及运算律 知识点13:矩阵可逆的判断 知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解 知识点16:初等变换的概念及其应用 知识点17:初等方阵的概念 知识点18:初等变换与初等方阵的关系

知识点19:等价矩阵的概念与判断 知识点20:矩阵的子式与最高阶非零子式 知识点21:矩阵的秩的概念与判断 知识点22:矩阵的秩的性质与定理 知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例 第三章向量 知识点25:向量的概念及运算 知识点26:向量的线性组合与线性表示 知识点27:向量组之间的线性表示及等价 知识点28:向量组线性相关与线性无关的概念 知识点29:线性表示与线性相关性的关系 知识点30:线性相关性的判别法 知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系 知识点33:求向量组的最大无关组 知识点34:有关向量组的定理的综合运用 知识点35:内积的概念及性质 知识点36:正交向量组、正交阵及其性质 知识点37:向量组的正交规范化、施密特正交化方法 知识点38:向量空间(数一) 知识点39:基变换与过渡矩阵(数一)

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

线性代数总结归纳

线性代数总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

行列式 1.为何要学习《线性代数》 学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列【 知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列【 知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序【 知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数【 知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列【

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

相关主题
文本预览
相关文档 最新文档