当前位置:文档之家› 高考不等式专题

高考不等式专题

高考不等式专题
高考不等式专题

高考不等式专题复习

一. 裂项放缩: 1.求证:

∑=

k k 1

2

35

1 证:由

)121121(21

44122+--=-

得到

35

321)121121...5131(21112

=+<+--++-+<∑=n n k

n

k 注:常见变型: ①

)1111(211122+--=-

121(21

44441222+--=-<=n n n n n

②3)

1(1...23112111)1(...11)11(1<-?++?+?++<+++=+

n n n C n C n n

n n n n ③

n

n n n 2

1

121)12(21--=- ④

n n n

n n n n n -+<++<

+++=+=

+2222

222

222

1

⑤)1(21)1(2--<<-+n n n

n n

)!

1(1

!1)!1(+-=+n n n n

⑦1

21121)12)(12(2)22)(12(2)12(21112---=--=--<----n

n n n n n n n n n

2.求证:)2()12(21

67)

12(1 (513112)

22≥+->-++++

n n n 证:由

)1

21

121(21)12)(12(1)12)(12(1)12(12+--=+->--=-n n n n n n n

得到)121121...71515131(211)

12(1 (513112)

22+--++-+-+>-++++

n n n )

12(21

67)12131(21+-=+-

+=n n

3.求证:241

2141...361161412+-

<++++n n 证:由)121

121(21141412

2+--=-

121...5131311(2141...361161412+--++-+-<++++n n n

2

41

21)1211(21+-

=+-=n n 4.

35

1...9141112<++++<+n

n n 证:①先证左边: 1)1(1...4313212111...914112+=+?++?+?+?>++++

n n

n n n

②再证右边:

35)121121...71515131(211...914112<+--++-+-+<++++n n n

5.已知n

n

n a 24-=,n

n

n a a a T +++=...221,求证:23...21<+++n T T T

证:由)121

121(2312322233

2243121

1211---=+?-?=+-?=++++n n n n n n n n

n T 得到2

3

)121121(23...1121<---<++++n n T T T

二. 函数放缩:

6.求证:66

533

3ln ...44ln 33ln 22ln +-<++++n n n n 证:先构造函数有x

x x x x 1

1ln 1ln -≤?

-≤ 得)3

1

...3121(1333ln ...44ln 33ln 22ln n n n n +++--<++++……………………① 其中 )3

1...231131(...)918171615141()3121(3

1

...41312111n n n n ++++++++++++++=++++--

65)3121()33323(...)9363()3121(111n

n n n n n =+?=+?+++++<---……………………②

由①,②得66

5365133

3ln ...44ln 33ln 22ln +-=--<++++n n n n n n 7.求证:

n

n n 1...211)1ln(11...3121+++<+<++++ 证:构造函数有x

x x x 1

1ln 1ln -≥?-≤

得n k k k k n n k n

k 1

...211)11(1ln )1ln(1

1+++=-+<+=+∑∑==……………………① 11

...3121111111ln )1ln(111++++=+=+->+=+∑∑∑===n k k

k k k n n k n k n

k ………②

8.求证:3

2)]1(1[...)321()211(->++???+??+n e n n

证:构造函数有x

x 3

2ln -

> 则)1(132)]1(1ln[++->++n n n n

得32)11

1(32)1(32)1(132)]1(1ln[1

11->+--=+->++-

>++∑∑∑===n n n k k k k k k n

k n

k n k

9.求证:

4

)

1(1ln ...54ln 43ln 32ln -<

+++++n n n n )1(>n 证:构造函数有2

1

1ln 1ln -<

+?-

)

1(211ln ...54ln 43ln 32ln 2-=-<+++++∑=n n k n n n

k

10.已知函数x x x f ln )(=,若0,0>>b a ,证明)()(2ln )()(b f b a f b a a f -+≥++ 证:令)()(2ln )()()(,0b f b x f b x x f x g x a ++-++=>= b b b x b x b x x x ln )ln()(2ln )(ln +++-++=

则b

x x

x g +=2ln

)(,

,则)(x g 在),0(b 上递减,在),(+∞b 上递增, 所以有?=≥0)()(b g x g )()(2ln )()(b f b a f b a a f -+≥++

三. 分式放缩:

11.求证:12)1

21

1)...(5

11)(31

1)(11(+>-+

+++n n 证:记n

n B n n A 21

2...674523,122...563412+?

???=-????= 则12122

+>?+=?>?>n A n B A A B A

即12)1

21

1)...(511)(311)(11(+>-++++n n 注:也可得到12+

12.求证:313)2

31

1)...(7

11)(411)(11(+>-+

+++n n 证:记133...895623,2313...784512-?

???=--????=n n

B n n A n

n C 31

3...9106734+?

???= 则33

1313,+>?+=??>?>>n A n C B A A C A B A

即: 313)2

31

1)...(711)(41

1)(11(+>-++++n n

13.求证:2

121...31211n n >-++++ 证:2

21

121(...)81716151()4131(211121 (312111)

1++++++++++++=-++++

--n n n 221212

122...844221121)21...1n n n n n n n n >-+=-+++++>-++-

四. 借助数列递推关系

14.求证:

1222...642)

12(...531...642531423121-+

n 证:记n n n n n n na a n a a n n a n n a 2)1(22

21

22...642)12(...53111-+=?++=?????-????=

++ ]...2[2])1(...32[2...2113221n n n na a a a n a a a a a +++-++++=+++?+ 112)1(2a a n n -+=+ 其中3

212

212212...43211+<++?-???=

+n n n n n a n

所以12212

2222123

21)1(2...21-+=-++

-++<+++n n n n n a a a n

15.若1,111+=?=+n a a a n n ,求证:

)11(21

...1121-+≥+++n a a a n

证:由n n n n n n n n n a a a a a n a a n a a -=?

+?=+=??+=?++++++21

11211121

)(...)()()(1

1 (11113524131)

21-+-++-+-+-+=+++n n n a a a a a a a a a a a a 2111

1

a a a a a n n --++=

+ 21-+=+n n a a

)11(2221-+=-?≥+n a a n n 五. 均值不等式放缩:

16.设)1(...3221+++?+?=n n S n ,求证:2

)1(2)1(2

+<<+n S n n n 证:由2

1

2)1()1(+=++<

+<

n n n n n n 得2

)1(2222)1(2)1(2

2+<+=++<<+n n n n n n S n n n 注:

n

a a n a a a a a a n

n

n n n

2

2

21111.........1...1++≤++≤??≤++

17.若n

n n

a )11(+=,求证: (1)1+

证:(1)由1111)1

11()12()11

)11((1)11(++++=++=++=+++?

(2)由41)2

212)11(()21()11(22

++

六. 加强命题法: 18. 数列{}n a 中,2

3

1=

a ,对任何,2≥n 有)1(2311-+=--n a na a n n n

求证n a a a a n *2......321<!

证:由已知可以推出1

33-?=n n n n a ,令133-==n n n n n a b 即证2...21

现用数学归纳法证明:1

332133...1331332211+?≤-??-?-n n

n n ①当1=n 时,左边=

23,右边=2

3

,命题成立 ②假设k n =时,1

332133...1331332211+?≤-??-?-k k

k k 成立, 则1

3321331332133133 (13313311)

11112211+?<-?+?≤-?-??-?-++++++k k k k k k k k k k 所以1+=k n 时,命题也成立.

即: 21332133 (133133221)

1<+?≤-??-?-n n

n n !*2......321n a a a a n <

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

高考不等式专题的三大考点

不等式专题的几个常考点 考点一 用均值不等式求最值的类型及方法 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值:

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

高考数学压轴专题2020-2021备战高考《不等式》分类汇编

【高中数学】高考数学《不等式》解析(1) 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有

()0f x ≥,则 (1) '(0) f f 的最小值为( ) A .2 B . 52 C .3 D . 32 【答案】A 【解析】 ()2 2 00{,440 a f x ac b b a c >≥∴∴≥?=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++, ()( )11111120f a c f b b +∴=+≥+≥=+=' 当且仅当() () 120f a c f ='时,不等式取等号,故 的最小值为 3.在下列函数中,最小值是2的函数是( ) A .()1 f x x x =+ B .1cos 0cos 2y x x x π?? =+ << ??? C .( )2f x =D .()4 2x x f x e e =+ - 【答案】D 【解析】 【分析】 根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1 f x x x =+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π?? =+<< ??? ,故()cos 0,1x ∈,2y >,B 错误; C. ( )2f x = = ,故( )3 f x ≥ ,C 错误; D. ( )4222x x f x e e =+-≥=,当4x x e e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】 本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

新高考数学《不等式》练习题 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足 15150a S +=,则实数d 的取值范围是( )

A .[; B .(,-∞ C .) +∞ D .(,)-∞?+∞ 【答案】D 【解析】 【分析】 由等差数列的前n 项和公式转化条件得1 1322 a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】 Q 数列{}n a 为等差数列, ∴15154 55102 a d d S a ?=+ =+,∴()151********a S a a d +++==, 由10a ≠可得 1 1322 a d a =--, 当10a > 时,1111332222a a d a a ??=--=-+≤-= ??? 1a 时等号成立; 当10a < 时,1 1322a d a =--≥= 1a =立; ∴实数d 的取值范围为(,)-∞?+∞. 故选:D. 【点睛】 本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题. 3.已知关于x 的不等式()()2 22240m x m x -+-+>得解集为R ,则实数m 的取值范 围是( ) A .()2,6 B .()(),26,-∞+∞U C .(](),26,-∞?+∞ D .[)2,6 【答案】D 【解析】 【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数 m 的取值范围. 【详解】

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

不等式专题训练

不等式专题训练1 1.若a >0,b >0,a+b=2,则下列不等式不恒成立的是( ) A .ab ≤1 B .a 2+b 2≥2 C . + ≤ D .+≥2 2.已知变量x ,y 满足,则的取值范围为( ) A .[0,] B .[0,+∞) C .(﹣∞,] D .[﹣,0] 3.以下结论正确的是( ) A .若a <b 且c <d ,则ac <bd B .若ac2>bc2,则a >b C .若a >b ,c <d ,则a ﹣c <b ﹣d D .若0<a <b ,集合A={x|x=},B={x|x=},则A ?B 4.设x ,y 满足约束条件30,0,20,x y a x y x y --≤?? -≥??+≥? 若目标函数z x y =+的最大值为2,则实数a 的 值为( ) A .2 B .1 C .1- D .2- 5.已知集合()12 2|log 12,| 21x A x x B x x ??+?? =+≥-=≥????-?? ? ? ,则 A B =I ( ) A.()1,1- B.[)0,1 C.[]0,3 D.? 6.若实数x ,y 满足,则z=x ﹣2y 的最小值为( ) A .﹣7 B .﹣3 C .1 D .9 7.设a ,b ∈R + ,且a ≠b ,a+b=2,则必有 ( ) A .1≤ab ≤ B .<ab <1 C .ab <<1 D .1<ab < 8.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .a 2 >ab >b 2 B .ac 2 <bc 2 C . D . 9.如果实数x 、y 满足,目标函数z=kx+y 的最大值为12,最小值3,那么实数k 的值为( ) A .2 B .﹣2 C . D .不存在 10.若点(2,﹣3)不在不等式组表示的平面区域内,则实数a 的取值范围是( ) A .(﹣∞,0) B .(﹣1,+∞) C .(0,+∞) D .(﹣∞,﹣1) 11.设变量x ,y 满足约束条件,则目标函数z=2x+5y 的最小值为( )

高考真题不等式选讲专题答案

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 2.(2020?全国2卷)已知函数2 ()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 3.(2020?全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0; (2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c } 4.(2020?江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6? ?-∞- ??? . 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ??+≥??=--<

(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6??-∞- ?? ?. 【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题. 2.(2020?全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【答案】(1)32x x ? ≤??或112x ?≥??;(2)(][),13,-∞-+∞. 【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()2 1f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时, ()43f x x x =-+-. 当3x ≤时,()43724f x x x x =-+-=-≥,解得:3 2x ≤; 当34x <<时, ()4314f x x x =-+-=≥,无解;

不等式经典题型专题练习(含答案)

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21 { 23x a x b -<->的解集为-1

3.已知关于x ,y 的方程组?? ?=+=+3135y x m y x 的解为非负数,求整数m 的值. 4.由方程组212x y x y a +=?? -=?得到的x 、y 的值都不大于1,求a 的取值范围. 5.解不等式组: 并写出它的所有的整数解.

6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.

8.已知关于x的不等式组3的整数解共有5个,求a的取值范围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值范围. 10.解不等式组 5134 1 2 2 x x x x ->- ? ? ? -- ??≤ 并求它的整数解的和. 23 x y m +=- ?①

12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++

高考数学专题不等式选讲高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,33 2a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

2019届高考数学专题-不等式选讲-高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2 ()f x x x m -+≥的解集非空,求m 的取值范围.

含参不等式专项练习题(经典)

含参不等式专项练习题(经典) 例1 不等式组21 159????+?+?+x m x x x 的解集是,则m 的取值范围 练习:已知不等式组的取值范围是则的解集为a x a a x a x ,5351??? ??+???? 练习:若不等式组???≤≥-m x x 062无解,则求m 的取值范围 练习:若不等式组? ???≤?m x x 21有解,则求m 的取值范围 练习:关于x 的不等式组??????+?--x x a x x 4 22)2(3有解,则求a 的取值范围 类型二 根据不等式租的整数解情况确定字母的取值范 围 例2关于x 的不等式组?????+?++-?a x x x x 4 231)3(32有四个整数解,则a 的取值范围是 练习:1、已知不等式组? ???+?-b x a x 122的整数解只有5,6,求b a 和的取值范围。 2、试确定a 的取值范围,使不等式组??? ????++?++?++a x a x x x )1(343450312恰有两个整数解。 类型三 根据未知数解集或者未知数间的关系确定字母的取值范围 例3 已知方程组? ??-=++=+m y x m y x 12312满足0?+y x ,求m 的取值范围 练习:已知的取值范围求且x a x b x a ,64,01623,0132?≤=--=+-。

练习:当k 为何负整数时,方程组???-=++=+1 34123k y x k y x 的解适合6?-?y x y x 且? 练习:已知???+=+=+1 2242k y x k y x 且的取值范围为则k y x ,01-?-? 练习:已知关于x 、y 的方程组? ??=+=-323y x m y x 是否存在m ,使上述方程组的解为正数?若存在,求出m 的取值范围。

相关主题
文本预览
相关文档 最新文档