当前位置:文档之家› 数学建模期末复习

数学建模期末复习

数学建模期末复习
数学建模期末复习

一、 线性规划

1.求解下列线性规划问题: 共20分 max z=2x 1+7x 2-3 x 3

x 1+3x 2+4x 3≤30 (第一种资源限制约束)

x 1+4x 2- x 3≤10 (第二种资源限制约束)

x 1、x 2、x 3≥0

(1) 求出该问题的最优解和最优值;

(2) 第二种资源限量由10变为20,最优解是否改变;若改变请求出新的最优解; (3) 增加一个新变量x 6,其目标函数系数为3,技术消耗系数为???

?

??=????

??212616a a ,最优解是否改变;若改变请求出新的最优解。

解:(1)lingo 程序 max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=10;

最优解(x1 x2 x3)=(10 0 0) 最优值=20

(2) max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=20;

最优解(x1 x2 x3)=(20 0 0) 最优值=40

或对第一题进行灵敏度分析(第二种资源限量可以在0到30范围内变化,

最优基解不变最优解(x1 x2 x3)=(20 0 0)最优值=40)

(3)max =2*x1+7*x2-3*x3+3*x4; x1+3*x2+4*x3+x4<=30; x1+4*x2-x3+2*x4<=10;

求解得到 最优解(x1 x2 x3 x4)=(10 0 0 0) 最优值=20

2.某校基金会有一笔数额为5000万元的基金,打算将其存入银行。当前银行存款的利率见下表2。取款政策与银行的现行政策相同,定期存款不提前取,活期存款可任意支取。

校基金会计划在5年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在5年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会设计一个基金最佳使用方案,试建立其模型。(15分)

一年期 1.800 二年期 1.944 三年期 2.160 五年期

2.304

3、某公司打算在三个不同的地区设置4个销售点,根据市场预测部门估计,在不同的地区设置不同的数量的销售点,每月可得到的利润如表2所示。试问在各个地区应如何设置销售点,才能使每月获得的总利润最大?其最大利润是多少?并给出最优方案。(15分)

表2 销售点 利润

地区 0 1

2

3

4

1 0 16 25 30 3

2 2 0 12 17 21 22 3

10

14

16

17

解:变量 ij x 为0,1变量 x

ij

0,(i =1,2, 3;j=1,2,3,4,5)

目标函数:Max 35

1

1

ij ij i j z x c ===

∑∑

约束条件:

5

13

5

11

1,1,2,3

[*(1)]4

ij j ij

i j x i x

j =====-=∑

∑∑

Cij=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17

程序: model : sets :

s/1..3/; d/1..5/; link(s,d):c,x; Endsets

max =@sum (link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j))); ! 同上面相同的目标函数 ; @for (s(i ):@sum (d(j):x(i,j))=1);

@sum (s(i):@sum (d(j):(j-1)*x(i,j)))=4; data :

c=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17;

Enddata

结果:Global optimal solution found.

Objective value: 47.00000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

X( 1, 3) 1.000000 0.000000

X( 2, 2) 1.000000 0.000000

X( 3, 2) 1.000000 0.000000

答:地区1设2个销售点,地区2、3个设1个销售点,最大利润为47

4.一个木材储运公司有很大的仓库用以储运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后出售。已知该公司仓库的最大储存量为20万米3,储存费用为(70+100u)千元/万米3,u为存储时间(季度数)。已知每季度的买进卖出价及预计的销售量如表1所示。表1

由于木材不宜久贮,所有库存木材应于每年秋末售完。为使售后利润最大,试建立这个问题的线性规划模型。(15分)

解:xij:第i季度买进,第j季度卖出,(i<=j)

目标函数:Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*( 465-460)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1) *0.1-x13*(70+100*2)*0.1-x14*(70+100*3)*0.1-x23*(70+100*1)*0.1-x24*(70+100*2)*0. 1-x34*(70+100*1)*0.1

约束条件:

X11=100

X12+x22=140

X13+x23+x33=200

X14+x24+x34+x44=160

X12+x13+x14<=20

X13+x14+x23+x24<=20

X14+x24+x34<=20

模型:

Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*( 465-460)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1) *0.1-x13*(70+100*2)*0.1-x14*(70+100*3)*0.1-x23*(70+100*1)*0.1-x24*(70+100*2)*0. 1-x34*(70+100*1)*0.1;

X11=100;

X12+x22=140;

X13+x23+x33=200;

X14+x24+x34+x44=160;

X12+x13+x14<=20;

X13+x14+x23+x24<=20;

X14+x24+x34<=20;

结果:Global optimal solution found.

Objective value: 5160.000

Infeasibilities: 0.000000

Total solver iterations: 0

Variable Value Reduced Cost

X11 100.0000 0.000000

X12 0.000000 0.000000

X22 140.0000 0.000000

X13 20.00000 0.000000

X23 0.000000 7.000000

X33 180.0000 0.000000

X14 0.000000 20.00000

X24 0.000000 27.00000

X34 0.000000 27.00000

X44 160.0000 0.000000

Row Slack or Surplus Dual Price

1 5160.000 1.000000

2 0.000000 15.00000

3 0.000000 10.00000

4 0.000000 5.000000

5 0.000000 5.000000

6 0.000000 3.000000

7 0.000000 20.00000

8 20.00000 0.000000

答:最大利润为:5160,季度冬买进120,本季度卖出100,等到季度夏卖出20 季度春买进140,本季度卖出140 季度秋买进180本季度卖出140 季度秋买进160本季度卖出160

二、 对偶分析

1、求解下列线性规划问题: 共25分 max z=4x 1+x 2+2x 3

8x 1+3x 2+x 3≤2 (第一种资源限制约束)

6x 1+x 2+x 3≤8 (第二种资源限制约束) x 1、x 2、、x 3≥0 (1) 求出该问题的最优解和最优值;

(2) 第一种资源限量由2变为4,最优解是否改变,若改变请求出新的最优解;

(3) 现有新产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,问

该产品的售价至少为多少时才值得生产?

(4) 由于资源缺乏,现有第三种原来并不受约束资源现在受到限制,限制方程为:

10x 4x 3x 2321≤++,问此时最优解是否受到影响,若需要改变,请求出新的最

优解

解:(1)最优解x1=x2=0,x3=2,最优值为4 程序:max =4*x 1+x 2+2*x 3;

8*x 1+3*x 2+x 3<=2 ; 6*x 1+x 2+x 3<=8 ;

结果:Global optimal solution found.

Objective value: 4.000000 Infeasibilities: 0.000000 Total solver iterations: 2

Variable Value Reduced Cost X3 2.000000 0.000000

Row Slack or Surplus Dual Price 2 0.000000 2.000000

(2)

法一:第一题进行灵敏度分析(第二种资源限量可以在0到8范围内变化,最优基解不变最优解(x1 x2 x3)= 0 0 4)最优值=8)

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

X1 4.000000 12.00000 INFINITY

X2 1.000000 5.000000 INFINITY

X3 2.000000 INFINITY 1.500000

Righthand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2 2.000000 6.000000 2.000000

3 8.000000 INFINITY 6.000000

法二:

程序:max =4*x1+x2+2*x3;

8*x1+3*x2+x3<=4 ;

6*x1+x2+x3<=8 ;

结果:Global optimal solution found.

Objective value: 8.000000

Infeasibilities: 0.000000

Total solver iterations: 2

Variable Value Reduced Cost

X1 0.000000 12.00000

X2 0.000000 5.000000

X3 4.000000 0.000000

Row Slack or Surplus Dual Price

1 8.000000 1.000000

2 0.000000 2.000000

3 4.000000 0.000000

(3)

程序:

max=4*x1+x2+2*x3+x4;

8*x1+3*x2+x3+2*x4<=2;

6*x1+x2+x3+3*x4<=8;

灵敏度分析:x4可由一个单位增加3个单位,即当x4>4时生产,故售价至少大于4

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable Variable Coefficient Increase Decrease X1 4.000000 12.00000 INFINITY X2 1.000000 5.000000 INFINITY X3 2.000000 INFINITY 1.500000 X4 1.000000 3.000000 INFINITY

Righthand Side Ranges

Row Current Allowable Allowable RHS Increase Decrease

2 2.000000 6.000000 2.000000

3 8.000000 INFINITY 6.000000

(4)最优基解不变,最优解为(x1 x2 x3)= 0 0 2)最优值=4)

程序:max=4*x1+x2+2*x3;

8*x1+3*x2+x3<=2;

6*x1+x2+x3<=8;

2*x1+3*x2+4*x3<=10;

结果:Global optimal solution found.

Objective value: 4.000000

Infeasibilities: 0.000000

Total solver iterations: 1

Variable Value Reduced Cost

X1 0.000000 12.00000

X2 0.000000 5.000000

X3 2.000000 0.000000

Row Slack or Surplus Dual Price

1 4.000000 1.000000

2 0.000000 2.000000

3 6.000000 0.000000

4 2.000000 0.000000

2. 某厂的二种产品I、II分别在四种设备A1 、A2 、A3 、A4上加工。产品所需的机器台时、设备在计划内的有效台时、每件产品利润如下表所示:

(1)请制定一份最佳生产计划,使其总收入达到最大。试建立此问题的数学模型。

(2)求解此问题。(3)若把机器台时出租, 问应如何定价? (20%)解:设生产1型x1 ,生产2型x2,

目标函数:max z=2*x1+3*x2

约束条件:2*x1+2*x2<=12

X1+2*x2<=8

4*x1<=16

4*x2<=12

程序:max =2*x1+3*x2;

2*x1+2*x2<=12;

x1+2*x2<=8;

4*x1<=16;

4*x2<=12;

解得:(x1 x2)=(4 2)

最优值=14

(2)

三、运输问题及整数规划

1.某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表3所示:(共10分)

表3

项目

A B C D

投标者

甲15182124

乙19232218

丙26171619

丁19212317

解:

程序:model:

sets:

s/1..4/;

d/1..4/;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数 ;

@for(s(i):@sum(d(j):x(i,j))=1);

@for(d(j):@sum(s(i):x(i,j))=1);

data:

c=15 18 21 24

19 23 22 18

26 17 16 19

19 21 23 17;

Enddata

结果:Global optimal solution found.

Objective value: 70.00000

Infeasibilities: 0.000000

Total solver iterations: 7

Variable Value Reduced Cost

X( 1, 2) 1.000000 0.000000

X( 2, 1) 1.000000 0.000000

X( 3, 3) 1.000000 0.000000

X( 4, 4) 1.000000 0.000000

答:甲承包B乙承包A丙承包C 丁承包D

总费用:为70

2.已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共10分)。(用qsb中的network modeling中的交通问题)

B1B2B3产量销地

产地

A159215

A231718

A362817

销量181216

结果如下:

程序:model:

sets:

s/1..3/:a;

d/1..3/:b;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数 ; @for(s(i):@sum(d(j):x(i,j))<=a(i));

@for(d(j):@sum(s(i):x(i,j))=b(j));

data:

a=15 18 17;

b=18 12 16;

c=5 9 2

3 1 7

6 2 8;

Enddata

end

结果:Global optimal solution found.

Objective value: 116.0000

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost

X( 1, 1) 0.000000 7.000000

X( 1, 2) 0.000000 13.00000

X( 1, 3) 15.00000 0.000000

X( 2, 1) 18.00000 0.000000

X( 2, 2) 0.000000 0.000000

X( 2, 3) 0.000000 0.000000

X( 3, 1) 0.000000 2.000000

X( 3, 2) 12.00000 0.000000

X( 3, 3) 1.000000 0.000000

答:A1运15个单位到B3 A2运18个单位到B1 A3运16个单位到B2 A3运1个单位到B3

总费用:124

3、石油公司有三个石油贮存点,四个石油需求点。其容量和单位运价如表所示:

制定一个贮存点到需求点的运输计划,使总的运输费用最小。试建立此问题的数学模型并且求解。(10%)

4. 许多非洲国家由于恶劣气候而使农业蒙受损害,联合国组织决定派5位农业专家去帮助5个非洲不发达国家,以提高他们的粮食供应。,每位专家能帮助不同国家提高粮食供应达到不同水平,提高的期望值如下表:

专家\国家 A B C D E

1 1

2 15 1

3 1

4 17

2 11 17 14 16 19

3 1

4 1

5 11 18 18

4 1

5 13 12 17 16

5 13 15 12 15 14

假定每个国家有同样的人口,试提出一个专家指派计划,使粮食供应的增长达到极大。试建立此问题的数学模型并且求解。(10%)

5. 某汽车厂与一些单位签订了生产70辆汽车的合同,按合同规定明年每季度末分别提供10,15,25和20台汽车。该厂各季度的生产能力及生产每辆汽车的成本如表所示:

根据生产能力,该厂能提前完成合同,但因此要付出相应的贮存费。现规定每辆汽车积压一个季度需付0.15万元贮存费。试问该厂应怎样安排各季的生产计划,使总的生产费用最少?试建立此问题的数学模型并且求解。(15%)

解:xij:第i季度生产第j季度交的车辆

目标函数:min=x11*10.8+x12*(10.8+0.15)+x22*11.1+x13*(10.8+0.3)+x23*(0.15+11.1)+x33*11+x 14*(0.45+10.8)+x24*(0.3+11.1)+x34*(0.15+11)+x44*11.3

X11=10

X12+x22=15

X13+x23+x33=25

X14+x24+x34+x44=20

X11+x12+x13+x14<=25

X22+x23+x24<=35

X33+x34<=30

X44<=10

程序:min=x11*10.8+x12*(10.8+0.15)+x22*11.1+x13*(10.8+0.3)+x23*(0.15+11.1)+x33*11+x 14*(0.45+10.8)+x24*(0.3+11.1)+x34*(0.15+11)+x44*11.3;

X11=10;

X12+x22=15;

X13+x23+x33=25;

X14+x24+x34+x44=20;

X11+x12+x13+x14<=25;

X22+x23+x24<=35;

X33+x34<=30;

X44<=10;

结果:Global optimal solution found.

Objective value: 773.0000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

X11 10.00000 0.000000

X12 15.00000 0.000000

X33 25.00000 0.000000

X24 5.000000 0.000000

X34 5.000000 0.000000

X44 10.00000 0.000000

Row Slack or Surplus Dual Price

2 0.000000 -10.95000

3 0.000000 -11.10000

4 0.000000 -11.25000

5 0.000000 -11.40000

6 0.000000 0.1500000

8 0.000000 0.2500000

9 0.000000 0.1000000

答:最小费用为773,第一季度生产25,本季度交10,等到第二季度交15

第二季度生产25,等到第4季度交5

第三季度生产30,本季度交25,等到第4季度交5

第4季度生产10

6. 某服务公司有4名技术员(A1,A2,A3,A4)为四位顾客(B1,B2,B3,B4)提供服务,由于技术员专长不同其服务时间随顾客而变化。具体服务时间由下表给出:

服务时间B1B2B3B4

A136710

A25638

A328416

A48659

试为该公司制定一份指派计划,使其总服务时间达到最小。试建立此问题的数学模型并求解。(10%)

解:xij:i技术员服务j顾客,为0,1变量

Cij=3 6 7 10

5 6 3 8

2 8 4 16

8 6 5 9

目标函数:

44

11

min*

ij ij

i j

x c

==

=∑∑

约束条件:

4

1

4

1

1,1,2,3,4

1,1,2,3,4 ij

j

ij

i

x i

x j

=

=

==

==

程序:model:

sets:

s/1..4/;

d/1..4/;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数 ;

@for(s(i):@sum(d(j):x(i,j))=1);

@for(d(j):@sum(s(i):x(i,j))>=1);

data:

c=3 6 7 10

5 6 3 8

2 8 4 16

8 6 5 9;

Enddata

end

结果:Global optimal solution found.

Objective value: 20.00000

Infeasibilities: 0.000000

Total solver iterations: 8

Variable Value Reduced Cost

X( 1, 2) 1.000000 0.000000

X( 2, 3) 1.000000 0.000000

X( 3, 1) 1.000000 0.000000

X( 4, 4) 1.000000 0.000000

答:A1服务B2 A2服务B23 A3服务B1 A4服务B4

四、目标规划

1、设有一纺织厂可生产衣料和窗帘布共两种产品。该厂两班生产,每周的生产时间为80小时,无论生产哪种产品,该厂每小时的产量都是1千米。据市场预测,每周窗帘布的销售量为70千米,而衣料的销售量为45千米。假定窗帘布和衣料的单位利润分别为2.5千元/千米和1.5千元/千米,上级主管部门对该厂提出了以下四个顺序目标:

(1)尽可能避免开工不足;

(2)尽可能限制每周加班时间不超过10小时; (3)尽可能满足市场需求; (4)尽可能减少加班时间。

问该厂应如何安排生产才能使这些目标依序实现,试建立其数学模型。(15分)

解: 约束条件:

11223344128001290017002450

x x d d x x d d x d d x d d -+-+-+-++-+-=+-+-=-+-=-+-=

QSB---Goal programming

一级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 二级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 三级目标:min=0,x1=45,x2=45,d1+=10,d3+=30 四级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

2、求解如下目标规划的满意解:

??

???????≥=-+=-++=-++++=+-+-+-+-+

-+

-+-+0

,,,,,,,71000100100401510)()(33221

1213322221112132211d d d d d d x x d d x d d x x d d x x d P d d P Minw 3.某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物。各种作物每亩需施肥

料分别为0.12吨、0.2吨、0.15吨。预计秋后玉米每亩可收获500千克,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克。农场年初规划时依次考虑以下的几个方面:

P1:年终收益不低于350万元; P2:总产量不低于1.25万吨;

P3:小麦产量以0.5万吨为宜;

P4:大豆产量不少于0.2万吨;

P5;玉米产量不超过0.6万吨;

P6:农场现能提供5000吨化肥,若不够,可在市场高价购买,但希望高价采购量愈少

愈好。试建立该目标规划问题的数学模型(不需要求解)。(16分

五、图与网络及关键路线

六、1.已知四个城市间的距离如下表所示,求从A城市出发,经其余城市一次且仅一

次,最后返回到A城市的最短路径与距离。(18分)

A B C D

A--112028

B12--1825

C239--10

D34326--

解:

2.某企业拟开发一新产品,该新产品投产前工序资料如下表(15分):

工序A B C D E F G H I J K L工序

紧前关系//A A D C,E F B,G B,G H G I,J,K紧前关系

工时(周)4103682328521工时(周)试求:1、绘制网络图;

2、计算时间参数;

3、确定关键线路。

2.某石油公司其输油管网如下图所示,试求该网络中的最大流(15分)。

.

结果为:

MODEL:

sets:

nodes/s,1,2,3,4,t/;

arcs(nodes,nodes)/

s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;

c= 8 7 5 9 9 2 5 6 10;

enddata

max = flow;

@for(nodes(i)|i #ne# 1 #and# i #ne# @size(nodes):

@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);

@sum(arcs(i,j)|i #eq# 1:

f(i,j)) = flow;

@for(arcs:@bnd(0,f,c));

END

Global optimal solution found.

Objective value: 14.00000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost FLOW 14.00000 0.000000 C( S, 1) 8.000000 0.000000 C( S, 2) 7.000000 0.000000 C( 1, 2) 5.000000 0.000000 C( 1, 3) 9.000000 0.000000 C( 2, 4) 9.000000 0.000000 C( 3, 2) 2.000000 0.000000 C( 3, T) 5.000000 0.000000 C( 4, 3) 6.000000 0.000000 C( 4, T) 10.00000 0.000000 F( S, 1) 8.000000 0.000000 F( S, 2) 6.000000 0.000000 F( 1, 2) 3.000000 0.000000 F( 1, 3) 5.000000 0.000000 F( 2, 4) 9.000000 -1.000000 F( 3, 2) 0.000000 0.000000 F( 3, T) 5.000000 -1.000000 F( 4, 3) 0.000000 1.000000 F( 4, T) 9.000000 0.000000

Row Slack or Surplus Dual Price

1 14.00000 1.000000

2 0.000000 -1.000000

3 0.000000 -1.000000

4 0.000000 -1.000000

5 0.000000 0.000000

数学建模写论文过程中应该注意的问题

写论文过程中应该注意的问题: (一)问题提出和假设的合理性 (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。 (2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。 (3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图象,得到变量的函数形式; 也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容。 (二)模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形 式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了 解得到模型的过程上下文,之间切忌逻辑推理过程中跃度过大,影响论文的说服力, 需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要 先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表 达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依 据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注 意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。 (四)模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出 由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时 不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

数学建模论文写作—模型假设

数学建模论文写作—模型假设 1.每个交巡警服务平台的职能、警力配备都基本相同 2.事故发生地都近似模拟在各路口节点。 3.每个交巡警服务平台配备一辆警车,一旦遇到突发事件,即刻从平台驶向案 发地,不考虑期间的反应时间。 4.不考虑平台所在节点本身作为案发处的出警情况。 5.相邻两个路口节点之间的道路认为是直线且无其他小道。并且各处的路况都 是相同的,不考虑交通意外(如汽车抛锚、堵塞、路口停顿等)、气候的影响,不考虑转弯时的车速变化等等,这些都是为了保证警车任意时刻在任意路段上的行驶速度均为60km/h。 6.两个不同节点处的发案率是相互独立的,即任意时刻,两互异节点的法案情 况两个不同节点处的案发情况不发生单向或双向的影响 7.不存在越点管辖和交叉管辖的情况。 以下是对上述假设的一些说明,及对在解决问题的过程中,我们发现的题中需要阐述的部分概念、条件与因素的分析: 对于假设一,每个交巡警服务平台的职能、警力配备这两个基本参数都大致相同,这是我们分析整个问题的前提假设,实质就是各平台在我们模型中的权数是相同的。 对于假设二,我们将案发的地点限制在各节点上。其一,在实际生活中,道路上的任何一点都有发案的可能,但通过查阅全国多个大中型城市道路网络案发的资料数据,完全可以得出交通网络中路口节点的案发率远远高于其他路段的结论;其二,考虑到题目给出的该市六区交通网络和平台设置的相关信息数据表(附录二)中只相应地给出了各路口节点的发案率,所以要将非节点处的发案情况计入在内,必须先模拟出道路上各点发案率的函数,这在实际操作中是极为困难的,很难把握其精确度,易造成较大误差。所以可以采用将其离散化的方法,仅选取节点便是最朴素的一种离散化思想的运用。 对于假设三,为何平台所配警车始终以相应平台所在节点为起点驶向案发地,将在下文“模型求解”中详细讨论,这里就不再赘述。不考虑期间的反应时间也是为了简化模型、去除次要因素的影响。 对于假设四,一旦突发事件发生在平台所在节点,那么所需时间一定是零,也就失去了其讨论的价值,所以不考虑平台所在节点本身作为案发处的出警情况。 特别是定量分析的基础。 在假设七中,所谓“越点管辖”是指平台A的管辖区域中存在一部分(甚至全部)与A所在节点间还隔有其他(至少一个)平台(如图2-1中的平台B)。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

全国大学生数学建模竞赛模版(完整版)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 内容要点: 关键词:结合问题、方法、理论、概念等

一、问题重述 内容要点: 1、问题背景:结合时代、社会、民生等 2、需要解决的问题 问题一: 问题二: 问题三: 二、问题分析 内容要点:什么问题、需要建立什么样的模型、用什么方法来求解 三、模型假设与约定 内容要点: 1、根据题目中条件作出假设 2、根据题目中要求作出假设 写作要求: 细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。将一些问题理想化、简单化。 1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解 2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考 3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容 四、符号说明及名词定义 内容要点:包括建立方程符号、及编程中用到的符号等

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模论文格式

(论文题目,3 摘要(4号黑体居中、加粗,两个字之间空3个英文空格) 离散化为光线,直接用光线密度来描述光强度。 对于问题1,我们采用追迹法求解模型,其主要思想是:追踪点光源发向空间中的每一条光线的行迹,确定其在测试屏上的落点,从而确定B、C处的光强度比值。然后以此计算出所有满足设计要求的灯丝长度,最后衡量线光源功率,求得最优解。模型求解得:最佳灯丝长为4 = L mm。当灯丝长度确定后,代入模型中,问题2得解,亮区见图5。 作为追迹法的改进,提出简化算法。我们证明了如下定理: 到达B、C点连线的光线,来自于且仅来自于由B、C和焦点这三点确定的水平面。因此,只需追踪光源沿水平方向发出光线的行迹,即可确定B、C处的光强度。 对于问题2,为了更真实地反应实际情况,我们建立柱面光源模型,同时提出了“追源法”求解模型。其主要思想是:利用光路是可逆的原理,先后在B、C点放置点光源,用试探法求解发自B、C的光线照射在灯丝表面的范围,以此确定能够照射到B、C的灯丝表面的发光区域,再求解该区域照在B、C点的光强度比值,进而求解灯丝长度。模型求解得:最佳灯丝长为98 .3 = L mm。 对于问题3,参考实际需求,利用光照图的方法,重新分配测试点,以测出实际需要检测处的指标。求解得,只需在中轴线下方0.2m和0.3m处各添加一测试点即可。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方 注:摘要内容不超过一页。主要包括用什么方法,解决了什么问题,主要结果是什么,有什么特色。在完成基本问题的基础上,还做了哪些有意义的工作等。 摘要中不要出现公式和表格。篇幅A4纸大半页,不超过1页。

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模做题步骤及注意事项【数模经验谈】

拿到建模题目以后,按照一下流程去分工合作 红色表示步骤蓝色表示注意事项 一、第一天上午 1. 各自对立思考1个小时,主要分析题目的问题背景,已知条件,建模目的等问题。至少每人必须提出10到15个问题,并回答自己的问题。 2. 重点用语言的形式表述清楚问题的结构,即用语言描述自己的初步模型。(要自己提出的模型,可能就会产生一些假设。) 3. 再和队友讨论。讨论1个小时。形成自己团队的初步模型,同样是以语言形式描述的。 4. 接下来查找一些文献,讨论修改团队的模型,形成一个最终较完整的模型。并根据讨论最后形成对问题的统一认识,形成问题重述部分的内容。 注:1)如果问题有好几问,可以重点讨论第一个问题,但是也要考虑其他问题与第一问的关系!(一般建模中的几问都是有一定联系得);也可以同时考虑,同时建模。 2)注意参考文献的处理,参考别人的方法一定要在文中注明!这也是要求一直留意查找文献的目的。【随时记录】 二、第一天下午 将自己团队的模型数学化,用数学符号和数学语言公式的形式,表述自己的模型。此时会继续需要查文献,产生一些假设条件,并产生自己论文中的符号说明。

三、第二天上午 一个人开始写文章,语言重在逻辑清晰,叙述简洁明了!图、表准确。文章格式正确、内容完整。(问题重述,问题分析,模型假设,符号说明,模型形式,以及参考文献都已经在第一天的讨论中有了一定的共识。) 其余两个人(在不清楚时3人讨论),开始考虑第一个问题的模型的求解,即研究模型的解法。查找文献或者自己提出对模型的求解方法。此时可能需要继续对第一天建立的模型进行修改,简化等处理。(讨论后,及时告诉写文章的队友)。 四、第二天下午 写文章的继续。 编程的开始编程计算模型。此时,可能需要根据所采取的算法对模型的表述重新修改。 另一人帮忙编程,并开始考虑第二个、第三个问题的模型及求解方法。并一起讨论,形成共识,写进文章中。(此时,同样可能需要查文献,符号表示,产生假设)【注意是两个人求解,一个MATLAB,一个MATHEMATICA】 五、第三天上午 应该给出所有问题的计算结果了(最迟下午6点前)。 产生论文初稿。 六、第三天下午 进行模型的分析。主要是分析编程计算出的解的现实意义等,通过图、

相关主题
文本预览
相关文档 最新文档