当前位置:文档之家› 高一上韦达定理,高次,多元方程解法

高一上韦达定理,高次,多元方程解法

高一上韦达定理,高次,多元方程解法
高一上韦达定理,高次,多元方程解法

一元二次方程根与系数关系(韦达定理),多元方程解法,高次方程解法

一元二次方程根与系数的关系

现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.

一)、一元二次方程的根的判断式

一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:

(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:

(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:

(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.

由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把

24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ?=-

【例1】不解方程,判断下列方程的实数根的个数:

(1) 22310x x -+=

(2) 24912y y +=

(3) 25(3)60x x +-=

说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.

【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:

(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;

(4) 方程无实数根.

【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.

二)、一元二次方程的根与系数的关系

一元二次方程20 (0)ax bx c a ++=≠的两个根为:

x x ==

所以:1222b b b

x x a a a

-+--+=

+=-,

22122

2()422(2)4b b b ac c

x x a a a a a

-+----?=?===

定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:

说明:所以通常把此定理称为”韦达定理”.

【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +;

(2)

12

11x x +; (3) 12(5)(5)x x --; (4) 12||x x -.

分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.

说明:利用根与系数的关系求值,要熟练掌握以下等式变形:

*【例5】一元二次方程042

=+-a x x

求a 的取值范围。

*【例6】 已知一元二次方程5)9(2

22-+-+a x a x 根大于2,求a 的取值范围。

【例7】已知关于x 的方程221

(1)104

x k x k -+++=的值.

(1) 方程两实根的积为5; (2) 方程的两实根分析:(1) 由韦达定理即可求之;(2) 有两种可能,一是120x x =≥,二是

12x x -=,所以要分类讨论.

解:(1) ∵方程两实根的积为5

【例8】已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.

(1) 是否存在实数k ,使12123

(2)(2)2

x x x x --=-

成立?若存在,求出k 的值;若不存在,请您说明理由.

(2) 求使

12

21

2x x x x +-的值为整数的实数k 的整数值.

说明:(1) 存在性问题的题型,通常是先假设存在,然后推导其值,若能求出,则说明存在,否则即不存在.

练习:

1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )

A .2k >

B .2,1k k <≠且

C .2k <

D .2,1k k >≠且

2.若12,x x 是方程22630x x -+=的两个根,则12

11

x x +的值为( )

A .2

B .2-

C .

12 D .92

3.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )

A .3-

B .5

C .53-或

D .53-或

4.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则11

11

b a a b --+--的值为 ( ) A .20-

B .2

C .220-或

D .220或

5.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .

6.设12,x x 是方程20x p x q ++=的两实根,121,1x x ++是关于x 的方程

20x q x p ++=的两实根,则p = _____ ,q = _____ .

7.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其

值都不可能等于10,您是否同意他的看法?请您说明理由.

*8.一元二次方程

02)13(722=--++-m m x m x 两根1x 、2x 满足21021<<<

求m 取值范围。

9.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根;

(2) 若方程的两根为12,x x ,且满足

121112

x x +=-,求m 的值.

10.已知关于x 的方程221

(1)104

x k x k -+++=.

(1) k 取何值时,方程存在两个正实数根?

(2) 若该方程的两根是一个矩形相邻两边的长,

求k 的值.

11.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根

12,x x .

(1) 求k 的取值范围;

(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.

12.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.

(1) 求实数k 的取值范围; (2) 若

121

2

x x =,求k 的值.

四、一元高次方程的解法

含有一个未知数,且未知数的最高次项的次数大于2的整式方程叫做一元高次方程。

一元高次方程的解法通常用试根法因式分解或换元法达到降次的目的,转换为

一元一次方程或一元二次方程,从而求出一元高次方程的解。

【例1】解方程(1)x3+3x2-4x=0 (2)x4-13x2+36=0

练习:

解方程

(1)x3+5x2-6x=0

(2)(x2-3x)2-2(x2-3x)-8=0

五、三元一次方程组的解法举例

1).三元一次方程组的概念:

三一次方程组中含有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程。

注:(1)“未知项”与“未知数”不同。(2)每个方程不一定都含有三个未知数。

它的一般形式是

未知项的系数不全为零,其中每一个方程都可以是三元、二元、一元一次方程,但方程组中一定要有三个未知数。

2).解三元一次方程组的基本思想方法是:

【例1】解方程组

【例2】解方程组

练习:

1. 解下列三元一次方程组

1) 2)

3)

2.已知,且x+y+z=24,求x、y、z的值。

3.代数式ax2+bx+c在x为1,-1,2时,它的值分别是-6,-8,-11,求:

①a,b,c的值;②当x=-4时,求代数的值。

*4.已知2x+5y+4z=0,3x+y-7z=0,且xyz≠0

求:的值。

*5.已知且xyz≠0,求x:y:z..

*6.用100元恰好买了三种笔共100支,其中金笔每支10元,铂金笔每支3元,圆珠笔每支0.5元,试问三种笔各买了多少支?

六、简单的二元二次方程组的解法举例

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:二元二次方程组即有两个未知数且未知数的最高次数为二次的方程组

由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.

例如:都是二元二次方程组.

(2)二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。

由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

【例1】解方程组

2解方程组??

?==+)

2(10)1(7

xy y x

练习:

*1. 解方程组???=+=+---250

43432

222y x y x y xy x

*2. 解方程组???-=+-=++45

531315

32

222y xy x y xy x 提示:(1)×3+(2)得(x -2y )(3x -y )=0

3. 解方程组?

??==+25

22xy y x

高次方程及解法

高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则 -1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者( x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根 -1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷ (x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项 a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

第三讲 简高次方程的解法

第三讲简 易高次方程的解法 在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程 x3-2x2-4x+8=0. 解原方程可变形为 x2(x-2)-4(x-2)=0, (x-2)(x2-4)=0, (x-2)2(x+2)=0. 所以 x1=x2=2,x3=-2. 说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样

=0可化为 bkx3+bx2+dkx+d=0, 即(kx+1)(bx2+d)=0. 方程ax4+bx3+cx+d=0也可以用类似方法处理. 例2 解方程 (x-2)(x+1)(x+4)(x+7)=19. 解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得 (x2+5x-14)(x2+5x+4)=19. 设 则 (y-9)(y+9)=19, 即y2-81=19. 说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之. 例3 解方程 (6x+7)2(3x+4)(x+1)=6. 解我们注意到 2(3x+4)=6x+8=(6x+7)+1, 6(x+1)=6x+6=(6x+7)-1, 所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令 y=6x+7,① 由(6x+7)2(3x+4)(x+1)=6得 (6x+7)2(6x+8)(6x+6)=6×12, 即 y2(y+1)(y-1)=72, y4-y2-72=0,

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

一元高次方程的求解

一元高次方程 一元三次方程求解 320x ax bx c +++= 其中,,a b c 是任意复数 ② 若令3 a x y =- ,则三次方程简化为 3 0y py q ++= ③ 其中33a p b =-,3 2327 ab a q c =-+ , 设123,,y y y 表示简化方程③的根,则据根与方程系数的关系,得1230y y y ++=。 若令3242712u p q v ?=--? ?=-??,2 11232 2123 z y v y vy z y vy v y ?=++??=++??。 对于适当确定的立方根,卡当公式是1z = 2z = 求解线性方程组123212312 12320y y y y v y vy z y vy v y z ++=??++=??++=?,得到11221 21212 3121() 31()31()3y z z y v z v z y v z v z ----?=+?? ?=+???=+?? , 于是,原三次方程的三个根为1y = 2y ω= ,3y ω= 其中23 427 q p ?=+ ,12ω=- (i =。 C 、一元四次方程求解 3. x 4 +bx 3+cx 2+dx+e =0. 设方程为x 4 +bx 3 +cx 2 +dx+e =0. (4)

移项,得x 4+bx 3=-cx 2-dx -e , 右边为x 的二次三项式,若判别式为0,则可配成x 的完全平方. 解这个三次方程,设它的一个根为y 0,代入(5),由于两边都是x 的完全平方形式,取平方根,即得 解这两个关于x 的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 高中阶段对于三次四次方程的求解很少涉及,我们遇到的一般是比较有规律的高次方程。当高次不等式 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 1 01100,0,n n n n a x a x a x a a --++???++=≠ 而1 011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

特殊的一元二次方程的解法—知识讲解.

一元二次方程及其解法(一) 特殊的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方 程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;32 2 -=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321- =-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-=;其中 2 )4(322 ,1AC B B a Ab y -±-+=,12-=i .当Δ=AC B 22 -=0时,盛金公式③: K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3)333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根, 其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

任意高次方程求解方法

任意高次方程求解方法 对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。但经常会遇到高次方程的问题,如何通过一种简便的方法快速得到高次方程的解,成为一个迫切的需求。本人发现了数列与高次方程的关系,可以通过数列与高次方程的关系可以得到高次方程的一个解。这种方法适用于任意高次有解的方程。任一高次方程: 可以变化为: 以上方程可以产生一个数列,通过数列前后项相除可以得到方程的近似解。 以下为求解结论: 二次方程: 所对应的数列为:方程有解的情况下对应的一个解为: 三次方程:所对应的数列为: 方程有解的情况下对应的一个解为: ???+?????+?????+?+??+?=0????+??????+??????+?+???=1 ????+???= 1 ???=? ??=???=??????+?????? ?=lim ?→?(??????) 0

依次类推 n次方程:所对应的数列为:方程有解的情况下对应的一个解为: 以上求解的方法基本为,将通用方程转化为数列对应方程,再由方程产生一个对应的数列,数列前项除后项可以得到方程的近似解,数列的项越靠后,这个近似解不断逼近方程的解.当迭代次数m趋向于无穷大时,这个值为方程的一个解,这个解大于0小于1.当方程无解时,方程对应的数列会循环或前后项相除的结果比较离散,不会逼近一个值. 以上的求解方法可以通过Execl去验算,目前只是发现了这个现象还没有很好证明,至于方程是否有解,也只能从演算的结果去判断。有兴趣的朋友可以一起(159探5246讨5840)。 但在实际应用中,迭代次数m取一定的值就可以得到方程的近似解,在要求不高时,可以很快得到方程的一以下为一个五次的方程,得到对应的数列,数列的前五位全选1,数列生成到12位。下面为数列前项除以后项得到的结果,发现这个结果是不断逼近方程的解X,精确到小数点后面五位为X=0.12497。再向后迭代会产生更精确的解。????+??????+??????+?+???=1 ??=???=?……??=?? ?=??????+????????+?+?????? ?=lim ?→?(??????)0

高次方程及解法

高次方程及解法 江苏省通州高级中学徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1 解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式 ∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程(x+1), x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

特殊的高次方程的解法1

特殊的一元高次方程的解法1 教学目标 知识与技能:理解和掌握二项方程的意义以及二项方程的解法; 过程与方法:学会把一个代数式看作一个整体,掌握可以通过换元转化为二项方程的方程的解法, 经历知识的产生过程,感受自主探究的快乐. 教学重点及难点 重点:掌握二项方程的求解方法. 难点:把“整体”转化为“新”元的二项方程. 教学过程设计 一、 情景引入 1.复习提问 复习:请同学们观察下列方程 (1) 2x+1=0; (2) 0652=++x x ; (3) 03422=-+x x ; (4) 2 3+x =3; (5) 083=-x ; (6) 0162 15 =-x ; (7) 01853=+x ; (8) 0323234=--+-t t t t ;(9) 010324=-+y y . 提问:(1)哪些是整式方程?一元一次方程?一元二次方程? (2)后5个方程与前3个方程有何异同? (3)方程(5)、(6)、(7)有什么共同特点? 二、学习新课 1.概念辨析 (1) 一元高次方程 通过上述练习,师生共同得出一元高次方程的特点:(1)整式方程;(2)只含一个未知数;(3)含未知数的项最高次数大于2次.从而提出一元高次方程的概念,并标题,提出本节课的主要内容,学习简单高次方程及其解法. (2)二项方程:如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程. (3)一般形式: 关于x 的一元n 次二项方程的一般形式为 是正整数) n b a b ax n ,0,0(0≠≠=+ 注 ①n ax =0(a ≠0)是非常特殊的n 次方程,它的根是0. ②这里所涉及的二项方程的次数不超过6次. 2.例题分析 解下列简单的高次方程: (1)83 =x (2)164 =x (3)0162 15 =-x (4)011853 =+x 分析 解一元n 次(n>2)次二项方程,可转化为求一个已知数的n 次方根.如果在实数范围内这个数的n 次方根存在,那么可利用计算器求出这个方程的根或近似值.

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

一元高次方程的求解

一元高次方程的求解 求解一元高次方程曾是数学史上的难题。让你去求解一个一元一次,二次方程方程也许是简单的,但三次,四次或者更高次的方程呢?为了解决这一问题,数学家们奋斗了几个世纪。让我们一起来看一下数学努力的成果。 n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++=① 的求解公式,如二次方程20(0)ax bx c a ++=≠②的求根公式那样。众所周知,方程②的解早在古代的巴比伦、埃及、中国、印度、希腊等国的数学著作中,都有不同的表述方式。一个n 次方程①的求根公式是指,①的根通过其系数经由加、减、乘、除以及乘方、开方的表示式,也称这种情况为方程有根式解。

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

高次方程及解法

高次方程及解法 ?????????江苏省通州高级中学?徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程 求根。“± 解: 1-6=-5-6x-8)÷ x4+2x3-9x2-2x+8=0可分解因式为:(x-1)(x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1; 当(x+1)=0时,有x2=-1;当(x-2)=0时,有x3=2;当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项” 系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出因式P x-Q,即方 Q(P、Q是互质整数),那么,P一定程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P

是首项系数a n 的约数,Q 一定是常数项a 0的约数”,我们用“常数项约数”很快找到求 解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程值为零的约数,就是方程的根。依次用原方程除以带根的因式,逐次降次,直至将高次方程降为二次或一次方程求 解。 432(x+3) +x+1 解:3±1,2±,根据“±1判根法”排除±1,这时,代人原方程验算的只能是P Q =32,或P Q =-32 f (32)=3?=??? ?????-?+??? ???-??? ??3232332323223??? ??-+-22278278=3?0=0 所以原方程中有因式(3X -2)。 (3x 3-2x 2+9x-6)÷(3x-2)=x 2+3 解方程式x 2+3=0x=23i ±, x 1= 23i ,x 2=-23i

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

相关主题
文本预览
相关文档 最新文档