当前位置:文档之家› 小信号分析

小信号分析

小信号分析
小信号分析

小信号模型及环路设计

开关电源的小信号模型及环路设计 文章作者:万山明吴芳 文章类型:设计应用文章加入时间:2004年8月31日22:9 文章出处:电源技术应用 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型

图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得

模电知识点归纳2(完全版).docx

第一章常用半导体器件 1 .什么是杂质半导体?有哪 2 种杂质半导体? 2 .什么是 N 型杂质半导体?在N 型半导体中,掺入高浓度的三价硼元素是否可以改型为 P型半导体? 3 .什么是 P 型杂质半导体?在P 型半导体中,掺入高浓度的五价磷元素是否可以改型为N 型半导体? 4 .什么是 PN 结? PN 结具有什么样的导电性能? 5 .二极管的结构?画出二极管的电路符号,二极管具有什么样的导电性能? 6 .理想二极管的特点? 7 .什么是稳压管?电路符号?正向导通,反向截止,反向击穿分别具有什么样的特点?稳 定电压 Uz 指的是什么?稳定电流Iz 和最大稳定电流分别指的什么? 8 .二极管的主要应用电路有那些?掌握二极管的开关电路,限幅电路和整流电路的分析。 (1 )二极管的开关电路, D 为理想二极管,求U AO (2 )二极管的限幅电路

D 为理想二极管时的输出波形 D 为恒压降模型时的输出波形(3 )二极管的单相半波整流电路,求负载上输出电压的平均值(即所含的直流电压)

(4 )二极管单相桥式全波整流电路,求负载上输出电压的平均值(即所含的直流电压) 如果图中四个二极管全 部反过来接,求负载上输 出电压的平均值? (5)二极管的单相全波整流电容滤波电路,定性画出负载上的输出电压的波 形求负载上输出电压的平均值(即所含的直流电压)

(6)二极管的单相全波整流电容滤波电路,定性画出负载上的输出电压的波 形求负载上输出电压的平均值(即所含的直流电压) 9 .什么是晶体管?它的结构和电路符号?(见教材P29 页),晶体管是一种电流控制器件, 用来表示晶体管的电流控制能力的一个参数是什么?工作在电流放大状态下的电流控 制方程是什么?

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

模拟电子技术基础-知识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 … 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6. 杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。- 7. PN结 * PN结的接触电位差---硅材料约为~,锗材料约为~。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 《 *二极管伏安特性----同PN结。 *正向导通压降------硅管~,锗管~。 *死区电压------硅管,锗管。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

1)图解分析法 [ 该式与伏安特性曲线 的交点叫静态工作点Q。 2) 等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: : 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

开关电源的小信号建模详解

详解:开关电源的小信号建模 开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。本文想重点介绍下主回路的数学建模方法。 首先来介绍下小信号的分析法。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化。这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例, 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个区 域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,

进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。要对一个变换器进行小信号建模,必须满足三个条件。 首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该 远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远 小于开关频率。这个假设称为小纹波假设。其次为了保证这个扰动是在静态工作 点附近,因此有第三个假设条件: 3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小 信号分析法进行建模。对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。 在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成 分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用 的“小纹波假设”在谐振槽路的小信号建模中不再适用。对于谐振变换器,通常 采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号 模型。 对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间 其状态方程为

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

小信号分析法重点笔记讲解

开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化,这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个 区域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。 因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。 要对一个变换器进行小信号建模,必须满足三个条件,首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该

远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远小于开关频率。这个假设称为小纹波假设。 其次为了保证这个扰动是在静态工作点附近,因此有第三个假设条件:3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小信号分析法进行建模。 对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用的“小纹波假设”在谐振槽路的小信号建模中不再适用。 对于谐振变换器,通常采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号模型。对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间。其状态方程为 当开关管S断开时,二极管D导通,忽略二极管D的压降,可得到等效电路

第四章 放大电路基础(2)小信号模型及三种基本电路2016 [兼容模式]

§4.3 放大电路的分析方法 ——小信号模型分析法
思路:在Q点附近,三极管特性曲线可近似看为线性的,把非线性问题转为 线性问题求解。条件:输入为交流小信号(微变信号) 式中各量均是全量,包 一、H参数等效电路: 含直流和交流两部分
1、H参数的导出:
v BE = VBE + vbe
iB = I B + ib iC = I C + ic
iC iB
+
vCE = VCE + vce
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
电气工程学院 苏士美
T
+
输入回路关系 输出回路关系
v BE 2016/3/7
PDF pdfFactory Pro
v CE -
1
https://www.doczj.com/doc/7e8955479.html,

小信号模型分析法
考虑微变关系,对两式取全微分:
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
式中: dvBE = vbe , diB = ib , dvCE = vce , diC = ic
dvBE=
?vBE ?iB
? diB +
vCE
?vBE ?vCE
? dvCE
iB
vbe=hie ib + hre vce
在小信号情况下: H参数,具有不同的 量纲,混合参数
共e下BJT的输入 电阻rbe(欧姆) 电流放大系数β
输出对输入的反作 用μr(无量纲) 输出电导1/rce
?iC diC= ?iB
2016/3/7
PDF pdfFactory Pro
vCE
?iC ? diB + ?vCE
? dvCE
iB
电气工程学院 苏士美
ic=hfe ib + hoe vce
2
https://www.doczj.com/doc/7e8955479.html,

模电总结知识点复习资料大全

模电总结知识点复习资料大全 第一章节半导体二极管的基本原理 一.半导体的基础知识讲解 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6. 杂质半导体的特性定理 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性

二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳

模拟电子技术基础 知识点总结复习过程

模拟电子技术基础知 识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6. 杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳

高频电子线路(知识点整理)

127.02ωωω-=? 高频电子线路重点 第二章 选频网络 一. 基本概念 所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。 电抗(X)=容抗( )+感抗(wL) 阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗) ,电容、电感消失了,相角等于0,谐振频率: ,此时|Z|最小 =R ,电流最大 2.当ww 0时,电压超前电流,相角大于0,X>0阻抗是感性; 3.回路的品质因素数 (除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位 差大小等于外加电压的Q 倍,相位相反 4.回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好 5.失谐△w=w (再加电压的频率)-w 0(回路谐振频率),当w 和w 0很相近时, , ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比 6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±1 7. ,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值 通频带相对值 9.相位特性 Q 越大,相位曲线在w 0处越陡峭 10.能量关系 电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。 回路总瞬时储能 回路一个周期的损耗 , 表示回路或线圈中的损耗。 就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。 11. 电源内阻与负载电阻的影响 Q L 三. 并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z )1(C L ωω- 01 0=-=C L X ωωLC 10=ωCR R L Q 0 01 ωω= =) (j 00)() (j 11ωψωω ωωωe N Q =-+=Q 702ωω=??2 1)(2 =+=ξξN Q f f 0702=??Q f f 1207.0= ?ξωωωωψ arctan arctan 00 -=??? ? ??- ?-=Q ?? ? ??-+≈C L R C L ωω1j ??? ?? -+=C CR ω1j C ω1- + – C V s L R I s C L 2 222222 1cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2 sm 02sm 21π2121π2CQV R V w R ?=??=ωQ CQV V CQ w w w R C L ?=?=+π212 1π2212sm sm 每周期耗能回路储能π2 =Q 所以R R R R Q L S 0 =

开关电源的小信号模型和环路原理

开关电源的小信号模型和环路原理 本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为

L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il')/dt]=(D+d)(Uin+Uin')-(Uo+Uo') (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L(dil'/dt)=DUin'+dUin-Uo' (5) 由图1,又有 iL=C(duc/dt)+Uo/R0 (6) Uo=Uc+ReC(duc/dt) (7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt)) (8)

BJT放大电路的小信号模型简化及输出电阻求解

BJT放大电路的小信号模型简化及输出电阻求解① 宋飞飞(南京医科大学康达学院江苏连云港 222000) 【摘要】在模拟电子技术教学中,BJT的H参数及小信号模型简化过程是学习的基础,但也是最难以理解的内容,该文详细介绍了小信号模型的简化过程。随着大规模集成电路的发展,多级放大电路各个参数的求解至关重要,运用欧姆定律求解放大电路的输出电阻比较麻烦,提出一种等效变换法来求解放大电路的输出电阻,并通过单极放大电路和多级放大电路的例子,证明等效变换求解放大电路的输出电阻是最有效的方法。 【期刊名称】科技资讯 【年(卷),期】2016(014)011 【总页数】4 【关键词】H参数小信号模型欧姆定律等效变换输出电阻 【文献来源】https://https://www.doczj.com/doc/7e8955479.html,/academic-journal-cn_science-technology-information_thesis/0201257423723.html 模拟电子技术不仅是电类各专业的一门技术基础学科,也是生物医学工程、医学影像技术等医学相关专业的基础学科,它主要研究各种半导体器件的性能、电路及应用。而晶体三极管构成的基本放大电路,又是模拟电子技术最基本的、最重要的内容,因此,BJT的H参数及小信号模型的建立和简化,是掌握分析放大电路的基础。在实际的工程应用中,晶体三极管的单极放大倍数有限,大规模集成电路的发展,提高了电路的放大倍数,实现了将微弱的电信号进行放大的作用,那么在设计集成电路时,对多级放大电路各个参数的求解将显得尤为重要,特别是放大电路的输出电阻求解,而欧姆定律法求解输出电阻过于复

(完整版)模拟电子技术基础_知识点总结分析

第一章半导体二极管 1.本征半导体 ?单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。 ?导电能力介于导体和绝缘体之间。 ?特性:光敏、热敏和掺杂特性。 ?本征半导体:纯净的、具有完整晶体结构的半导体。在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。 ◆空穴是半导体中的一种等效+q的载流子。空穴导电的本质是价电子依次填补本征晶体中空位, 使局部显示+q电荷的空位宏观定向运动。 ◆在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为 复合。当热激发和复合相等时,称为载流子处于动态平衡状态。 2.杂质半导体 ?在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 ◆P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。 ◆N型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。 ?杂质半导体的特性 ◆载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。 ◆体电阻:通常把杂质半导体自身的电阻称为体电阻。 ◆在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子 浓度差而产生的扩散电流。 3.PN结 ?在具有完整晶格的P型和N型半导体的物理界面附近,形成一个特殊的薄层(PN结)。 ?PN结中存在由N区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。 ?PN结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。 ◆正偏PN结(P+,N-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。 ◆反偏PN结(P-,N+):在击穿前,只有很小的反向饱和电流Is。 ◆PN结的伏安(曲线)方程: 4.半导体二极管 ?普通的二极管内芯片就是一个PN结,P区引出正电极,N区引出负电极。

PSPICE“交流小信号分析”运用到PWM型开关电源上

计算机仿真在增强器四极铁电源设计中的应用 上海原子核研究所李瑞、卢宋林 摘要:本文分析了增强器磁铁电源的工作原理,讨论了伯德图在动态电源跟踪性能设计上的指 导作用,并将PSPICE“交流小信号分析”运用到PWM型开关电源上,最后仿真得到电源在上 升时间段450ms内全程具有好于0.1%误差的跟踪能力。 关键词:增强器磁铁电源动态跟踪仿真 一.引言 对于将建造的上海同步辐射装置(SSRF),在束流由300MeV至3.5GeV加速过程中,依据物理设计要求,增强器采用动态注入和引出方案,增强器主二、四极磁铁电源的输出电流均为1Hz 周期的电流脉冲,其上升时间为450ms,下降时间小于550ms,对电流的返回曲线不做要求。各主磁铁电流之间保持预定的比率关系,从而保证束流工作点误差值在容许范围内,使加速器具有较高的注入效率,这就要求增强器磁铁电源能够有好的动态性能。增强器二极磁铁电源的给定是采用下装表格的形式,增强器四极磁铁电源以增强器二极磁铁电源的输出电流为参考,要求在电流上升时间450ms内都能够以优于0.1%的精度跟踪二极磁铁电源的输出电流曲线,同时该电源的输出峰值高达500A/380V。负载电感量为72mH,等效电阻为730mΩ,时间常数为0.1S。 对这样大功率、宽范围、高跟踪精度动态开关电源,国内外都没有现成的产品。BNL和APS 实验室均采用的是12相可控硅整流结构,这类电源工作频率低,动态响应慢,可勉强达到0.1%的跟踪精度,国内也没有实验室研制出该类电源。本文结合实际经验、自动控制理论和计算机仿真,对电源的动态跟踪性能进行可行性研究,获得该电源设计的理论依据。 二.增强器四极磁铁电源工作原理简述 图1 增强器磁铁电源原理框图 由原理框图1可知,三相交流电经过三相感应调压器调压、隔离之后,经过三相全波整流、滤波后为斩波器提供直流源。电流给定和电流反馈的误差信号经过放大、校正网络之后,送到工作频率为20kHz的PWM 调制器产生相应的脉宽调制信号,该脉宽信号经过驱动电路放大,控制斩波器功率管的开关,获得频率为20kHz的矩形电压脉冲,经过滤波之后,获得纹波在容许范围内的直流输出。反馈电流的取样点选在负载回路,参见仿真电路图4。该类电源工作频率高,动态响应快,效率可高达0.9以上。

开关电源的小信号模型及环路设计

摘要建立了电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。关键词开关电源;小信号模型;电压模式控制;电流模式控制引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动例如启动过程和负载剧烈变化过程并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用电路,工作在定频控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。范文先生网收集整理1电路电感电流连续时的小信号模型图1为典型的电路,为了简化分析,假定功率开关管和1为理想开关,滤波电感为理想电感电阻为0,电路工作在连续电流模式下。为滤波电容的等效串联电阻,为负载电阻。各状态变量的正方向定义如图1中所示。导通时,对电感列状态方程有=-1断开,1续流导通时,状态方程变为=-2占空比为时,一个开关周期过程中,式1及式2分别持续了和1-的

时间为开关周期,因此,一个周期内电感的平均状态方程为=-+1--=-3稳态时,=0,则=。这说明稳态时输出电压是一个常数,其大小与占空比和输入电压成正比。由于电路各状态变量总是围绕稳态值波动,因此,由式3得[+]=++-+4式4由式3的稳态值加小信号波动值形成。上标为波浪符的量为波动量,为的波动量。式4减式3并略去了两个波动量的乘积项得=+-5由图1,又有=+06=+7式6及式7不论电路工作在哪种状态均成立。由式6及式7可得+=1+8式8的推导中假设这说明稳态时电感电流平均值全部流过负载。对式8中各变量附加小信号波动量得式9减式8得+=1+10将式10进行拉氏变换得=·[1+1+]11=11一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式5,将式5进行拉氏变换得=-12由式11,式12得=[1+2+++1]13=[1+2+++1]·14式13,式14便为电路在电感电流连续时的控制-输出小信号传递函数。2电压模式控制电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。图2中,当电压误差放大器增益较低、带宽很窄时,波形近似直流电平,并有=15=16式16为式15的小信号波动方程。整个电路的环路结构如图3所示。图3没有考虑输入电压的变化,即假设=0。图3中,一般为0及分别为电压给定与电压输出的小信号波动;=,为反馈系数;误差为输出采样值偏离稳态点的波动值,经电压误差放大器放大后,得;为脉冲宽度调制器增益,==1;为主电路增益,==;为输出滤波器传

完整word版,boost小信号建模

3 (30分)Project: Control Loop Design and Simulation of a Boost Converter Fig.1 shows a circuit diagram of a boost converter and the parameters for circuit elements. Fig.1. Boost converter circuit diagram and system parameters 1)Derive the large-signal average model of the boost converter and draw the corresponding circuit diagram. 2)Derive the small-signal model of the boost converter and draw the corresponding circuit diagram. 3)From the small-signal model, derive the control to output transfer function (G vd) and plot its frequency-domain response (Bode plot) with MATLAB ‘bode’ command. 4)Design a controller to compensate the open-loop Bode plot with MATLAB ‘sisotool’ toolbox. Clearly mark the poles and zeros of the designed controller and the phase margin of the compensated system. Write down the controller transfer function. 5)Simulate the performance of the compensated converter system in MATLAB/Simulink with the converter average model and the designed controller. Add disturbances to the input voltage and load power and record the output voltage waveforms. A report containing the above five aspects is required.

开关电源小信号模型

开关电源小信号模型 1Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo(1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo(2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo(3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il’’’’)/dt]=(D+d)(Uin+Uin’’’’)-(Uo+Uo’’’’)(4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D的波动量。式(4)减式(3)并略去了两个波动量的乘积项得L(dil’’’’/dt)=DUin’’’’+dUin-Uo’’’’(5) 由图1,又有 iL=C(duc/dt)+Uo/R0(6) Uo=Uc+ReC(duc/dt)(7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt))(8) 式(8)的推导中假设Re 式(9)减式(8)得

20170704-开关电源中的控制理论基础知识(一)

开关电源中的控制理论基础知识(一) 普高(杭州)科技开发有限公司 张兴柱 博士 传递函数的频域表示---Bode 图 v 图1: 控制理论中最常见单变量系统的传递函数方块图 在控制理论中,一个典型的控制系统往往用它们传递函数的方块图来表示。图1是最常见的一个单变量控制系统的传递函数方块图,它是一个负反馈随动系统。通过取样输出,并与给定进行比较,再将比较后的误差信号进行放大,并有执行机构去调整输出,使之跟随给定。在控制理论分析这种系统的稳定性时,会先将每一个环节用它们的传递函数表示出来,如图1中的取样环节,其传递函数用)(s H 表示,误差放大环节的传递函数用)(s G c 表示,执行机构的传递函数用)(s G 表示,然后绘制出系统的传递函数方块图,最后从这个方块图获得系统的闭环输出与给定的关系。 经推导可得图1这种系统的闭环输出和给定之间的关系为: )()(1)() (1)()()()()(1)()(s H V s T s T s T V s G s G s G s G s H V s G s G v ref ref c c ref c o +=+=+= 由于)(s G c 是需要设计的传递函数,所以闭环后的输出只有在0)(1≠+s T 时才有解。)()()()(s G s G s H s T c =是引入的环增益,它为环内各传递函数的乘积,一个系统能否稳定工作,及稳定后工作的好坏都与环增益)(s T 有关,这是一个非常重要的参数。那么如何用最简单的方法来分析一个已有系统的稳定性,或者来设计一个新系统的补偿参数以保证该系统具有最优越的动态特性呢?这些都会涉及到)(s T ,控制理论已用很大的篇幅介绍了分析和设计)(s T 的工具 --- Bode 图。 )()()(s v s v s G in o =

开关电源(Buck电路)的小信号模型及环路设计

摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路 S导通时,对电感列状态方程有 L=U in-U o (1) S断开,D1续流导通时,状态方程变为 L=-U o (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U in-U o)+(1-D)(-U o)=DU in-U o(3)

相关主题
文本预览
相关文档 最新文档