当前位置:文档之家› Influence of chlorine on methane oxidation

Influence of chlorine on methane oxidation

Influence of chlorine on methane oxidation
Influence of chlorine on methane oxidation

Journal of Environmental Sciences21(2009)1315–1320

In?uence of chlorine on methane oxidation

CHI Yong1,?,WANG Bo1,2,YAN Jianhua1,NI Mingjiang1

1.Institute for Thermal Power Engineering,State Key Laboratory of Clean Energy Utilization,

Zhejiang University,Hangzhou310027,China.E-mail:chiyong@https://www.doczj.com/doc/7e18086255.html,

2.School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai200093,China

Received15November2008;revised03February2009;accepted24February2009

Abstract

Experiments on CH4/Cl2/O2/N2oxidation were conducted in an atmospheric pressure?ow reactor to understand the in?uence of chlorine on hydrocarbon oxidation in hazardous waste incineration.The reaction temperature varied from973to1273K and the chlorine to hydrogen mole ratio(Cl/H)of the inlet mixture varied from0to0.44.The species produced in the reaction were measured online with Fourier transform infrared spectroscopy(FT-IR).It was found that the destruction and removal e?ciency of CH4increased with Cl/H mole ratio.Increasing Cl/H favored COCl2and CO formation and inhibited the CO oxidation process.As Cl/H approached 0.44,the concentrations of CH2Cl2and CH3Cl?rst increased,and then declined.Reaction temperature greatly a?ected the reaction system.Increasing temperatures raised the destruction removal e?ciency of CH4and decreased the concentrations of CH3Cl and CH2Cl2.With a certain ratio of Cl/H,the concentrations of CO and COCl2?rst increased and then declined.The CO and COCl2 concentration peak was observed around1100K and1023K,respectively.When the reaction temperature exceeded1273K,carbon in CH4was mostly converted to CO2.It could be concluded that the presence of chlorine enhanced the destruction of CH4,but resulted in the more toxic incomplete combustion products emission such as COCl2when the reaction temperature was not high enough.

Key words:hazardous waste;incineration;methane;oxidation;chlorine

DOI:10.1016/S1001-0742(08)62420-1

Introduction

Incineration is an attractive technique for waste disposal, because hazardous organics can be destroyed and the mass can be signi?cantly reduced through it.Chlorinat-ed hydrocarbons are important components of hazardous wastes disposed in liquid injection incinerators or rotary kilns(Oppelt,1987;Santoleri,1973;Saxena and Jotshi, 1996).The incineration process of chlorinated hydrocar-bons is usually inhibited by chlorine.The chlorinated hydrocarbons?ames have lower?ame velocity and are more prone to soot formation(Gupta,1986).The inhibition e?ect of chlorine on isolated nonane/tetrachloro-ethane mixture droplet burning velocities was investigated using laminar?ow combustors(Chang et al.,1989;Law,1990; Sorbo and Chang,1992).This inhibition e?ect was fur-ther studied with electrically heated combustion apparatus and high-speed video photography technology(Stry et al.,2003).It was demonstrated that the burning rate for chlorinated droplet exhibited sharp decline toward the pure compound vaporization rate,as the chlorine to hydrogen atom mole ratio(Cl/H)approached a certain value.

High concentration of incomplete combustion products such as CO is also formed in chlorinated hydrocarbons combustion process.In trichloroethylene?ame generated *Corresponding author.E-mail:chiyong@https://www.doczj.com/doc/7e18086255.html, by oxygen enriched air,the concentration of CO was as

high as16%(V/V)(Bose and Senkan,1983).Bissonier et

al.(2002)investigated the combustion of tetrachloroben-

zene,and reported that when the heavily chlorinated

hydrocarbon was completely destructed,only very small

part of carbon was converted into the?nal product CO2.

Thermal oxidation of chloroform was studied by Lou

and Chang(1997).Their results demonstrated that high

concentrations of incomplete combustion products such as

CO were formed even at1400K with equivalence ratio

0.05and residence time2s.The CO oxidation process is

demonstrated to be inhibited by HCl(Ho et al.,1992a;Wei

et al.,2004;Zhang et al.,2005).

Because the presence of chlorine decreases the heat

value and complicates the combustion chemistry,some-

times natural gas is supplied as auxiliary fuel to maintain

the combustion process.Senser et al.(1987)investigated

the chemical species and temperature pro?les of laminar

CH2Cl2/CH4/air?ames.Cicek and Senkan(1993)studied the chemical structures of fuel-rich,premixed laminar

?ames of C6H5Cl/CH4/O2/Ar mixture.The oxidation of trichloroethene with methane was also studied by Wu and Lin(2004).All these works focused on the destruction products and pathways of the chlorinated hydrocarbons. In the incineration chamber,chlorine not only in?uences the destruction of chlorinated hydrocarbons,but also in-

1316CHI Yong et al.V ol.21

teracts with hydrocarbons such as methane in gas phase.Therefore,it is necessary to understand the in?uence of chlorine on hydrocarbons oxidation process.But this has not been su ?ciently studied and published in literature.In the present work,CH 4/Cl 2/O 2/N 2reaction was studied in a ?ow reactor to determine the inhibition e ?ect of chlorine at di ?erent temperatures and Cl /H ratios.The products were analyzed online and the reaction mechanism was discussed.

1Materials and methods

Experiments were performed in an atmospheric pressure ?ow reactor.A schematic of the apparatus is shown in Fig.1.The reactor consisted of a quartz tube 2cm in diameter and 35cm long with capillary inlet and outlet legs.The inlet leg and outlet leg were 2mm in diameter and total length was 50cm.Reactants were heated to the reaction temperature in the inlet leg in very short time,and then entered the reaction zone.The residence time in the inlet and outlet legs was less than 4%of the total residence time in the reaction zone.The reactor was heated in a SK2-4-12tubular electric resistance furnace (Shanghai Y-feng Electrical Furnace Co.,Ltd.,China).

The gases from cylinders were at least 99.999%purity (New Century Co.,China).Methane and chlorine in the cylinders were diluted with nitrogen,and the concentration was 0.5%(mol /mol)for methane and 0.4375%(mol /mol)for chlorine.After metering with mass ?ow controller,complete feed gas mixing occurred in a glass coil.Then the mixture ?owed into the reactor at the ?ow rate of 0–3L /min for N 2and O 2,0–300mL /min for Cl 2and CH 4.The accuracy of all the mass ?ow controllers was ±1%,and the linearity was ±0.5%.(Beijing Seven Star Co.,China).The tube of the glass coil was 12mm in diameter and 100cm long.

The reaction products entered the analyzer through heated polytetra?uoroethylene tube.Quantitative analysis of CH 4,HCl,CO,CO 2,C 2H 4,C 2H 2,CH 3Cl,CH 2Cl 2,CHCl 3,CCl 4,C 2Cl 4,C 2H 2Cl 2and COCl 2in e ?uent could be performed online using a Gasmet Fourier Trans-form Infrared Spectroscopy (FT-IR)gas analyzer (Gasmet Technologies,Finland).The analysis was performed with 500cm path length at 453K sample cell temperature and 1.024×105Pa ambient pressure.The calibrated concentration range for species were as follows:CO:2000–2150cm ?1,0.002%–0.1%(mol /mol);CO 2:2150–2300cm ?1,0.002%–0.1%(mol /mol);CH 4:3000–3300cm ?1,0.002%–0.1%(mol /mol);HCl:2500–2800cm ?1,0.001%–0.1038%(mol /mol);COCl 2:1810–2000cm ?1,0.001%–0.0174%(mol /mol);CH 3Cl:2802–3188cm ?1,0.001%–0.0098%(mol /mol);CH 2Cl 2:1100–1300cm ?1,0.001%–0.02%(mol /mol).The concentration uncertainty was less than 5%.

To obtain good analysis results,the total inlet volumetric ?ow rate of reactants was set constant at 2.0L /min at every reaction temperature.The pressure at the inlet was maintained about 1.0×105Pa by the pump inside the FT-IR sampling component at this ?ow rate,and the pressure in the reactor was kept near 1.024×105Pa accordingly.The reaction temperature varied from 973to 1273K with a step of 50K.The residence time of reactants in the reactor was calculated to be 0.93,0.88,0.8,0.77,0.74,and 0.71s with the increase in temperature.Six tests were performed at every reaction temperature,in which the initial CH 4concentration,O 2concentration and residence time were kept constant.The ?ow rate of Cl 2and N 2was adjusted,and the initial Cl /H varied from 0to 0.44,accordingly.All reactions were under fuel lean conditions.The initial concentrations of reactants in experiments are listed in Table

1.

Fig.1Schematic of the experimental system.

No.9

In?uence of chlorine on methane oxidation

1317

Table 1Initial concentrations of reactants in experiments CH 4(×10?6Cl 2(×10?6O 2(×10?2N 2(×10?2Cl /H

mol /mol)mol /mol)mol /mol)mol /mol)(mol /mol)5000.01089.950.0050087.51089.940.09500175.01089.930.18500262.51089.920.26500350.01089.910.35500

437.5

10

89.90

0.44

2Results

2.1In?uence of reaction temperature

Reaction temperature has important in?uence on prod-uct distributions.For main products include CO,HCl,CO 2and H 2O,at temperatures below 1173K,CH 4was not completely destructed.The absorption peaks of COCl 2at 1837and 850cm ?1were clearly observed in

the experiments.The peaks at 1266,2949,and 2987cm ?1demonstrated the formation of CH 3Cl and CH 2Cl 2.However,other chlorinated species such as chloroform and tetrachloride carbon were not detected in the experiments.The species pro?les are shown in Fig.2.

With a certain Cl /H,the concentrations of these organic incomplete combustion products decrease with increasing reaction temperature due to their instability at high reaction temperature.As shown in Fig.2,CH 3Cl and CH 2Cl 2were completely destructed at 1123K.When the temperature exceeded 1173K,COCl 2was not detected in the outlet gas.

As shown in Fig.3,the destruction and removal e ?cien-cy (DRE)of CH 4increased with temperature increasing from 973to 1173K.The oxidation of CO was relatively slow under HCl inhibition,thus the destruction of CH 4resulted in the CO formation and accumulation.When tem-perature reached 1173K or above,CH 4was completely destructed and the CO oxidation reaction accelerated.

As

Fig.2Species pro?les of reaction product at di ?erent temperatures.

1318CHI Yong et al.V ol.

21

Fig.3Variation of destruction and removal e?ciency(DRE)of CH4 with Cl/H mole ratio at di?erent temperatures.

a result,CO concentration?rst increased as temperature increasing,then declined with the concentration peak around1100K(Fig.4).To completely convert CO to CO2,the reaction temperature should be higher than1273 K.The percentage of carbon in CH4converted to CO2 (x(CO2)/x(CH4)0)increased with temperature(Fig.5).At 973and1023K,less than10%of CH4was oxidized to CO2,whereas the conversion could approach100%at 1273K.The conversion increased sharply when reaction temperature varied from1023to1223K.

2.2In?uence of Cl/H mole ratio

The in?uence of Cl/H mole ratio on methane destruction and removal e?ciency is illustrated in Fig.3.Adding chlorine to the inlet mixture obviously increased the DRE of CH4,especially at low temperatures.For instance,the DRE of CH4varied from34.9%to68.8%when Cl/H mole ratio varied from0to0.44at973K.When the reaction temperature was1173K or above,more than99%of CH4 was destructed and the in?uence of chlorine became mild. The e?ect of Cl/H mole ratio on organic incomplete combustion products formation is more complicated.For COCl2,the concentration steadily increased with Cl/H mole ratio,as summarized in Fig.6a.The variations of CH3Cl and CH2Cl2mole fraction with Cl/H mole ratio are shown in Figs.6b and6c.The concentrations of both chlorinated methane exhibited a peak and the peak move to low Cl/H region as temperature increasing,especially for CH3Cl.This demonstrated the further destruction of these species at higher chorine concentration or temperature. Chlorine in the system reacted with carbonaceous radicals to form CH3Cl and CH2Cl2.At the same time,CH3Cl and CH2Cl2reacted with Cl2or Cl,which led to a further destruction of these intermediate species.

For CO and CO2,adding chlorine to the inlet mixture enhanced CH4destruction and CO formation,whereas inhibited the CO oxidation reactions.As shown in Figs.4 and5,these factors led to an increase in CO concentration with Cl/H and temperature below1073K.At temperatures above1173K,CH4was completely destructed and CO was produced rapidly.The reaction was dominated by the inhibition of CO oxidation reactions.Therefore,the CO concentration also increases with Cl/H ratio.However,

it Fig.4Variation of CO concentration with temperature at di?erent Cl/H mole

ratios.

Fig.5CH4conversion at di?erent temperatures and Cl/H mole ratios. declined at high temperature.In the temperature range 973–1273K,CO2concentration declined with increasing Cl/H ratio at a certain reaction temperature.

2.3Formation mechanism of intermediate species

On the basis of the experimental results,the main reaction pathways were qualitatively analyzed as follows. According to the work by Warnatz(1984),the initiation steps of CH4destruction in methane/air?ame are:

CH4+(H,O,OH)===CH3+(H2,OH,H2O)(1) when chlorine is added to the system,chlorine radical can be generated through unimolecular dissociation or the reaction with H.

Cl2===Cl+Cl(2) Cl2+H===HCl+Cl(3) Then the reaction between Cl and CH4enhances the destruction of CH4:

CH4+Cl===HCl+CH3(4) CH3Cl is mainly produced through Reactions(5)and(6): CH3+Cl===CH3Cl(5) CH3+Cl2===CH3Cl+Cl(6) As demonstrated by Ho et al.(1992b),H on CH3Cl is more likely to be eliminated than Cl through Reaction(7)

No.9In?uence of chlorine on methane oxidation 1319

for lower activation energy:

CH 3Cl +(O 2,OH,O,Cl)=

==CH 2Cl +(HO 2,H 2O,OH,HCl)

(7)

The CH 2Cl radical reacts with Cl or Cl 2to form CH 2Cl 2:CH 2Cl +Cl ===CH 2Cl 2

(8)

CH 2Cl +Cl 2=

==CH 2Cl 2+Cl (9)

According to the work by Sgro et al .(2000),CH 2Cl 2is

mainly converted to CHCl 2through bimolecular reactions in fuel lean experimental conditions (Reaction (10)):CH 2Cl 2+(O 2,OH,O,Cl)=

==CHCl 2+(HO 2,H 2O,OH,HCl)

(10)

The CHCl 2radical reacts with Cl or Cl 2to form CHCl 3:CHCl 2+Cl ===CHCl 3

(11)

CHCl 2+Cl 2=

==CHCl 3+Cl (12)

CHCl 3is the least stable one of chloromethanes (Taylor et al .,1991).It is rapidly dissociated:CHCl 3===CCl 2+HCl

(13)

Then COCl 2is formed through this reaction:CCl 2+O 2===COCl 2+O

(14)It has been demonstrated that COCl 2can only be formed from a structure with two Cl which are already bonded to a C atom (Thomson et al .,1994).If the reaction temperature and initial concentration of CH 4are constant,higher Cl /H favors the CCl 2formation and leads to a higher concentration of COCl 2.At the same Cl /H and initial concentration of CH 4,increasing temperature enhances CHCl 3dissociation (Reaction (13))and COCl 2formation (Reaction (14)).Meanwhile,the COCl 2consumption reac-tions also accelerate.COCl 2===CO +Cl 2

(15)

COCl 2+H =

==COCl +HCl (16)

The equilibrium between these two e ?ects leads to the COCl 2concentration peak at 1023K.CO in the reaction system is mostly oxidized to CO 2by OH.CO +OH ===CO 2+H

(17)

The chlorine inhibition e ?ect on CO oxidation is mainly due to the reaction between HCl and OH,which decreases the OH concentration (Ho et al .,1992).HCl +OH ===Cl +H 2O

(18)

When reaction temperature is elevated,the rate constant of Reaction (17)increases.The reaction rate between H and O 2to form OH increases rapidly.The reaction between HCl and O also abates the OH consumption:HCl +O ===Cl +OH

(19)

As a result,the e ?ect of chlorine inhibition on CO oxidation is reduced.Kinetic modeling of this reaction system with detailed reaction mechanism to obtain further understanding of the inhibition mechanism is going on.2.4Hints for chlorinated waste incineration

From the experimental results,some hints for chlo-rinated waste incineration can be drawn.In hazardous waste incinerators,stable combustion of highly chlorinated hydrocarbons is always maintained by adding auxiliary fuel.Auxiliary fuel such as methane will promote highly chlorinated hydrocarbons destruction,and the chlorine in ?ame will promote hydrocarbons destruction as well.However,the chlorine will inhibit CO oxidation and re-act with carbonaceous species to form toxic incomplete combustion products.It will be important to set suitable incineration temperature and chlorinated waste injection position to eliminate toxic intermediate species https://www.doczj.com/doc/7e18086255.html,pared with directly mixing the chlorinated hydrocar-bons and auxiliary fuels before combustion,the pollutants emission may be lower if the auxiliary fuel is combusted ?rst and then the chlorinated hydrocarbons are injected into the high temperature ?ue gas,which means a two-stage combustion mode.More work is needed to verify this supposition.

3Discussion and conclusions

Experimental study on CH 4/Cl 2/O 2/N 2oxidation was conducted in ?ow reactor.Products pro?les were measured online with FT-IR.It is shown that the presence of chlorine enhances the destruction of methane,but it will leads to more toxic incomplete combustion products emission such as COCl 2.The destruction and removal e ?ciency of CH 4increases with Cl /H mole ratio at a constant

temperature.

Fig.6Variation of COCl 2(a),CH 3Cl (b),and CH 2Cl 2(c)concentration with Cl /H mole ratio at di ?erent temperatures.

1320CHI Yong et al.V ol.21

Increasing Cl/H also favors COCl2and CO formation and inhibits the CO oxidation process.As Cl/H approaching 0.44,the concentrations of CH2Cl2and CH3Cl?rst in-crease,and then decline.The concentration peak moves to the low Cl/H region with increasing temperature.This phe-nomenon is due to the instability and further destruction of these organic species through reactions with chlorine. Reaction temperature has signi?cant e?ect on this re-action system.As temperature increases,the destruction and removal e?ciency of methane increases,and the concentration of organic incomplete combustion products decreases,including CH3Cl and CH2Cl2.With a certain Cl/H ratio,the concentrations of CO and COCl2?rst increase and then decline.The CO concentrations peak is around1100K,and the COCl2concentration peak is around1023K.At temperatures below1100K,the oxidation of CO is relatively slow,and higher temperature favors methane oxidation and CO accumulation.At1123K or above,methane is completely destructed.The CO con-centration gradually decreases with increasing temperature because the chlorine inhibition e?ect is abated.When the reaction temperature exceeds1273K,carbon in methane is mostly converted to CO2.

Finally,the reaction pathways are qualitatively ana-lyzed.These experimental data can be used for detailed kinetic modeling of this reaction system to obtain more comprehensive understanding of the reaction mechanism. References

Bissonier A,Chauveau C,Delfau J L,V ovelle C,2002.An experimental investigation of the combustion of technical tetrachlorobenzene in a laboratory scale https://www.doczj.com/doc/7e18086255.html,-bustion and Flame,129(3):239–252.

Bose D,Senkan S M,1983.On the combustion of chlorinated hy-drocarbons https://www.doczj.com/doc/7e18086255.html,bustion Science and Technology,35(1-4):187–202.

Chang D P Y,Sorbo N W,Law C K,Steeper R R,1989.Rela-tionships between laboratory and pilot-scale combustion of some chlorinated hydrocarbons.Environmental Progress, 8(3):152–162.

Cicek B,Senkan S M,1993.Chemical structure of fuel-rich, premixed,laminar?ames of C6H5Cl/CH4/O2/Ar mixtures.

Combustion Science and Technology,91:53–72.

Gupta A K,https://www.doczj.com/doc/7e18086255.html,bustion of chlorinated hydrocarbons.

Chemical Engineering Communications,41:1–21.

Ho W P,Barat R B,Bozzelli J W,1992a.Thermal reactions of CH2Cl2in H2/O2mixtures:implications for chlorine inhi-bition of CO conversion to https://www.doczj.com/doc/7e18086255.html,bustion and Flame,

88:265–295.

Ho W P,Yu Q R,Bozzelli W,1992b.Kinetic study on pyrolysis and oxidation of CH3Cl in Ar/H2/https://www.doczj.com/doc/7e18086255.html,bustion Science and Technology,85(1):23–63.

Law C K,1990.Consideration of droplet processes in liquid hazardous waste https://www.doczj.com/doc/7e18086255.html,bustion Science and Technology,74(1-6):1–15.

Lou J C,Chang Y S,1997.Thermal oxidation of chloroform.

Combustion and Flame,109(1-2):188–197.

Oppelt E T,1987.Incineration of hazardous waste:A critical review.Journal of the Air Pollution Control Association, 37(5):556–586.

Santoleri J J,1973.Chlorinated hydrocarbon waste disposal and recovery systems.Chemical Engineering Progress,69(1): 68–74.

Saxena S C,Jotshi C K,1996.Management and combustion of hazardous wastes.Progress in Energy and Combustion Science,22:401–425.

Senser D W,Cundy V A,Morse J S,1987.Chemical species and temperature pro?les of laminar dichloromethane-methane-air?ames I:Variation of chlorine/hydrogen loading.

Combustion Science and Technology,51(4):209–233. Sgro L A,Koshland C P,Lucas D,Sawyer R F,2000.Post-?ame reaction chemistry of dichlo-romethane:Variations of equivalence ratio and https://www.doczj.com/doc/7e18086255.html,bustion and Flame, 20(4):492–503.

Sorbo N W,Chang D P Y,1992.Observations of chlorinated hydrocarbon droplet gasi?https://www.doczj.com/doc/7e18086255.html,bustion Science and Technology,85:419–435.

Stry W J,Felske J D,Ashgriz N,2003.Droplet combustion of chlorinated benzenes,alkanes and their mixtures in a dry atmosphere.Environmental Engineering Science,20(2): 125–133.

Taylor P H,Dellinger B,Tirey D A,1991.Oxidative pyrolysis of CH2Cl2,CHCl3,and CCl4-I:incineration implications.

International Journal of Chemical Kinetics,23(12):1051–1074.

Thomson M J,Higgins B S,Lucas D,Koshland C P,Sawyer R F,1994.Phosgene formation from1,1,1-trichloroethane https://www.doczj.com/doc/7e18086255.html,bustion and Flame,98(4):350–360. Warnatz J,1984.Critical survey of elementary reaction rate co-e?cients in the C/H/O system.In:Combustion Chemistry.

(Gardiner W C,eds.).New York:Springer-Verlag.197–360. Wei X L,Schnell U,Han X,Hein K R G,2004.Interactions of CO,HCl,and SO x in pulverised coal?ames.Fuel,83: 1227–1233.

Wu Y P G,Lin Y F,2004.The oxidation of trichloroethene with methane:experiment and kinetic https://www.doczj.com/doc/7e18086255.html,bustion and Flame,137:376–402.

Zhang J W,Wei X L,Sheng H Z,Zhang Y,2005.In?uence of halogen on CO oxidation and NO formation in combustion.

Journal of Engineering Thermophysics,26:261–264.

对羟基苯甲醛

对羟基苯甲醛的合成技术 [摘要]本文介绍了对羟基苯甲醛的一些性质及应用,并讲述其应用发展。叙述了对羟基苯甲醛的合成方法与技术,并对方法的优缺点作了简要对比。其合成方法较多,以苯酚、对氨基苯甲醛、对硝基甲苯和对甲酚为原料均可合成对羟基苯甲醛。本文对其合成方法进行了探讨,当反应时间为6h,碱用量140g,反应压力19.6~24.5Pa为最佳。 [关键词]对羟基苯甲醛;应用;发展;合成; Synthesis of p-hydroxybenzaldehyde Abstract:This paper introduces some properties of hydroxyl benzene formaldehyde and its application, and describes its application and development. Narrated on the synthesis methods and technology, and the advantages and disadvantages of the methods are compared briefly. The synthesis method is more, phenol, amino benzaldehyde, p-nitrotoluene and p-cresol as raw material can be the synthesis of p-hydroxybenzaldehyde. In this paper, the synthesis method is discussed, when the reaction time was 6h,140g alkali dosage, reaction pressure is 19.6 ~24.5Pa is the best. Key words:P-hydroxybenzaldehyde; application; development; synthesis 一、绪论 1.1 对羟基苯甲醛的主要性质 对羟基苯甲醛又称对甲醛苯酚,4一羟基苯甲醛(简称PHBA),分子式CH6O2,为白色结晶性粉末,有芳香味。微溶于冷水,易溶于热水、醇和醚。熔点116℃,密度:1.129。在常压下升华而不分解。半数致死量(小鼠,腹腔)500mg/kg。有刺激性。水蒸气中不挥发。与氯化铁作用生成淡紫色;与钠汞齐作用生成4,4′-二羟基苯偶姻;与锌和盐酸作用生成对甲苯酚。它以苷的形式存在于多种植物中,经水解,从水中得针状体;或由苯酚与氯仿及吡啶反应获得。其合成方法较多,以苯酚、对氨基苯甲醛、对硝基甲苯和对甲酚为原料均可合成对羟基苯甲醛。以其为原料可以合成香兰素、丁香醛、茴香醇、茴香醛和覆盆子酮等香料。在医药工业中用于合成羟氨苄胺嘧啶、三甲氧基苯甲醛、对羟基苯甲醇葡萄糖、对羟基甘氨酸、祛痰药杜鹃素、人造天麻、艾司洛尔等。还用于杀菌剂、照像乳化剂、

氯甲烷化学品安全技术说明书

氯甲烷化学品安全技术 说明书 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

化学品安全技术说明书 产品名称:氯甲烷按照GB/T16483、GB/T17519编制 修订日期:SDS 编号:JSACSDS-09 最初编制日期:版本号: 第1部分:化学品及企业标识 化学品中文名称:氯甲烷 化学品英文名称:Chloromethane; Methyl chloride 企业标识:销售单位:南通腾旭化工有限公司 地址:江苏省南通市如东县岔河镇交通东路60号 商务电话:邮编:226403 传真号码:0513-电子邮件地址: 应急电话:(24小时) 推荐及限制用途:用作制冷剂、甲基化剂,用于生产、四甲基铅、甲基纤维素等,少量用于生产季铵化合物、农药,在异丁橡胶生产中用作溶剂 还用于有机合成。 第2部分:危险性概述 应急综述: 极易燃气体,与空气混合能形成爆炸性混合物,遇火花或高热能引起燃烧爆炸,并生成剧毒的光气。接触铝及其合金能生成自燃性的铝化合物。 GHS 危险性类别: 易燃气体:类别1 压力下气体:液化气体特异性靶器官系统 毒性反复接触:类别 2 GHS 标签要素: 象形图: 警示词:危险 危险性说明:极易燃气体;含压力下气体,如加热可爆炸;长期或反复接触可能引起器官损害。 防范说明 预防措 施: —远离热源、火花、明火、热表面。禁止吸烟。 —避免吸入气体。 事故响应: —泄漏气体着火:切勿灭火,除非能安全地切断泄漏源。如果没有危险,消除一切点火源。灭火剂:雾状水、泡沫、二氧化碳。 —如吸入:将患者转移到空气新鲜处,休息,保持利于呼吸的体位。就医。 —如果感觉不适,就医。 1 / 7

对羟基苯甲醛

对羟基苯甲醛对羟基苯甲醛分子式:C7H6O2 分子量:122.12 分子结构图: °H刺激性物品 风险术语R36/37/38lrritati ng to eyes, respiratory system and skin. 刺激眼睛、呼吸系统和皮肤

对羟基苯甲醛的性质 外观性状红棕色粉末 熔点114-118 °C 沸点191 ° 50mm 密度1,129 g/cm 3 闪点174 °C 水溶性13 g/L (30 C) 溶解性易溶于乙醇;乙醚;丙酮;乙酸乙酯, 稍溶于水(在30.5 C水中溶解度为 1.388g/100ml ),溶于苯(在65 C苯中溶解度为3.68g/ml )。 对羟基苯甲醛的用途 【用途一】用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品 【用途二】用作医药、香料、农药的重要中间体,用于合成羟氨苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品 【用途三】对羟基苯甲醛用于医药及有机合物的合成 【用途四】该品为医药、香料、液晶的中间体。对羟基苯甲醛用于生产抗菌增效剂TMP (甲氧苄氨嘧

啶)、羟氨苄青霉素、羟氨苄头孢霉素、人造天麻、杜鹃素、苯扎贝特、艾司洛尔;用于生产香料茴香醛、香兰素、乙基香兰素、覆盆子酮。 【用途五】对羟基苯甲醛『123-08-0』在医药工业中,主要用合成羟氨苄青霉素(阿莫西林)、抗菌增效剂甲甲氧苄胺嘧啶(TMP)、3,4,5-三甲氧基甲醛、对羟基苯酐氨酸、羟氨苄头抱霉素、人造天麻、杜鹃素、艾司洛尔等;在香料工业中用于合成香兰素、乙基香兰素、洋茉莉醛、丁香醛、茴香醛和覆盆子酮等香料;在农药中主要用作除草剂溴苯腈和羟敌草腈的合成;在化工中主要用于合成对羟基苯甲酸、对羟基甲酸苄酯、醋酸对羟基苯酚酯;在国外还用于生产杀菌剂、照相乳化剂、镀镍光泽剂、液晶等. 【用途六】用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品。高分子聚合物和制药原料。 应用领域 用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品 对羟基苯甲醛安全说明书(MSDS)

氯甲烷化学品安全系统技术说明书

化学品安全技术说明书 产品名称:氯甲烷按照 GB/T16483、GB/T17519 编制修订日期:2017.2 SDS 编号:JSACSDS-09 最初编制日期:2016.11 版本号:3.0 第 1 部分:化学品及企业标识 化学品中文名称:氯甲烷 化学品英文名称:Chloromethane; Methyl chloride 企业标识:销售单位:腾旭化工 地址:省市如东县岔河镇交通东路60号 商务:邮编:226403 传真:09 电子地址:2220206777qq. 应急:(24 小时) 推荐及限制用途:用作制冷剂、甲基化剂,用于生产甲基氯硅烷、四甲基铅、甲基纤维素等,少量用于生产季铵化合物、农药,在异丁橡胶生产中用作溶剂 还用于有机合成。 第 2 部分:危险性概述 应急综述: 极易燃气体,与空气混合能形成爆炸性混合物,遇火花或高热能引起燃烧爆炸,并生成剧毒的光气。接触铝及其合金能生成自燃性的铝化合物。 GHS 危险性类别:

易燃气体:类别 1 压力下气体:液化气体特异性靶器官系统 毒性反复接触:类别 2 GHS 标签要素: 象形图: 警示词:危险 危险性说明:极易燃气体;含压力下气体,如加热可爆炸;长期或反复接触可能引起器官损害。 防说明预 防措施: —远离热源、火花、明火、热表面。禁止吸烟。 —避免吸入气体。 事故响应: —泄漏气体着火:切勿灭火,除非能安全地切断泄漏源。如果没有危险,消除一切点火源。灭火剂:雾状水、泡沫、二氧化碳。 —如吸入:将患者转移到空气新鲜处,休息,保持利于呼吸的体位。就医。 —如果感觉不适,就医。 1 / 7

化学品安全技术说明书 产品名称:氯甲烷修订日期:2017.2 SDS 编号:JSACSDS-09 版本号:3.0 安全储存: —在通风良好处储存。 —避免日照。 废弃处置: —用控制焚烧法处置,焚烧炉排出的卤化氢通过酸洗涤器除去。 物理化学危险: 极易燃气体,比空气重,与空气混合能形成爆炸性混合物,可能沿地面流动,可能造成远处着火。可能积聚在低层空间,造成缺氧。遇火花或高热能引起燃烧爆炸,燃烧时,该物质分解生成含有氯化氢和光气的剧毒和腐蚀性烟雾。接触铝及其合金能生成自燃性的铝化合物。与铝粉、锌粉、三氯化铝和乙烯发生反应,有着火和爆炸的危险。有湿气存在时,浸蚀许多金属。 健康危害: 本品有刺激和麻醉作用,严重损伤中枢神经系统,亦能损害肝、肾和睾丸。 急性中毒:轻度者有头痛、眩晕、恶心、呕吐、视力模糊、步态蹒跚、精神错乱等。严重中毒时,可出现谵妄、躁动、抽搐、震颤、视力障碍、昏迷,呼气中有酮体味。尿中检出甲酸盐和酮体有助于诊断。皮肤接触可因氯甲烷在体表迅速蒸发而致冻伤。 慢性影响:低浓度长期接触,可发生困倦、嗜睡、头痛、感觉异常、情绪不稳等症状,较重者有步态蹒跚、视力障碍及震颤等症状。 环境危害: 对环境有危害,对水体和大气可造成污染,对水生生物应给予特别注意。

3,4-二羟基苯甲醛改性的UiO-66-NH2

毕业论文 论文题目(中文)3,4-二羟基苯甲醛改性的UiO-66-NH2 对U(VI)的吸附行为研究 论文题目(外文)Adsorption of U(VI) on 3,4-dihydroxy benzaldehyde modified UiO-66-NH2

3,4-二羟基苯甲醛改性的UiO-66-NH2对U(VI)的吸附性能 研究 摘要 本文通过在120℃条件下在DMF中回流用ZrCl4和2-氨基对苯二甲酸合成了金属-有机骨架化合物UiO-66-NH2,再在氮气保护下在乙醇中回流用3,4-二羟基苯甲醛对UiO-66-NH2进行了功能化修饰,获得了UiO-66-OHBA。通过红外光谱、元素分析以及X射线粉末衍射实验证明了3,4-二羟基苯甲醛成功修饰了UiO-66-NH2,且修饰后获得的UiO-66-OHBA骨架结构并未发生改变。以UiO-66-NH2和UiO-66-OHBA为吸附剂吸附U(VI)并研究了pH、固液比、反应温度、离子强度、平衡时间等对吸附行为的影响,并对结果进行了分析。 实验结果表明UiO-66-NH2和UiO-66-OHBA均对U(VI)表现出比较良好的吸附能力,并且经修饰后的吸附剂吸附性能得到了提升。pH值对吸附性能有较大影响,两者均在pH为4.5处吸附速率最大。温度对UiO-66-OHBA吸附性能的影响要小于UiO-66-NH2,它们的吸附模型与Freundlich等温吸附模型吻合良好。 关键词:MOFs;UiO-66-NH2;3,4-二羟基苯甲醛;吸附;铀酰

ADSORPTION OF U(VI) ON 3,4-DIHYDROXY BENZALDEHYDE MODIFIED UiO-66-NH2 Abstract Using ZrCl4and 2-aminoterephthalic acid,the metal-organic frameworks UiO-66-NH2was synthesized in refluxing DMF at 120℃.Then under the protection of nitrogen UiO-66-NH2 was functionally modified by 3,4-dihydroxy benzaldehyde in refluxing ethanol,yielding UiO-66-OHBA.The obtained samples were characterized by powder X-ray diffraction,FT-IR and elemental analysis,the results showed that the modification was successful.We studied how different pH value,solid-to-liquid ratio,ionic strength,temperature and time would influence the adsorption effect of uranyl from aqueous solution by UiO-66-NH2 and UiO-66-OHBA. According to the experiment,both UiO-66-NH2and UiO-66-OHBA had good adsorption capacity for U(VI),and the adsorption performance of UiO-66-OHBA was better than UiO-66-NH2.The pH value had a great influence on the adsorption performance,both of them reached the largest adsorption rate at ph 4.5.The effect of temperature on the adsorption capacity of UiO-66-OHBA was less than UiO-66-NH2,and the adsorption model was in good agreement with the Freundlich isotherm adsorption model. Key words: MOFs; UiO-66-NH2; 3,4-dihydroxy benzaldehyde;absorption;uranyl

洛丁新(盐酸贝那普利片)

洛丁新(盐酸贝那普利片) 【药品名称】 商品名称:洛丁新 通用名称:盐酸贝那普利片 英文名称:Benazepril Hydrochloride T ablets 【成份】 本品化学名称:3-[(1-乙氧羰基-3-苯基-(1S)-丙基)氨基]2,3,4,5-四氢-2-氧代-1H-1-(3S)苯并氮杂卓-1-乙酸盐酸盐。 【适应症】 1.高血压(可单独应用或与其他降压药如利尿药合用) 2.心功能不全(可单独应用或与强心药利尿药同用) 【用法用量】 1 成人用量(1)降压:未服用利尿药者,开始推荐剂量为口服10mg,每天1次;已服用利尿药者(严重和恶性高血压除外),用本品前应停用利尿药2-3天,小剂量给药,在观察下小心增加剂量。如每天给药1次不能满意控制血压,可增加剂量或分2次给药,维持量可达20mg-40mg/天。肾功能不良或有水、钠缺失者开始用5mg每天1次。 2 心功能不全:开始推荐剂量为口服5mg,每天1次,首次服药需监测血压。维持量可用5mg-10mg每天1次。 【不良反应】 1 常见的有:头痛、头晕、疲乏、嗜睡、恶心、咳嗽。最常见的为头痛和咳嗽。 2 少见的有:症状性低血压、体位性低血压、晕厥、心悸、周围性水肿、皮疹、皮炎、便秘、胃炎、焦虑、失眠、感觉异常、关节痛、肌痛、哮喘等。血管神经性水肿罕见。

【禁忌】 1 对苯那普利或其他血管紧张素转换酶抑制剂过敏者。 2 有血管神经性水肿史者。 3 孤立肾、移植肾、双侧肾动脉狭窄而肾功能减退者。 【注意事项】 1 血管神经性水肿:服用本品曾发生过唇或面部水肿,如出现该症状,应立即停药,监护患者,直到水肿消失。声门、舌、喉部水肿可能引起气道阻塞,应停药,并立即进行适当治疗,如:皮下注射1:1000肾上腺素溶液(0.3ml~0.5ml)。 2 低血压:严重缺钠的血容量不足者服用本品时可能发生低血压(如接受大量利尿药或透析治疗者)。开始服用本品前数天应停用利尿药或采取其他措施补充体液。对有可能发生严重低血压者(如心功能不全病人),服用首剂后应严密监护,直到血压稳定。如果发生低血压,应采取卧位,必要时静脉滴注生理盐水。 3 粒细胞减少:自身免疫性疾病及肾功能不全者出现白细胞或粒细胞减少机会增多。对肾功能不全或有白细胞减少者,最初3个月内每2周检查白细胞计数及分类1次,以后定期检查。 4 肾功能不全:少数患者服用本品后可出现暂时性血尿素氮、肌酐升高,停用本品和/或利尿药,即可恢复。对肾功能不全者,在治疗前几周要密切监测肾功能,以后应定期检查肾功能。用本品时如肌酐清除率 【特殊人群用药】 儿童注意事项: 尚无本品在儿童中的安全性和有效性研究资料。 妊娠与哺乳期注意事项: 妊娠期妇女不宜应用本品(见【禁忌】)。 1.孕妇 孕妇服用ACE抑制剂将有可能导致胎儿或新生儿致病或死亡。在全世界的资料文献中已经

三氯甲烷-安全技术说明书

化学品安全技术说明书 说明书目录 第一部分化学品名称第九部分理化特性 第二部分成分/组成信息第十部分稳定性和反应活性 第三部分危险性概述第十一部分毒理学资料 第四部分急救措施第十二部分生态学资料 第五部分消防措施第十三部分废弃处置 第六部分泄漏应急处理第十四部分运输信息 第七部分操作处置与储存第十五部分法规信息 第八部分接触控制/个体防护第十六部分其他信息 第一部分:化学品名称 化学品中文名称:三氯甲烷;氯仿 化学品英文名称: Trichloromethane;Chloroform 中文俗名或商品名: Synonyms: CAS No.: 67-66-3 分子式: CHCl3 分子量: 第二部分:成分/组成信息 纯化学品混合物 化学品名称:三氯甲烷;氯仿 有害物成分含量 CAS No. 第三部分:危险性概述 危险性类别:第6.1类毒害品 侵入途径:吸入食入经皮吸收 健康危害:主要作用于中枢神经系统,具有麻醉作用,对肝,肾有损害作用。吸入或经皮肤吸收引起急性中毒,初期有头痛、头晕、恶心、呕吐、兴奋、皮肤粘膜有刺激症状,以后呈现精神紊乱、呼吸表浅、反射消失、昏迷等,重者发生呼吸麻痹、心室纤维性颤动、并可有肝、肾损害。误服中毒时,胃有烧灼感、伴恶心、呕吐、腹痛、腹泻。以后出现麻醉症状。慢性中毒:主要引起肝脏损害,此外还有消化不良、乏力、头痛、失眠等症状,少数有肾损害。 环境危害: 燃爆危险: 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水冲洗。 吸入:迅速脱离现场至空气新鲜处。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。

羟基苯甲醛的精细合成工艺研究

羟基苯甲醛的精细合成工艺研究 通过对羟基苯甲醛的合成工艺研究,能够进一步的确定羟基苯甲醛的工艺条件。以工艺生产开展状况特点进行试验,能够对羟基苯甲醛中间产物生成以及整体工艺效果进行确认。本文对羟基苯甲醛的精细合成工艺进行研究。 标签:羟基苯甲醛;精细;合成工艺 对羟基苯甲醛的研究需要确认基本特点,能够根据化工生产的需求进一步的实现精细化合成效果的提升。对于羟基苯甲醛的研究是化工生产工艺水平提升的关键。 1羟基苯甲醛特点 羟基苯甲醛有3种异构体,即邻羟基苯甲醛、对羟基苯甲醛和间羟基苯甲醛,对羟基苯甲醛又名对甲醛苯酚。从水中析出者为白色至浅黄色针状结晶。有芳香气味。在常压下可升华而不分解。分子量122.12。熔点115~116℃。相对密度1.129 (130/4℃)。折射率1.5705(130℃)。微溶于水和苯,易溶于乙醇、乙醚、丙酮、乙酸乙酯,30.5℃时在水中的溶解度为1.38,65℃时在苯中的溶解度为3.68。小鼠腹腔注射LD50500mg/kg。对羟基苯甲醛是医药、香料、液晶的重要中间体,与硫酸二甲酯反应可制得茴香醛,与乙醛作用可制得对羟基肉桂醛,进一步氧化可制得肉桂酸,本品直接氧化可制对羟基苯甲酸,还原制对羟基苯甲醇等,均可用作香料;医药中间体;液晶原料;其他有机合成中间体,用途较广泛。间羟基苯甲醛除直接用作香料外,还用制作其他香料的中间体;医药原料,生产盐酸脱羟肾上腺素、肾上腺素、奎宁等;镀镍光亮剂;化学分析试剂(糖定量分析);照相乳剂及杀菌剂等。 邻羟基苯甲醛又称水杨醛,无色透明油状液体,有特殊气味及苦杏仁味,化学性质活泼,可发生取代、缩合、氧化、维提希(Wittig)反应等。与硫酸作用呈桔红色,与金属离子可形成有色螯合物。遇三氯化铁溶液显紫色。可被还原成水杨醇。主要用于生产香料“香豆素”及“二氢香豆素”的原料,配制紫罗兰香料,还可用作杀菌剂。 对羟基苯甲醛制备方法:由苯酚为原料,使氯仿与苯酚钠盐在60℃反应。或由苯酚与三氯乙醛在碳酸钾催化下缩合,再经甲醇钠分解。还可在三氯化铝催化剂下将干燥氯化氢通入苯酚与氢氰酸的混合液,反应后再在冰水中分解制取对羟基苯甲醛。 2实验室制备对羟基苯甲醛方法 以苯酚和三氯甲烷为原料,在碱性溶液中加热,进行Reimer-Tiemann反应,同时生成对羟基苯甲醛及少量水杨醛(邻羟基苯甲醛)。在50 mL烧瓶中加入e (2 g,8 mmo1)和a(o.94 g,8 mmo|),以及20 mL乙醇,滴加几滴哌啶,回

盐酸贝那普利片说明书

盐酸贝那普利片 药品名称: 通用名称:盐酸贝那普利片 英文名称:Benazepril Hydrochloride Tablets 商品名称:洛汀新 成份: 活性成份盐酸贝那普利 适应症: 各期高血压 充血性心力衰竭 作为对洋地黄和/或利尿剂反应不佳的充血性心力衰竭病人(NYHA分级Ⅱ-Ⅳ)的辅助治疗。 规格: 5mg,10mg 用法用量: 高血压: 未用利尿剂者开始治疗时每日推荐剂量为10mg,每天一次,若疗效不佳,可加至每日20mg。必须根据血压的反应来对使用剂量进行调整,通常应该每隔1至2周调整一次。 对某些患者,在给药间隔末期,降压作用可能减弱,此类病人,每日总的剂量应均分成两次服用,或加用利尿剂。本品治疗高血压的每日最大推荐剂量为40mg.一次或均分为两次服用。 若单独服用本品血压下降幅度不满意,可加用另一种降压药,如:噻嗪类利尿剂,钙拮抗剂或β-阻滞剂(先从小剂量开始)。如果先前一直在使用利尿剂进行治疗,则在洛汀新治疗开始之前应该暂停2至3天的利尿剂的治疗,如果需要,可以在这之后继续。如果无法停止利尿剂的治疗,则洛汀新最初的使用量应予以降低(5mg而不是10mg),这样可以避免血压过低(见【注意事 项】)。 肌酐清除率≥30ml/min患者服常用剂量即可。而<30ml/min患者,最初每日剂量为5mg,必要时,剂量可加至10mg/日。若仍需进一步降低血压,可加用利尿剂或另一种降压药。 充血性心力衰竭: 本品适用于充血性心力衰竭病人的辅助治疗。推荐的初始剂量为2.5毫克(5mg,半片),一天 一次。由于会出现首剂后血压急剧下降的危险,当病人第一次服用本品时需严密监视(见【注意事项】)。只要病人未出现症状性的低血压及其它不可接受的副反应,如果心衰的症状未能有效缓解可在2-4周后将剂量调整为5mg一天一次。根据病人的临床反应,可以在适当的时间间隔内将剂量调整为10mg一天一次甚至20mg一天一次。 本品一天一次即有效。对有些病人但若将一天的剂量分为二次服用,反应可能更好。对照临床研究表明严重心衰病人(NYHA分级Ⅳ)较轻、中度心衰病人(NYHA分级Ⅱ-Ⅲ)需更小的剂量。 当心衰病人肌酐清除率小于30ml/min时,日剂量最高可增加至10mg,但较低的初始剂量[如

氯甲烷包装及使用说明书修订稿

氯甲烷包装及使用说明 书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

三氯甲烷安全技术说明书 说明书目录 第一部分第九部分 第二部分第十部分 第三部分第十一部分 第四部分第十二部分 第五部分第十三部分 第六部分第十四部分 第七部分第十五部分 第八部分第十六部分 化学品中文名 称:三氯甲烷 ? 化学品俗名:氯仿 化学品英文名 称:trichloromethane ? 英文名称:chloroform 技术说明书编 码:836 CAS No.:67-66-3? 生产企业名称: 地址: 生效日期: 有害物成分含量CAS No. 三氯甲烷≥%67-66-3

危险性类别: 侵入途径: 健康危害:主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。急性中毒:吸入或经皮肤吸收引起急性中毒。初期有头痛、头晕、恶心、呕吐、 兴奋、皮肤湿热和粘膜刺激症状。以后呈现精神紊乱、呼吸表浅、反射消 失、昏迷等,重者发生呼吸麻痹、心室纤维性颤动。同时可伴有肝、肾损 害。误服中毒时,胃有烧灼感,伴恶心、呕吐、腹痛、腹泻。以后出现麻 醉症状。液态可致皮炎、湿疹,甚至皮肤灼伤。慢性影响:主要引起肝脏 损害,并有消化不良、乏力、头痛、失眠等症状,少数有肾损害及嗜氯仿 癖。? 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:本品不燃,有毒,为可疑致癌物,具刺激性。 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 危险特性:与明火或灼热的物体接触时能产生剧毒的光气。在空气、水分和光的作用下,酸度增加,因而对金属有强烈的腐蚀性。 有害燃烧产物:氯化氢、光气。 灭火方法:消防人员必须佩戴过滤式防毒面具(全面罩)或隔离式呼吸器、穿全身防火防毒服,在上风向灭火。灭火剂:雾状水、二氧化碳、砂土。

对羟基苯甲醛

R36/37/38Irritating to eyes, respiratory system and skin. 刺激眼睛、呼吸系统和皮肤 对羟基苯甲醛的性质 外观性状红棕色粉末 熔点114-118°C 沸点 191°C 50mm 密度 1,129 g/cm3 闪点 174°C 水溶性13 g/L (30°C) 溶解性易溶于乙醇;乙醚;丙酮;乙酸乙酯,稍溶于水(在30.5℃水中溶解度为1.388g/100ml),溶于苯(在65℃苯中溶解度为3.68g/ml)。

对羟基苯甲醛的用途 【用途一】用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品 【用途二】用作医药、香料、农药的重要中间体,用于合成羟氨苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品 【用途三】对羟基苯甲醛用于医药及有机合物的合成 【用途四】该品为医药、香料、液晶的中间体。对羟基苯甲醛用于生产抗菌增效剂TMP(甲氧苄氨嘧啶)、羟氨苄青霉素、羟氨苄头孢霉素、人造天麻、杜鹃素、苯扎贝特、艾司洛尔;用于生产香料茴香醛、香兰素、乙基香兰素、覆盆子酮。 【用途五】对羟基苯甲醛『123-08-0』在医药工业中,主要用合成羟氨苄青霉素(阿莫西林)、抗菌增效剂甲甲氧苄胺嘧啶(TMP)、3,4,5-三甲氧基甲醛、对羟基苯酐氨酸、羟氨苄头孢霉素、人造天麻、杜鹃素、艾司洛尔等;在香料工业中用于合成香兰素、乙基香兰素、洋茉莉醛、丁香醛、茴香醛和覆盆子酮等香料;在农药中主要用作除草剂溴苯腈和羟敌草腈的合成;在化工中主要用于合成对羟基苯甲酸、对羟基甲酸苄酯、醋酸对羟基苯酚酯;在国外还用于生产杀菌剂、照相乳化剂、镀镍光泽剂、液晶等. 【用途六】用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品。高分子聚合物和制药原料。 应用领域 用作医药、香料、农药的重要中间体,用于合成羟氨基苄青霉素、甲氧苄氨嘧啶、三甲氧基苯甲醛等药品

2,4-二羟基苯甲醛

2,4-二羟基苯甲醛化学品安 全技术说明书 第一部分:化学品名称 化学品中文名称:2,4-二羟基苯甲醛 化学品英文名称:2,4-dihydroxybenzaldehyde 技术说明书编码:1758 CAS No.:1995-1-2 分子式:C7H6O3 分子量:138.12 健康危害:吸入、摄入或经皮肤吸收本品,对身体有害。本品对眼睛、皮肤、粘膜和上呼吸道有刺激作用。 燃爆危险:本品可燃,有毒,具刺激性。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。 食入:饮足量温水,催吐。就医。第五部分:消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂、碱类接触。在氮气中操作处置。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

三氯甲烷安全技术说明书

三氯甲烷安全技术说明书 第一部分化学品及企业标识 化学品中文名:三氯甲烷;氯仿 化学品英文名:trichloromethane;chloroform 化学品俗名: 英文名称: 第二部分成分/组成信息 主要成分:√纯品混合物 有害物成分:浓度(含量): CAS No.: 三氯甲烷 67-66-3 第三部分危险性概述 危险性类别:第6.1类毒害品 侵入途径:吸入、食入、经皮吸收 健康危害:主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。急性中毒吸入或经皮肤吸收引起急性中毒。初期有头痛、头晕、恶心、呕吐、兴奋、皮肤湿热和粘膜刺激症状。以后呈现精神紊乱、呼吸表浅、反射消失、昏迷等,重者发生呼吸麻痹、心室纤维性颤动。同时可伴有肝、肾损害。误服中毒时,胃有烧灼感,伴恶心、呕吐、腹痛、腹泻。以后出现麻醉症状。液态可致皮炎、湿疹,甚至皮肤灼伤。慢性影响主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状,少数有肾损害及嗜氯仿癖。 环境危害:对水体、土壤和大气可造成污染。 燃爆危险:不燃,无特殊燃爆特性。 第四部分急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗20~30分钟。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐。就医。

第五部分消防措施 危险特性:与明火或灼热的物体接触时能产生剧毒的光气。在空气、水分和光的作用下,酸度增加,因而对金属有强烈的腐蚀性。 有害燃烧产物:无意义。 灭火方法:用雾状水、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员必须佩戴空气呼吸器、穿全身防火防毒服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装臵中产生声音,必须马上撤离。 第六部分泄漏应急处理 应急行动:根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防毒服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用干燥的砂土或其它不燃材料吸收或覆盖,收集于容器中。大量泄漏:构筑围堤或挖坑收容。用飞尘或石灰粉吸收大量液体。用泵转移至槽车或专用收集器内。 第七部分操作处臵与储存 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴防化学品手套。防止蒸气泄漏到工作场所空气中。避免与碱类、铝接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不超过35℃,相对湿度不超过85%。保持容器密封。 应与碱类、铝、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分接触控制/个体防护 mAC(mg/m3):-PC-TWA(mg/m3):20

间羟基苯甲醛CAS100-83-4 用途与供应

Product name: m-Hydroxybenzaldehyde /3-Hydroxybenzaldehyde CAS: 100-83-4 Taizhou Bolon Pharmchem Co,. Ltd 86-576-88702853 间羟基苯甲醛/3-羟基苯甲醛/ 100-83-4 简述 间羟基苯甲醛(CAS:100-83-4)是一个重要的有机合成中间体,用途极其广泛,可用于:医药,染料,材料等各方面。 介绍: 间羟基苯甲醛也叫3-羟基苯甲醛,英文名为m-Hydroxybenzaldehyde /3-Hydroxybenzaldehyde。 CAS:100-83-4 微溶于水,溶于热水、乙醇、丙酮、乙醚和苯 外观白色或淡黄色结晶状固体 质量标准:主要指标为纯度(99%),水分,外观(白色至类白色结晶性粉末)! 用途: 1.医药——适用于各种休克及手术时低血压用药重酒石酸间羟胺/阿拉明的中间体 2.医药——消化系统用药罗沙替丁的中间体 3.涂料——奎宁,以间羟基苯甲醛100-83-4和2-氨基乙醛为原料 市场现状: 间羟基苯甲醛100-83-4 的供应商屈指可数,且产能不高;然台州保隆化工有限公司是一家研发技术力量雄厚,生产设备先进生产企业。已成功实现间羟基苯甲醛100-83-4 的新工艺投产,产能扩大且产品质量优良。 台州保隆主营业务包括技术开发、技术转让和定制加工、自主产品研发和生产和销售。主打产品为:LCZ696中间体1012341-48-8,2-甲氧基乙胺109-85-3,间硝基苯甲醛99-61-6,胡椒乙腈&胡椒乙酸,醋酸格拉替雷147245-92-9等。同时,承接医药、农药、染料、电子化学品项目;中试到大生产设备全;优势反应:加氢反应、氰化反应、硝化反应等。

氯甲烷化学品安全技术说明书

化学品安全技术说明书 编 GB/T16483、GB/T17519 按照产品名称:氯甲烷制修订日期:SDS 编号:JSACSDS-09最初编制日期:版本号: 部分:化学品及企业标识第 1 化学品中文名称:氯甲烷 化学品英文名称:Chloromethane; Methyl chloride 企业标识:销售单位:南通腾旭化工有限公司号地址:江苏省南通市如东县岔河镇交通东路60 226403商务电话:邮编: 电子邮件地址:传真号码:05 24 小时)应急电话:( 、四甲基铅、甲基纤维用于生产甲基氯硅烷推荐及限制用途:用作制冷剂、甲基化剂,素等,少量用于生产季铵化合物、农药,在异丁橡胶生产中用作溶剂 还用于有机合成。 第 2 部分:危险性概述 应急综述: 极易燃气体,与空气混合能形成爆炸性混合物,遇火花或高热能引起燃烧爆炸,并生成剧毒的光气。接触铝及其合金能生成自燃性的铝化合物。 GHS 危险性类别: 易燃气体:类别 1 压力下气体:液化气体特异性靶器官系统毒性反复接触:类别 2 GHS 标签要素: 象形图:

警示词:危险 危险性说明:极易燃气体;含压力下气体,如加热可爆炸;长期或反复接触可能引起器官损害。 防范说明预防措施: —远离热源、火花、明火、热表面。禁止吸烟。 —避免吸入气体。事故响应: —泄漏气体着火:切勿灭火,除非能安全地切断泄漏源。如果没有危险,消除一切 点火源。灭火剂:雾状水、泡沫、二氧化碳。 —如吸入:将患者转移到空气新鲜处,休息,保持利于呼吸的体位。就医。 —如果感觉不适,就医。 1 / 7. 化学品安全技术说明书 修订日期:产品名称:氯甲烷 版本号:JSACSDS-09SDS 编号:安全储存: —在通风良好处储存。 —避免日照。废弃处置: —用控制焚烧法处置,焚烧炉排出的卤化氢通过酸洗涤器除去。 物理化学危险: 极易燃气体,比空气重,与空气混合能形成爆炸性混合物,可能沿地面流动,可能造成远处着火。可能积聚在低层空间,造成缺氧。遇火花或高热能引起燃烧爆炸,燃烧时,该物质分解生成含有氯化氢和光气的剧毒和腐蚀性烟雾。接触铝及其合金能生成自燃性的铝化合物。与铝粉、锌粉、三氯化铝和乙烯发生反应,有着火和爆炸的危险。有湿气存在时,浸蚀许多金属。 健康危害: 本品有刺激和麻醉作用,严重损伤中枢神经系统,亦能损害肝、肾和睾丸。 急性中毒:轻度者有头痛、眩晕、恶心、呕吐、视力模糊、步态蹒跚、精神错乱等。严重中毒时,可出现谵妄、躁动、抽搐、震颤、视力障碍、昏迷,呼气中有酮体味。尿中检出甲酸盐和酮体有助于诊断。皮肤接触可因氯甲烷在体表迅速蒸发而致冻伤。

对羟基苯甲醛的生产工艺及下游产品的开发

对羟基苯甲醛的生产工艺及下游产品的开发 来源:中国化工信息网 2007年7月3日 对羟基苯甲醛(PHB)分子式为C7H6O2,呈白色或浅黄色针状结晶,微溶于水,溶于甲醇、丙酮和苯等有机溶剂。是重要的有机化工原料,是精细化学品的重要中间体,广泛应用于医药、农药、香料等领域,其需求量呈不断增长趋势。 1 生产工艺 国内主要生产厂家有辽宁新民有机化工厂、南京晶美化学有限公司、安徽潜山药物化工厂、山东淄博大华化工公司、山东春光化工有限公司、盐城隆达公司农药厂、高邮市康乐精细化工厂、上海宝山月浦化工厂等十余家企业。对羟基苯甲醛合成路线较多,国内多采用苯酚-甲醛法,而国外则多采用空气氧化对甲酚法。目前国内对羟基苯甲醛与国外先进水平和国内精细化学品工业发展的要求尚存在较大差距,近年来虽然国内有多家企业计划采用对甲酚路线建设该项目,如大庆萨南实业有限公司、湖州市加成石油化工厂、嘉兴市华杰精细化工有限公司等数家企业。但是技术不甚成熟,尤其是对甲酚氧化产物分离技术不过关,导致产品质量较差,不能满足下游精细化学品对纯度的要求。下面介绍一下各种合成工艺的概况。 1.1 苯酚法 (1)苯酚-甲醛法 苯酚和液体氢氧化钠混和反应物形成钠盐,在50℃下慢慢加入甲醛,得到邻和对位的羟甲基苯酚;产物不需分离,在50℃下通入氧气,并加入苯酚质量分数5%的Pt/C催化剂和Bi2(SO4)3,反应1.5h后过滤催化剂,再经酸化、蒸馏得到PHB。以间硝基苯磺酸为催化剂时产率为55%左右,若以氟硼酸作催化剂,产率则可达80%以上。 该法对设备要求不高,合成路线较短,技术成熟,但产率和选择性高,环境污染比较严重,目前国内多采用该法生产。 (2)氯仿法(Reimer-Tiemann法) 在碱金属氢氧化物作用下,苯酚与氯仿反应生成邻羟基苯甲醛和PHB。将三氯甲烷加入苯酚碱溶液中,在80℃下反应4h,得到PHB和邻羟基苯甲醛,混合物经酸化、蒸馏、分离、纯化,得到PHB,收率50%左右。 该法原料价廉易得,但缺点是反应时间长、反应收率低,对羟基苯甲醛的选择性较低,一般对、邻位之比约为1:5,高者可达1:10。不过因其反应温度比较低,也容易控制,故国内目前主要采用此法生产水杨醛。近几年国外对该反应条件进行了改进,主要是从缩短反应时间,提高设备利用率等方面考虑。国外还对采用该法制备高选择性的PHB进行了研究,主要是在氢氧化钾存在下,通过加入α-或β-环状糊精作为催化剂,使PHB的选择性可达100%。 (3)苯酚与三氯乙醛法 在碳酸钾的催化下,苯酚与三氯乙醛缩合,得到的中间体经甲醇钠分解得到PHB。

降压药一览表

常用一线大类降压药一览表

: :,:;受体阻滞剂;:离子拮抗剂;:利尿剂 一、目地与原则 原发性高血压目前尚元根治方法,但大规模临床试验证明,收缩压下降~或舒张压下降~,~年内脑卒中、心脑血管病死亡率与冠心病事件分别减少、与,心力衰竭减少以上.降压治疗地最终目地是减少高血压患者心、脑血管病地发生率和死亡率. (一)改善生活行为 ①减轻体重:体重降低对改善膜岛素抵抗、糖尿病、高脂血症和左心室肥厚均有益.②减少钠盐摄入:膳食中约钠盐来自烹调用盐,每人每日食盐量以不超过为宜.③补充钙和钾盐:每人每日吃新鲜蔬菜~,喝牛奶,可以补充钾和钙. ④减少脂肪摄入.⑤限制饮酒.⑥增加运动:运动有利于减轻体重和改善膜岛素抵抗,提高心血管适应调节能力,稳定血压水平.较好地运动方式是低或中等强度地等张运动,可根据年龄及身体状况选择慢跑或步行,一般每周~次,每次~分钟. (二)降压药治疗对象 高血压级或以上患者,高血压合并糖尿病,或者已经有心、脑、肾靶器官损害和并发症患者;凡血压持续升高个月以上,改善生活行为后血压仍未获得有效控制者. (三)血压控制目标值 原则上应将血压降到患者能最大耐受地水平,目前一般主张血压控制目标值至少<.糖尿病或慢性肾脏病合并高血压患者,血压控制目标值<. 二、降压方案 现在认为,级高血压(≥)患者在开始时就可以采用两种降压药物联合治疗,处方联合或者固定剂量联合,有利于血压在相对较短时期内达到目标值.()在联合用药治疗方面,提供了下列一些联合用药方案:利尿药和β受体阻断药联合应用 目前,人们为了增强降压药地作用和减少不良反应,常将利尿药和β受体阻断联合应用.例如,氢氯噻嗪,若给以每日地低剂量,很少引起代谢方面地异常,但又能增强其他降压药地作用.其中,氢氯噻嗪又常和β阻断药配伍,做为高血压早期地治疗药使用. 利尿药和抑制药联合应用 这两种药联合应用不会使副作用增强,但又可使降压作用增强.利尿药可活化肾素一血管紧张系统,而抑制药可减少血管紧张素Ⅱ地生成,故可使降压作用增强.开始使用地利尿药剂量要尽量小一些.在应用利尿药地基础上,追加抑制药时,应注意不要使血压过度降低.恶性高血压和肾性高血压常常易出现过度降压地问题. 利尿药和Ⅱ受体拮抗药地联合应用 二者联合应用可使降压作用增强,而且利尿药引起地低血+,也可被Ⅱ受体拮抗药校正.合用时,还可克服利尿药引起地尿酸增高. β阻断药和二氢吡啶()类钙拮抗药联合应用 二者联合应用不仅可增强降压作用,还可增强抗心绞痛作用.β受体阻断剂可对抗由钙拮抗剂引起地心动过速,类钙拮抗剂则对β受体阻断剂引起地末梢神经损害有改善作用,二者联合应用可取长补短,既增强了疗效又减少了不良反应.非类钙拮抗药和β受体阻断药联合应用时,则有引起高度房室传导阻滞,心脏停搏地危险性.硝苯吡啶和β受体阻断联合应用,还偶可导致降压过度和心功能不全,故亦应引起注意. 钙拮抗药和抑制药联合应用 类钙拮抗药可活化交感神经系统和肾素一血管紧张素系统,而抑制则对此有抑制作用,二者联合应用,可减轻抑制药引起地咳嗽症状,并可降低钙拮抗药所导致地下肢浮肿地发生率.二者配伍可增强降压效果. β受体断药和α受体阻断地联合应用. 二者联合应用还可增强降压作用,且α受体阻断药可克服β受体阻断药所引起地代谢异常和末梢循环障碍. 三、总结 因为降压治疗地益处是通过长期控制血压达到地,所以高血压患者需要长期降压治疗,尤其是高危和极高危患者.

相关主题
文本预览
相关文档 最新文档