当前位置:文档之家› 2016_2017学年高中数学2.3.1双曲线的标准方程学案新人教B版选修2_1

2016_2017学年高中数学2.3.1双曲线的标准方程学案新人教B版选修2_1

2016_2017学年高中数学2.3.1双曲线的标准方程学案新人教B版选修2_1
2016_2017学年高中数学2.3.1双曲线的标准方程学案新人教B版选修2_1

2.3.1 双曲线的标准方程

1.了解双曲线的定义及焦距的概念.

2

.了解双曲线的几何图形、标准方程.(重点)

3.能利用双曲线的定义和待定系数法去求双曲线的标准方程.(重点)

[基础·初探]

教材整理1 双曲线的定义

阅读教材P 49前3自然段,完成下列问题.

平面内与两个定点F 1,F 2的距离的________等于常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这________叫做双曲线的焦点,________

叫做双曲线的焦距.

【答案】 差的绝对值 两个定点 两焦点的距离

判断(正确的打“√”,错误的打“×”)

(1)在双曲线标准方程中,a ,b ,c 之间的关系同椭圆中a ,b ,c 之间的关系相同.( ) (2)点A (1,0),B (-1,0),若|AC |-|BC |=2,则点C 的轨迹是双曲线.( )

(3)在双曲线标准方程x 2a 2-y 2

b

2=1中,a >0,b >0,且a ≠b .( )

【答案】 (1)× (2)× (3)× 教材整理2 双曲线的标准方程

阅读教材P 49第4自然段~P 50“思考与讨论”,完成下列问题.

焦点在x 轴上 焦点在y 轴上 标准方程 ______(a >0,b >0)

______(a >0,b >0)

焦点

F 1________, F 2________

F 1________, F 2________

a ,

b ,

c 的关系 c 2=________

【答案】 a 2-b 2=1 a 2-b

2=1 (-c,0) (c,0) (0,-c ) (0,c ) a 2+b 2

若方程

x 2

m 2+1-

y 2

m 2-3

=1表示双曲线,则实数m 满足( )

A .m ≠1且m ≠-3

B .m >1

C .m <-3或m > 3

D .-3<m <1

【解析】 因为方程

x 2m 2

+1-y 2

m 2-3

=1表示双曲线,而m 2+1>0恒成立,所以m 2

-3>0,解得m <-3或m >3,故选C.

【答案】 C

[质疑·手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________________ 解惑:________________________________________________________ 疑问2:________________________________________________________ 解惑:________________________________________________________ 疑问3:________________________________________________________ 解惑:________________________________________________________

[小组合作型]

双曲线定义的应用

已知双曲线的方程是x 216-y 2

8

=1,点P 在双曲线上,且到其中一个焦点F 1的

距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).

【精彩点拨】 利用中位线定理,结合双曲线定义解题. 【自主解答】 因为ON 是△PF 1F 2的中位线, 所以|ON |=1

2

|PF 2|.

因为||PF 1|-|PF 2||=8,|PF 1|=10, 所以|PF 2|=2或|PF 2|=18, 故|ON |=1或|ON |=9.

在双曲线的定义中,注意三个关键点:①在平面内;②差的绝对值;③定值且定值小于两定点间距.在这三个条件中,缺少一个条件,其动点轨迹也不是双曲线.

[再练一题]

1.已知双曲线x 2

-y 2

=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.

【导学号:15460034】

【解析】 由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2

-2|PF 1||PF 2|+|PF 2|2

=4, ∵PF 1⊥PF 2,

∴|PF 1|2

+|PF 2|2

=(2c )2

=8, ∴2|PF 1||PF 2|=4,

∴(|PF 1|+|PF 2|)2

=8+4=12, ∴|PF 1|+|PF 2|=2 3. 【答案】 2 3

求双曲线的标准方程

根据下列条件,求双曲线的标准方程.

(1)过点P ? ????3,154,Q ? ??

??-163,5且焦点在坐标轴上;

(2)c =6,经过点(-5,2),焦点在x 轴上.

【精彩点拨】 (1)所求双曲线的焦点位置不确定,怎样求解?(2)已知半焦距时,如何设双曲线的标准方程?

【自主解答】 (1)设双曲线方程为x 2m +y 2

n

=1(mn <0).

∵P ,Q 两点在双曲线上, ∴?????

9m +22516n =1,2569m +25n =1,

解得???

??

m =-16,

n =9,

∴所求双曲线的方程为y 29-x 2

16=1. (2)∵焦点在x 轴上,c =6,

∴设所求双曲线的方程为x 2λ-y 2

6-λ

=1(0<λ<6).

∵双曲线过点(-5,2),∴25λ-4

6-λ=1,

解得λ=5或λ=30(舍去), ∴所求双曲线的方程为x 2

5

-y 2

=1.

1.求双曲线标准方程的步骤

(1)确定双曲线的类型,并设出标准方程; (2)求出a 2

,b 2

的值.

2.当双曲线的焦点所在坐标轴不确定时,需分焦点在x 轴上和y 轴上两种情况讨论,特别地,当已知双曲线经过两个点时,可设双曲线方程为Ax 2

+By 2

=1(AB <0)来求解.

[再练一题]

2.求适合下列条件的双曲线的标准方程. (1)一个焦点是(0,-6),经过点A (-5,6); (2)a =5,c =7.

【解】 (1)由已知c =6,且焦点在y 轴上,另一焦点为(0,6). 由双曲线定义得:2a =|-5-0

2

+6+6

2

--5-0

2

+6-6

2

|=8.

∴a =4,∴b 2

=c 2

-a 2

=20. ∴所求双曲线的标准方程为y 216-x 2

20

=1. (2)由已知a =5,c =7, ∴b 2

=c 2

-a 2=24,焦点不确定, ∴所求双曲线的标准方程为

x 225-y 224=1或y 225-x 2

24

=1. [探究共研型]

双曲线在实际问题中的应用

探究1 【提示】 若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).

探究2 如何解决双曲线中与焦点三角形有关的问题?

【提示】 首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧

的应用.

某地发生地震,为了援救灾民,救援队在如图2-3-1所示的P 处收到了一批救

灾药品,现要把这批药品沿道路PA ,PB 运送到矩形灾民区ABCD 中去,已知PA =100 km ,

PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点

沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线,并求出其方程.

图2-3-1

【精彩点拨】 审题可得界线是使沿道路PA 和PB 送药一样远近的曲线,设M 为界线上任一点,则根据已知条件,得|PA |+|MA |=|PB |+|MB |,据此设出双曲线的标准方程,用待定系数法求解即可.

【自主解答】 灾民区ABCD 中的点可分为三类,第一类沿道路PA 送药较近,第二类沿道路PB 送药较近,第三类沿道路PA 和PB 送药一样近.依题意,知界线是第三类点的轨迹.

设M 为界线上的任一点, 则|PA |+|MA |=|PB |+|MB |,

即|MA |-|MB |=|PB |-|PA |=50(定值).

因为|AB |=1002

+1502

-2×100×150×cos 60°=507>50, 所以界线是以A ,B 为焦点的双曲线的右支的一部分.

如图所示,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系.

设所求双曲线的标准方程为x 2a 2-y 2

b

2=1(a >0,b >0).

因为a =25,c =257,所以b 2

=c 2

-a 2

=3 750. 故双曲线的标准方程为x 2625-y 2

3 750=1.

注意到点C 的坐标为(257,60), 故y 的最大值为60,此时x =35.

故界线的曲线方程为

x 2625-y 2

3 750

=1(25≤x ≤35,0≤y ≤60).

利用双曲线解决实际问题的基本步骤

1.建立适当的坐标系. 2.求出双曲线的标准方程.

3.根据双曲线的方程及定义解决实际应用问题.

注意:(1)解答与双曲线有关的应用问题时,除要准确把握题意,了解一些实际问题的相关概念,同时还要注意双曲线的定义及性质的灵活应用.

(2)实际应用问题要注意其实际意义以及在该意义下隐藏着的变量范围.

[再练一题]

3.如图2-3-2,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 地的距离比到B 地的距离远2 km.现要在河岸PQ 上选一处M 建码头,向B ,C 两地转运货物.经测算,修建公路的费用是a 万元/km ,求修建这两条公路的总费用最低是多少.

图2-3-2

【解】 以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略).根据题意,得C (3,3).

因为|MA |-|MB |=2<|AB |,

所以点M 的轨迹是双曲线x 2

-y 2

3=1的右支.

总费用为a |MB |+a |MC |=a (|MB |+|MC |).

因为|MB |+|MC |=|MA |-2+|MC |≥|AC |-2=27-2,当M ,A ,C 三点共线时,等号成立,

所以总费用最低为(27-2)a 万元.

[构建·体系]

1.已知m ,n ∈R ,则“mn <0”是“方程x 2m +y 2

n

=1表示双曲线”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

【解析】 方程x 2m +y 2n =1表示双曲线,必有mn <0;当mn <0时,方程x 2m +y 2

n =1表示

双曲线.所以“mn <0”是“方程x 2m +y 2

n

=1表示双曲线”的充要条件.

【答案】 C

2.以椭圆x 23+y 2

4=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是

( )

A.x 2

3-y 2

=1 B .y 2

-x 2

3=1

C.x 23-y 24

=1 D .y 23-x 2

4

=1

【解析】 椭圆x 23+y 2

4=1的焦点为F 1(0,1),F 2(0,-1),长轴的端点A 1(0,2),A 2(0,

-2),所以对于所求双曲线a =1,c =2,b 2

=3,焦点在y 轴上,双曲线的方程为y 2

-x 2

3=

1.

【答案】 B

3.设m 是常数,若点F (0,5)是双曲线y 2m -x 2

9

=1的一个焦点,则m =________.

【导学号:15460035】

【解析】 由点F (0,5)可知该双曲线y 2m -x 2

9

=1的焦点落在y 轴上,所以m >0,且m +9

=52

,解得m =16.

【答案】 16

4.若点P 到点(0,-3)与到点(0,3)的距离之差为2,则点P 的轨迹方程为________.

【解析】 由题意并结合双曲线的定义,可知点P 的轨迹方程为双曲线的上支,且c =3,2a =2,则a =1,b 2

=9-1=8,所以点P 的轨迹方程为y 2

-x 2

8

=1(y ≥1).

【答案】 y 2

-x 2

8

=1(y ≥1)

5.求满足下列条件的双曲线的标准方程.

(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和? ??

??94,5; (2)与双曲线x 216-y 2

4

=1有公共焦点,且过点(32,2).

【解】 (1)由已知,可设所求双曲线方程为y 2a 2-x 2

b

2=1(a >0,b >0),则

?????

32a 2

-9

b 2

=1,25a 2

-8116b 2=1,

解得?????

a 2

=16,

b 2

=9,

所以双曲线的方程为y 216-x 2

9

=1.

(2)设双曲线方程为x 2a 2-y 2

b

2=1(a >0,b >0).

由题意知c =2 5.

因为双曲线过点(32,2), 所以

32

2

a

2

-4

b

2=1.

又因为a 2

+b 2=(25)2

, 所以a 2

=12,b 2

=8.

故所求双曲线的方程为x 212-y 2

8

=1.

我还有这些不足:

(1)________________________________________________________ (2)________________________________________________________ 我的课下提升方案:

(1)________________________________________________________ (2)________________________________________________________

学业分层测评 (建议用时:45分钟)

[学业达标]

一、选择题

1.方程x 22+m -y 2

2-m =1表示双曲线,则m 的取值范围为( )

A .-2<m <2

B .m >0

C .m ≥0

D .|m |≥2

【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0.∴-2<m <2. 【答案】 A

2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )

A.x 29-y 216=1 B .y 29-x 216=1

C.x 2

9-y 2

16

=1(x ≤-3) D .x 2

9-y 2

16

=1(x ≥3)

【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,

a =3,知

b 2=16,

∴P 点的轨迹方程为x 29-y 2

16=1(x ≥3).

【答案】 D

3.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )

A.x 22-y 23=1 B .x 23-y 2

2=1

C.x 2

4

-y 2

=1 D .x 2

-y 2

4

=1

【解析】 由??

?

|PF 1|·|PF 2|=2,

|PF 1|2+|PF 2|2=25

2

?(|PF 1|-|PF 2|)2

=16,

即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C

4.已知椭圆方程x 24+y 2

3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲

线的离心率为( )

A. 2 B . 3 C .2

D .3

【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线

的离心率为e =c a =2

1

=2.

【答案】 C

5.若k >1,则关于x ,y 的方程(1-k )x 2

+y 2

=k 2

-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 【解析】 原方程化为标准方程为

x 2k 2

-11-k

+y

k 2-1=1, ∵k >1,∴1-k <0,k 2

-1>0, ∴此曲线表示焦点在y 轴上的双曲线. 【答案】 C 二、填空题

6.设点P 是双曲线x 29-y 2

16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,

则|PF 2|=________.

【解析】 由双曲线的标准方程得a =3,b =4. 于是c =a 2

+b 2

=5.

(1)若点P 在双曲线的左支上,

则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16; (2)若点P 在双曲线的右支上, 则|PF 1|-|PF 2|=6,

∴|PF 2|=|PF 1|-6=10-6=4. 综上,|PF 2|=16或4. 【答案】 16或4

7.已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)

【导学号:15460036】

①2;②-1;③4;④-3.

【解析】 设双曲线的方程为x 2a 2-y 2

b

2=1,则c =3,∵2a <2c =6,∴|2m -1|<6,且|2m

-1|≠0,∴-52

2

,∴①②满足条件.

【答案】 ①②

8.已知△ABP 的顶点A ,B 分别为双曲线C :x 216-y 2

9

=1的左、右焦点,顶点P 在双曲线

C 上,则

|sin A -sin B |

sin P

的值等于________.

【解析】 由方程x 216-y 2

9

=1知a 2=16,b 2

=9,即a =4,c =16+9=5.

在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |sin P =||PB |-|PA |||AB |=2a

2c =

2×42×5=4

5

. 【答案】 4

5

三、解答题

9.求与双曲线x 24-y 2

2=1有相同焦点且过点P (2,1)的双曲线的方程.

【解】 ∵双曲线x 24-y 2

2

=1的焦点在x 轴上.

依题意,设所求双曲线为x 2a 2-y 2

b

2=1(a >0,b >0).

又两曲线有相同的焦点, ∴a 2

+b 2

=c 2

=4+2=6.①

又点P (2,1)在双曲线x 2a 2-y 2

b

2=1上,

∴4a 2-1

b

2=1.②

由①②联立得a 2=b 2

=3, 故所求双曲线方程为x 23-y 2

3

=1.

10.已知方程kx 2

+y 2

=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的

曲线类型.

【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线; (2)当k =1时,方程为x 2

+y 2

=4,表示圆心在原点,半径为2的圆; (3)当k <0时,方程为y 24-x 2

4

k

=1,表示焦点在y 轴上的双曲线;

(4)当0<k <1时,方程为x 24k

+y 24

=1,表示焦点在x 轴上的椭圆;

(5)当k >1时,方程为x 24k

+y 24

=1,表示焦点在y 轴上的椭圆.

[能力提升]

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2

2

=1有相同的焦点,则a 的值为( )

【导学号:15460037】

A .1

B . 2

C .2

D .3

【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且

a >0.∵4-a 2=a +2,∴a 2+a -2=0,

∴a =1或a =-2(舍去).故选A. 【答案】 A

2.已知F 1,F 2为双曲线C :x 2

-y 2

=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )

A .2

B .4

C .6

D .8

【解析】 不妨设P 是双曲线右支上一点, 在双曲线x 2

-y 2

=1中,a =1,b =1,c =2, 则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,

∵|F 1F 2|2

=|PF 1|2

+|PF 2|2

-2|PF 1|·|PF 2|·cos∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2

-2|PF 1|·|PF 2|·12,

∴8=(|PF 1|-|PF 2|)2

+|PF 1|·|PF 2|, ∴8=4+|PF 1||PF 2|, ∴|PF 1||PF 2|=4.故选B. 【答案】 B

3.已知双曲线x 216-y 2

25

=1的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆x 2

y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.

【解析】 设F ′是双曲线的右焦点,连接PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=12|PF ′|,又|FN |=|OF |2-|ON |2

=5,由双曲线的定义知|PF |-|PF ′|

=8,故|MN |-|MO |=|MF |-|FN |-12|PF ′|=12(|PF |-|PF ′|)-|FN |=1

2

×8-5=-1.

【答案】 -1

4.已知双曲线x 216-y 2

4

=1的两焦点为F 1,F 2.

(1)若点M 在双曲线上,且MF 1→

·MF 2→

=0,求点M 到x 轴的距离;

(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程. 【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h , MF 1→

·MF 2→

=0,

则MF 1⊥MF 2,

设|MF 1|=m ,|MF 2|=n ,

由双曲线定义知,m -n =2a =8,① 又m 2

+n 2

=(2c )2

=80,② 由①②得m ·n =8, ∴12mn =4=1

2|F 1F 2|·h , ∴h =255

.

(2)设所求双曲线C 的方程为

x 2

16-λ-y 2

4+λ

=1(-4<λ<16), 由于双曲线C 过点(32,2), 所以1816-λ-44+λ=1,

解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 2

8=1.

高二数学圆的一般方程 人教版

高二数学圆的一般方程人教版 (1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径、掌握方程x2+y2+Dx+Ey+F=0表示圆的条件、 (2)能通过配方等手段,把圆的一般方程化为圆的标准方程、 (3)理解并能初步应用圆系的知识去处理问题、 教学重点和难点 重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数, D、E、F、 难点:圆系的理解和应用、 教学过程设计 (一)教师讲授: 请同学们看出圆的标准方程:(x-a)2+(y-b)2=r2,圆心(a,b),半径r、 把圆的标准方程展开,并整理:x2+y2-2ax-2by+a2+b2-r2=0、 我们把它看成下面的形式: x2+y2+Dx+Ey+F=0 ① 这个方程是圆的方程、

反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线是圆、 ② (配方过程由学生去完成)这个方程是不是表示圆? (1)当D2+E2-4F>0时,方程②表示 (2)当D2+E2-4F=0时,方程②表示 (3)当D2+E2-4F<0时,方程②不表示任何图形 ∴当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0、 做圆的一般方程、 现在我们来看圆的一般方程的特点:(启发学生归纳) (1)①x2和y2的系数相同,不等于0、 ②没有xy这样的二次项、 同学们不难发现,x2和y2的系数相同,不等于0、且没有xy 这样的二次项,是方程x2+y2+Dx+Ey+F=0表示圆的必要条件、但不是充分条件、 (2)圆的一般方程中有三个特定的系数 D、E、F,因之只要求出这三个系数,圆的方程就确定了、 (二)研究问题1,求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径和圆心坐标、 [解法一]设所求圆的方程是x2+y2+Dx+Ey+F=0、 把已知三点的坐标代入,得三个方程,解这三个方程组成的方程组

双曲线教案完整篇

2.3.1双曲线及其标准方程 教学目标: 1.知识与技能 掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程. 2.过程与方法 教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程. 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线标准方程的推导 授课类型:新授课 教具:多媒体、实物投影仪 教学过程: 一.情境设置 1.复习提问: (由一位学生口答,教师利用多媒体投影) 问题 1:椭圆的定义是什么? 问题 2:椭圆的标准方程是怎样的? 问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢? 2.探究新知: (1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。 (2)设问:①|MF 1|与|MF 2 |哪个大? ②点M到F 1与F 2 两点的距离的差怎样表示? ③||MF 1|-|MF 2 ||与|F 1 F 2 |有何关系? (请学生回答:应小于|F 1F 2 | 且大于零,当常数等于|F 1 F 2 | 时,轨迹是以 F 1、F 2 为端点的两条射线;当常数大于|F 1 F 2 | 时,无轨迹) 二.理论建构 1.双曲线的定义 引导学生概括出双曲线的定义: 定义:平面内与两个定点F 1、F 2 的距离的差的绝对值等于常数(小于<|F 1 F 2 |)

的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影) 概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于21F F ” 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示) (1)建系 取过焦点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立平面直角坐标系。 (2) 设点 设M (x ,y )为双曲线上任意一点,双曲线的焦距为2c (c>0),则F 1(-c ,0)、F 2(c ,0),又设点M 与F 1、F 2的距离的差的绝对值等于常数2a (2a <2c ). (3)列式 由定义可知,双曲线上点的集合是P={M|||MF 1|-|MF 2||=2a }. 即: (4)化简方程 由学生板演,教师巡视。化简,整理得: 移项,两边平方得 两边再平方后整理得 由双曲线定义知 这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x 轴上,焦 ()(), 22 22 2a y c x y c x =+-- ++()()a y c x y c x 22 22 2±=+-- ++()2 22y c x a a cx +-±=-()() 2 2222222 a c a y a x a c -=--) 0,0(1)0(,0,2222 2222222>>=->=->-∴>>b a b y a x b b a c a c a c a c 代入上式整理得设即

双曲线及其标准方程练习题答案及详解

练习题 高二一部数学组 刘苏文 2017年5月2日 一、选择题 1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 2 1-k =1表示双曲线,则k 的取值范围是( ) A .-10 C .k ≥0 D .k >1或k <-1 3.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线 4.以椭圆x 23+y 24 =1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1 D.y 23-x 24 =1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2| =2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24 =1 7.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 22 =1有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 8.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27 =1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27 =1(x >0) 9.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2 的周长是( ) A .16 B .18 C .21 D .26 10.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( ) A .m -a B .m -b C .m 2-a 2 D.m -b

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》 "说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴! 高中数学说课稿:《圆的标准方程》 【一】教学背景分析 1.教材结构分析 《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用. 2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 根据上述教材结构与内容分析,考虑到学生已有的认知结构和

心理特征,我制定如下教学目标: 3.教学目标 (1) 知识目标:①掌握圆的标准方程; ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; ③利用圆的标准方程解决简单的实际问题. (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力; ②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识. (3) 情感目标:①培养学生主动探究知识、合作交流的意识; ②在体验数学美的过程中激发学生的学习兴趣. 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4. 教学重点与难点 (1)重点:圆的标准方程的求法及其应用. (2)难点:①会根据不同的已知条件求圆的标准方程; ②选择恰当的坐标系解决与圆有关的实际问题. 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 【二】教法学法分析 1.教法分析为了充分调动学生学习的积极性,本节课采用"

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

高中数学 《双曲线》教案 新人教A版选修1-1

双曲线及其标准方程 一、教学目标 (一)知识教学点 1.掌握双曲线定义、标准方程; 2.掌握焦点、焦距、焦点位置与方程关系; 3.认识双曲线的变化规律. (二)能力训练点 在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识. 二、教材分析 1.重点:双曲线的定义和双曲线的标准方程. (解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.) 2.难点:双曲线的标准方程的推导. (解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.) 3.疑点:双曲线的方程是二次函数关系吗? (解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.) 三、活动设计 教学方法启发引导式 教具准备三角板、双曲线演示模板、幻灯片 提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.

四、教学过程 (一)复习提问 1.椭圆的定义是什么?(学生回答,教师板书) 平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数; (3)常数2a>|F1F2|. 2.椭圆的标准方程是什么?(学生口答,教师板书) (二)双曲线的概念 把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢? 1.简单实验(边演示、边说明) 如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支. 注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线.2.设问 问题1:定点F1、F2与动点M不在平面上,能否得到双曲线? 请学生回答,不能.强调“在平面内”. 问题2:|MF1|与|MF2|哪个大?

高中数学导学案双曲线及其标准方程

1. 1.3双曲线及其标准方程 课前预习学案 一、预习目标 ①双曲线及其焦点,焦距的定义。 ②双曲线的标准方程及其求法。 ③双曲线中a,b,c的关系。 ④双曲线与椭圆定义及标准方程的异同。 二、预习内容 ①双曲线的定义。 ②利用定义推导双曲线的标准方程并与椭圆的定义、标准方程和推导过程进行李类 比。 ③掌握a,b,c之间的关系。 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 课内探究学案 一、教学过程 前面我们学习过椭圆,知道“平面内与两定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆”。 下面我们来考虑这样一个问题? 平面内与两定点F1,F2的距离差为常数的点的轨迹是什么? 我们在平面上固定两个点F1,F2,平面上任意一点为M,假设|F1F2|=100,|MF1|>|MF2|且|MF1|-|MF2|=50不断变化|MF1|和|MF2|的长度,我们可以得出它的轨迹为一条曲线。 若我们交换一下长度,|MF1|<|MF2|且|MF1|-|MF2|=-50时,可知它的轨迹也是一条曲线 那么由这个实验我们得出一个结论: “平面内两个定点F1,F2的距离的差的绝对值为常数的点的轨迹是双曲线。” 但大家思考一下这个结论对不对呢? 我们知道在椭圆定义里,到两定点的距离和为一个常数,这个常数(必须大于|F1F2|)那么这里差的绝对值为一个常数,这个常数和|F1F2|有什么关系呢? 下面我们来看一个试验,当|MF1|-|MF2|=0时,M点的轨迹为F1,F2的中垂线; 随着|MF1|-|MF2|的不断变化,呈现出一系列不同形状的双曲线; 当|F1F2|即和|F1F2|长度相等时,点的轨迹为以F1,F2为端点的两条射线; 若|MF1|-|MF2|>100 时,就不存在点M。 那么由以上的一些试验我们可以得出双曲线的准确定义: 定义:平面内与两定点F1,F2的距离差的绝对值为非零常数(小于|F1F2|)的点的轨迹是双曲线。定点F1,F2叫做双曲线的焦点,两焦点的距离叫双曲线的焦距。

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

双曲线及其标准方程详解

2.2 双曲线 2.2.1 双曲线及其标准方程 【课标要求】 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点 ) 自学导引 1.双曲线的定义 把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么? 提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示. (2)若“常数大于|F 1F 2|”(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点 的位置? 提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在. (2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上. (3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|). (4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.” 2.双曲线的标准方程 (1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程. (2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,

双曲线及其标准方程优秀教案

双曲线及其标准方程 一.教学目标: (1)知识与技能:理解双曲线的定义并能独立推导标准方程; (2)过程与方法:通过定义及标准方程的挖掘与探究,使学生进一步体验类比及数形结合等 思想方法的运用,提高学生的观察与探究能力; (3)情感态度与价值观:通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学 生用联系的观点认识问题。 二.教学重点:双曲线的定义 三.教学难点:双曲线方程的推导 四.教学过程: (一)复习回顾 (二)双曲线的定义: 1.问题:若把椭圆定义中”距离之和”改为”距离之差”,那么动点的轨迹是什么?它的方程是怎么样的呢? 2. 双曲线的定义: 平面内与两定点的距离的差的绝对值是常数(小于)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点之间的距离叫做焦距. 3.简单演示(使用几何画板). 4. (*) 注意:①(*)式中是差的绝对值,在条件下: 时为双曲线的一支(含的一支); 时为双曲线的另一支(含的一支). ②当时,表示两条射线. ③当时,不表示任何图形. (三).双曲线标准方程的推导: 现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导

学生给出双曲线的方程的推导. 标准方程的推导: (1).建系设点:取过焦点的直线为x轴,线段的垂直平分线为y轴(如图所示)建立直角坐标系,设为双曲线上任意一点,双曲线的焦距是,那么的坐标分别是.又设点M与F1、F2的距离的差的绝对值为. (2)点的集合:由定义可知,双曲线就是集合:}. (3)代数方程, , (4)化简方程:将这个方程移项,使式子两边平衡,再两边平方得:,移项整理两边平方可得: (我们可以仿照椭圆的标准方程的处理方式把式子美化,使其简洁易记) 由双曲线定义,即,所以设,代入上式得:.即,这就是焦点在轴上的双曲线的标准方程. 两种标准方程的比较(引导学生归纳): (1) 表示焦点在x轴上的双曲线,焦点是: ,这里. (2) 表示焦点在y轴上的双曲线,焦点是: ,这里.(只需将(1)方程的x,y互换即可得到) 强调指出: (1)双曲线标准方程中的”标准是指的是双曲线的中心在坐标原点,焦点在坐标轴上(这从建立直角坐标系可以看出来).(2)双曲线标准方程中,,但不一定大于;(3)如果项的系数是正的,那么焦点在x轴上;如果项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.(4)双曲线标准方程中的关系是,不同于椭圆方程中. (四).例题分析: 练习:写出下列双曲线的焦点坐标: (1)(2)(3)(4) 例1. 已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上一点P到F1、F2的距离的差的绝对值等于6,求双曲线的标准方程. 解: 根据双曲线的焦点在轴上,设它的标准方程为: ,所以所求双曲线的标准方程为: (五)小结

2.2.1双曲线及其标准方程学案

高二数学选修1-1 2.2.1双曲线及其标准方程学案 一、学习任务: 1.掌握双曲线的定义、标准方程及几何图形. 2.会根据条件求双曲线的标准方程. 3.会区别双曲线与椭圆定义及标准方程的异同。 二、探究新知: 问题1、把椭圆的定义中的“距离的和”改为“距离的差”,那么点的轨迹是什么? 我们把平面内与两个 F 1、F 2的距离的 _______ _ 等于常数( )的点的轨迹叫做双曲线, 这两个 叫做双曲线的焦点, 叫做双曲线的焦距。 问题2、将定义中的常数设为2a (1)、当2a <︱F 1F 2︱时,轨迹是 (2)、当2a >︱F 1F 2︱时,轨迹是 (3)、当2a=︱F 1F 2︱时,轨迹是 (4)、当2a=0 时,轨迹是__________________________________ (5)、将定义中的“绝对值”去掉,动点轨迹是什么? 例如|MF 1|-|MF 2|=2a ,表示哪支呢? 而|MF 2|-|MF 1|=2a 呢? 1.双曲线的标准方程: 类似于椭圆求标准方程,推导双曲线标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 1)、以 为 轴,以 为 轴,建立直角坐标系XOY ,则F 1、F 2的坐 标分别是F 1 、F 2 。 2)、设M(x,y)是双曲线上的任意一点, 由双曲线的定义有:- 1MF = ,(*) 由两点距离公式有:1MF 2= ; 由(*)式化简得到焦点在x 轴上的双曲线的标准方程为: ; 类似的得到焦点在y 轴上的双曲线的标准方程为: . 2.双曲线的标准方程的特点: (1)标准方程左边的两项用 号连接; (2)c b a ,,的关系: ,而椭圆标准方程中c b a ,,的关系是: 。 3.焦点的位置:椭圆的标准方程看出椭圆的焦点位置由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即2 x 项的系数是正的,那么焦点在 轴上;2y 项的系数是正的,那么焦点在 轴上。 自学检查 1.(1)、已知:116 922=-y x 求:a=_ ,b= ,c=_ ,焦点坐标是 ; (2)、已知:125 144 2 2=-x y 求:a=_ ,b=_ ,c=_ , 焦点坐标是 ; (3)、已知822 2 =-y x ,则a = ,b = , =c . 焦点坐标是 。 2、已知双曲线两个焦点的坐标为)0,5()0,5(21F F ,-,双曲线上一点P 到21,F F 的距离之差的绝对值等于6,则双曲线标准方程是______________________。 3、已知A (2,-3),B (-4,-3),动点P 满足|PA|-|PB|=6,则P 点轨迹分别是( ) A )双曲线 B )两条射线 C )双曲线的一支 D )一条射线 4、设双曲线19 162 2=-y x 上的点P 到一焦点)0,5(的距离为15,则P 点到另一焦点)0,5(-的距离是( ) A )7 B )23 C )5或23 D )7或23 5、双曲线22 13x y m m -=+的一个焦点为(2,0) ,则m=( ) A )12 B )1或3 C D 6、若方程14132 2++-k y k x =1表示双曲线,则k 的取值范围是( ) (A)(31-, 41) (B)(41-, 31) (C)( 31,41-) (D)(-∞,4 1-)∪(31 ,+∞) 7、求适合下列条件的双曲线的标准方程。 (1)、焦点在x 轴上,5,3==c a ; (2)、焦点为(0,-6),(0,6),经过点(2,-5); 巩固训练 1.已知顶点F 1(-2,0),F 2(2,0),在满足下列条件的平面内动点P 的轨迹中,为双曲线的是( ) A .|PF 1|-|PF 2|=3 B .|PF 1|+|PF 2|=6 C .||PF 1|-|PF 2||=4 D .||PF 1|-|PF 2||=3 2、已知双曲线221169 x y -=的左支上一点P 到左焦点的距离为 10,则 点P 到右焦点的距离为_______ . 3.设21,F F 是双曲线 22 11620 x y -=的焦点,点P 在双曲线上,若点P 到焦点1F 的距离是9,则点P 到2F 的距离是__________ 4.已知方程 22 121x y m m -=++表示双曲线,则m 的取值范围是_________________ 5.椭圆 22214x y a +=与双曲线22 12 x y a -=有相同的焦点,则a 的值=____________ 6.(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和? ?? ??94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 2 4 =1有公共焦点,且过点(32,2)的双曲线方程. 拓展延伸: 1.已知双曲线22 163 x y -=的焦点21,F F ,点M 在双曲线上,且1MF x ⊥轴,则1F 到直线2MF 的距离是___________ 2.设P 为双曲线22 112 y x -=上的一点,1,2F F 是该双曲线两个焦点,若12:3:2PF PF =则12PF F 的面积是_______________ 三、本节课收获:???? ? ????

双曲线及其标准方程教案

2.3.1双曲线及其标准方程第一课时 《双曲线及其标准方程》 一.教学目标 ?知识与技能目标 了解双曲线的定义,几何图形,标准方程 ?过程与方法目标 类比椭圆的定义,标准方程,得到双曲线的定义,标准方程,并注意两者的比较 ?情感与态度目标 体会运动变化的观点,数形结合的思想方法 二.教材分析: 1、教学分析:学生已经掌握曲线与方程的基础,通过实例给出双曲线的定义,进而去推导双曲线的标准方程,由于前面学习了椭圆的相关知识,这一块对于学生来说是比较熟悉的内容,可让他们自行推导,课本的例1很好的结合了双曲线的定义来考察学生对概念理解的程度,例2将双曲线应用在实际生活当中,后面的探究内容可以充分发挥出学生的主导地位,分析和发现轨迹方程的求法。 2.教学重点:双曲线的定义,标准方程 3.教学难点:双曲线标准方程的推导 三、教学过程: (一)导入新课 1.回顾椭圆的定义,标准方程

2.提出问题: 平面内到两定点的距离的差为常数的点的轨迹是什么? 3.实验探究上述问题 学生动手实验 P .52拉链演示 4.多媒体演示 (二)推进新课 1.双曲线的定义: 平面内与两个定点1F ,2F 的距离的差的绝对值为常数(小于21F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。 即以曲线上的点M 满足:a MF MF 221=-(a 为定值,a F F 221>) 思考:(1)若a F F 221=,点M 的轨迹是什么? (2)若a F F 221<,点M 的轨迹是什么? 2.双曲线标准方程的推导 以焦点在x 轴的双曲线为例,类比椭圆标准方程的推导过程,按求曲线方程的一般步骤求解。 得到双曲线的标准方程为12222=-b y a x 说明: (1)12222=-b y a x 或12222=-b x a y 均称为双曲线的标准方程; (2)c b a ,,三者的关系:222b a c +=,注意与椭圆中c b a ,,三者关

双曲线的定义及其标准方程教案

圆锥曲线教案双曲线的定义及其标准方程教案 教学目标 1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,双曲线的标准方程的探索推导过程. 2.在与椭圆的类比中获得双曲线的知识,培养学生会合情猜想,进一步提高分析、归纳、推理的能力. 3.培养学生浓厚的学习兴趣,独立思考、勇于探索精神及实事求是的科学态度. 教学重点与难点 双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中的“差的绝对值”,a与c的关系的理解是难点. 教学过程 师:椭圆的定义是什么椭圆的标准方程是什么 (学生口述椭圆的两个定义,标准方程,教师利用投影仪把椭圆的定义、标准方程和图象放出来.) 师:椭圆的两个定义虽然都是由轨迹的问题引出来的,但所采用的方法是不同的.定义二是在认识上已经把椭圆和方程统一起来,在掌握了坐标法基础上利用坐标方法建立轨迹方程.这是通过方程去认识轨迹曲线.定义中设定的常数 2a,|F1F2|=2c,它们之间的变化对椭圆有什么影响 生:当a=c时,相应的轨迹是线段F1F2.当a<c时,轨迹不存在.这是因为a、c的关系违背了三角形中边与边之间的关系. 师:如果把椭圆定义中的“平面内与两个定点F1、F2的距离的和”改写为“平面内与两个定点F1、F2的距离的差”,那么点的轨迹会怎样它的方程又是怎样的呢 (师生共同做一个简单的实验,请同学们把准备好的实验用具拿出来,一起做实验.教师把教具挂在黑板上,同时板书:平面内与两个定点F1、F2的距离之差为常数的点的轨迹是什么曲线边画、边操作、边说明.) 师:做法是:适当选取两定点F1、F2,将拉锁拉开一段,其中一边的端点固定在F1处,在另一边上截取一段AF2(<F1F2),作为动点M到两定点F1和F2距离之

新人教版必修二高中数学《圆的标准方程》教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

2.3.1双曲线及其标准方程公开课教学设计

§2.3.1双曲线及其标准方程 海南华侨中学王芳文 1.教学背景 1.1 学生特征分析 我授课班级是海南侨中理科班,方法储备上,学生经过学习,已经基本适应高中数学学习规律,但是学习方法还是停留在简单模仿,反复练习层次上,对知识的生成与发展,区别与联系认识不深,缺少抽象概括及分析综合能力。 知识储备上,学生已经系统的学习了直线方程,圆的方程以及椭圆的相关知识,学生熟知椭圆的定义,会根据题目条件求简单的椭圆的标准方程。但是由于接触学习椭圆的时间还相对较短,对椭圆的基本性质了解不深,而且理性思维比较欠缺,且计算能力的短板约束使得在处理直线与椭圆等综合问题时还存在困难。把新问题转化为已解决问题的能力有待提高,缺乏选择、调整解决问题策略的能力。 1.2教师特点分析 自己教学中的优势:注重问题引导、思路分析、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。 不足:课堂教学语言相对不够准确简练、板书不够清晰美观。 1.3 学习内容分析 1、内容分析:学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。 2、例题分析: 温故:帮助学生复习椭圆的定义,提出问题。 探究:如图,实验操作:1.取一条拉链,拉开一部分;

双曲线的标准方程

双曲线的标准方程 (第一课时) (一)教学目标 掌握双曲线的定义,会推导双曲线的标准方程,能根据条件求简单的双曲线标准方程. (二)教学教程 【复习提问】 由一位学生口答,教师板书. 问题1:椭圆的第一定义是什么? 问题2:椭圆的标准方程是怎样的? 【新知探索】 1.双曲线的概念 如果把上述定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程双是怎样的呢? (1)演示 如图,定点、是两个按钉,是一个细套管,点移动时, 是常数,这样就画出双曲线的一支,由是同一个常数,可以画出双曲线的另一支. 这样作出的曲线就叫做双曲线. (2)设问

①定点、与动点不在同一平面内,能否得到双曲线? 请学生回答,不能.指出必须“在平面内”. ②到与两点的距离的差有什么关系? 请学生回答,到与的距离的差的绝对值相等,否则只表示双曲线的一支,即是一个常数. ③这个常是否会大于或等? 请学生回答,应小于且大于零.当常数时,轨迹是以、 为端点的两条射线;当常数时,无轨迹. (3)定义 在此基础上,引导学生概括出双曲线的定义: 平面内与两个定点、的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距. 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导. (1)建系设点 取过焦点、的直线为轴,线段的垂直平分线为轴建立在直角坐标系(如图).

设为双曲线上任意一点,双曲线的焦距为,则、,又设点与、的距离的差的绝对值等于常数. (2)点的焦合 由定义可知,双曲线上点的集合是 (3)代数方程 (4)化简方程 由一位学生演板,教师巡视, 将上述方程化为 移项两边平方后整理得: 两边再平方后整理得: 由双曲线定义知即,∴, 设代入上式整理得: 这个方程叫做双曲线的标准方程.它所表示的双曲线的焦点在轴上,焦点是、,这里. 如果双曲线的焦点在轴上,即焦点,,可以得到方程 这个方程也是双曲线的标准方程. 教师应当指出: (1)双曲线的标准方程与其定义可联系起来记忆,定义中有“差”,则方程“-”号连接,

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

相关主题
文本预览
相关文档 最新文档