当前位置:文档之家› 船舶稳性知识点讲解(word)资料

船舶稳性知识点讲解(word)资料

船舶稳性知识点讲解(word)资料
船舶稳性知识点讲解(word)资料

第一节 稳性的基本概念 一、稳性概述

1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行回复到原来平衡位置的能力。

2. 船舶具有稳性的原因

1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、

船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。

2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心

的相对位置等因素。

S M GZ =?? (9.81)kN m ?

式中:

GZ :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。

◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时,

船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M :

船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态

1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。

3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如:

1)圆锥在桌面上的不同放置方法;

2)悬挂的圆盘

5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具

有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。

6. 稳性大小和船舶航行的关系

1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易

受损、舱内货物容易移位以致危及船舶安全。

2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时

间斜置于水面,航行不力。

二、稳性的分类

1. 按船舶倾斜方向分为:横稳性、纵稳性

2. 按倾角大小分为:初稳性、大倾角稳性

3. 按作用力矩的性质分为:静稳性、动稳性

4. 按船舱是否进水分为:完整稳性、破舱稳性

三、初稳性

1. 初稳性假定条件:

1)船舶微倾前后水线面的交线过原水线面的漂心F;

2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算

= ??GM?sinθ

初稳性方程式:M

R

GM = KM - KG

第二节 初稳性计算 一、初稳性衡准指标GM 计算 1. GM = KM - KG 0 - GM f

式中:KM —— 横稳心距基线高度(m),KM = f(dm); KG 0 —— 船舶重心距基线高度(m)。 2. KG 0计算

0i i P Z KG ∑?=

?

式中:P i —— 组成船舶总重的第i 项载荷重量。 Z i —— P i 载荷的重心距

基线的高度(m)。

Z i 确定方法:

(1)估算法 (2)利用舱容曲线

(3)以舱内载荷的合体积中心或

舱容中心作为舱内载荷的 合重心。

二、货物移动对稳性的影响及计算

1. 货物移动→排水量(吃水)不变→KM 不变→δGM=-G 0G 1

2. 平行力移动原理:P*Z=Δ*G 0G 1

3. 货舱装满时,轻、重货等体积对调

P H -P L =P

P H *SF H -P L *SF L =0

三、少量载荷(∑P i ≤10%?)变动后GM 计算 若设∑P i 变动前后δKM = 0,则:

()

121i Pi i P KG Z GM GM P ∑?-=+

?+∑

式中:GM 1、GM 2 —— 载荷变动前、后船舶 的初稳性高度(m)。

四、悬挂载荷对GM 的影响

P*Z

GM=

设悬挂物重P 吨,其初始重心至悬挂点的垂 直距离l ,船舶的横倾角θ,则: 0sin sin R M GM l P θθ=???-??

0sin l P GM θ??

?=??-? ????

即悬挂载荷对GM 影响值为:

l P

GM δ?=-

?

因δGM 值等于将载荷P 垂向移至悬挂点所产生对GM 影响,所以称悬挂点为悬挂载荷的虚重心。 五、自由液面计算

x f i GM ρδ∑?=

?

式中:ρ——液体密度(g/cm 3);

i x ——自由液面对其横倾轴的惯性距(m 4),常用公式有: 梯形液面:

()()22121248

x l

i b b b b =

+?+ 其中:l —— 舱长(m);

b 1、b 2 —— 前、后边宽(m)。 矩形液面:

3

12

x l b i ?=

其中: b —— 矩形边宽(m)。

第三节 大倾角稳性及计算 一、大倾角稳性与初稳性的区别

1. 大倾角时,不再等容倾斜,倾斜轴不再过初始漂心F ;

2. 横稳性不再是定点,而随横倾角变化而变化;

3. 大倾角稳性用GZ 衡量稳性大小,不能直接以GM 0作为其衡准指标。 二、大倾角稳性的表示方法 1. 基点法

M R = ??GZ = ??(KN - KH)

式中:KN —— 形状稳性力臂(m),KN = f(?,θ),可从“稳性横交曲线”中查取; KH —— 重量稳性力臂(m),KH = KG ?sin θ,

通常取:

0x

i KG KG ρ∑?=+

?

GZ —— 复原力臂(m),GZ = KN - KH 。 2. 假定重心点法

)(sin )(0m KG KG Z G GZ A A A θ--=

式中: G A Z A —— 假定重心高度的静稳性力臂;

KG A —— 假定重心高度。 3. 稳心点法

)(sin 0m GM MS GZ θ

+=

式中: MS —— 剩余静稳性力臂,(m)。

第四节静稳性曲线

一、静稳性曲线的绘制(M

R

= f(θ)或GZ = f(θ))

二、静稳性曲线的特征值

1. 曲线在原点处的斜率GM

2. 横倾30?处的复原力臂GZ|θ

=30?

3. 最大复原力臂对应的横倾角θ

smax

(极限静倾角)曲线最高点所对应的横坐标值。

4. 稳性消失角θ

v

在θ>θ

smax

且MR = 0所对应的横倾角。

5. 曲线上反曲点对应角θ

im

通常为甲板浸水角。

6. 静稳性曲线下面积Aθ

2-θ1

表示复原力矩M

R 所作的功A

R

(倾斜后船舶所具有的位能)。

◎大倾角静稳性的衡准指标:GZ|θ

=30?、θ

smax

、θ

v

和A

R

三、影响静稳性曲线的因素

1. 对于特定船:与KG和?有关。

2. 对不同船:与船宽B、干舷FB等因素有关。B增大时,GM和GZ|θ

=30?增大,θ

smax

θv减小。FB增大时,GM不变,但可提高大倾角稳性。

第五节动稳性曲线、对船舶稳性的要求

一、与静稳性的区别

静稳性动稳性

受力性质静态外力作用动态外力作用

表征复原力矩M

R

(力臂GZ) M

R

= ??GZ M

R

所作功A

R

(力臂l

d

) A

R

= ??l

d

平衡条件当M

R

= M

h

时,船舶平衡于静倾角当A

R

= A

h

时,船舶平衡于动倾角

静倾角θ

s

:船舶在静力作用下的最大横倾角。

动倾角θ

d

:船舶在动力作用下的最大横倾角。

二、动稳性的衡准指标

1. 稳性衡准数K的计算

min min

h h

w w

M l

K

M l

??

==

??

式中:M

hmin

、l

hmin

——最小倾覆力矩和力臂,即使船舶发生倾覆的最小动倾外力

矩和力臂;

M

w

、l

w

——风压倾侧力矩和力臂,即设定的恶劣海况下风压对船舶的动

倾力矩和力臂。

2. M

hmin

求法

①绘制动稳性曲线l

d

= f(θ)

利用动稳性曲线是静稳性曲线的面积曲线原理绘制。

②在l

d

= f(θ)曲线上作两项修正:

横摇角θ

i

修正

进水角θ

f

修正

③按定义在曲线上量取l

hmin

(M

hmin

= ??l

hmin

)

3. Mw 计算

w

w w w w A Z P l M ??=??=)(?=f

式中:P w —— 单位计算风压(t/m2),P w =f(航区, Z w ); A w —— 船舶横向受风面积(m2),Aw = f(dm); Z w —— A w 中心距水线距离(m);

l w —— 风压倾侧力臂(m),可从船舶资料中的风压倾侧力臂图表中查取。 三、对船舶稳性的要求

1. 我国2004年《法定规则》对非遮蔽航区海船的稳性基本要求:

经自由液面修正后,船舶在整个航程中必须同时满足五项基本衡准要求: (1) GM ≥ 0.15m ;

(2) GZ|θ=30? ≥ 0.20m ,当θf <30°时由GZ|θ=θf 代替;

(3)θsmax ≥max{25°, θf },当船舶宽深比>2.0时,该要求可适当放宽; (4)θv ≥ 55°,99和04版《法定规则》该项要求已被取消。 (5) K ≥ 1.00

2. 对国际航线海船的稳性衡准要求

我国99《法定规则》和IMO 规定:经自由液面修正后,船舶在整个航程中要求同时满足: (1)GM ≥ 0.15m ;

(2)复原力臂曲线在横倾角0°~30°之间所围面积应不小于0.055m ·rad ; (3)复原力臂曲线在横倾角0°~40°或进水角中较小者之间所围面积应不小于

0.090m ·rad ;

(4)复原力臂曲线在横倾角30°~40°或进水角中较小者之间所围面积应不小于

0.030m ·rad ; (5)GZ|θ=30? ≥ 0.20m ;

(6)θsmax ≥ 30°,至少不小于25°; (7)满足天气衡准要求。

第六节 稳性校验与调整 一、船舶稳性的校核

船舶每一航段对稳性最不利装载情况下必须满足: 经自由液面修正:GM ≥ GM c + 0.2 (m)

未经自由液面修正:GM 0 ≤ GM|T =9s (m) 二、保证适度稳性的经验方法

按合适比例控制各层舱配货重量。

例如:

二层舱 非底舱货约占货总重35%

杂货船 (甲板货≤10%,甲板货货堆高度≤(1/5~1/6)B) 满载时 底舱货约占货总重65% 三、船舶稳性的检验方法

1. 航行中检验 —— 实测横摇周期T θ

T θ:船舶横摇一个全摆程(四个摆幅)所需时间(s)。 (1)《法定规则》推荐公式

22

00

40.58B KG T f GM θ+=??

式中:B —— 船舶型宽(m);

GM 0 —— 未经自由液面修正的初稳性高度(m); f ——系数,由B/d m 查表。 (2)经验公式

2

0f B GM T θ??

?= ???

式中:f —— 横摇周期系数,一般货船f = 0.73~0.88。 2. 停泊中检验 —— 横向移动或加减载荷

设横向移动P(t),船舶产生横倾角θ,则:

P ?Y = ??GM ?tg θ 或: P Y

GM tg θ

∑?=

?? 式中:Y —— P 重心横移的距离,右移取“+”

左移取“-”。

3. 观察船舶征状

M R ↓ = ??GM ↓?sin θ GM 0↓= f(T θ↑)

当受到较小外力矩作用时,船舶会发生明显的横倾,且其横摇极其缓慢。

四、稳性调整 1. GM 的调整

设GM 的调整值:N h = 要求的GM 2 - 调整前GM 1。 (1)垂向移动载荷

h N P Z

??

=

式中:Z —— P 重心垂向移动距离(m),下移取“+”,上移取“-”。

当满载满舱时,可采用轻 重货物等体积互换方法调整,此时还应满足: P = P H - P L SF H ?P H = SF L ?P L (2)加减载荷(∑P ≤ 10%?)

N h ?(? + P) = P ?(KG 0 - Zp)

0h p h

N P KG Z N ??

=

--

注意:P 加载时取“+”,减载时取“-”。 2. 横倾角的调整 (1)横向移动载荷

设横向移动P(t),船舶产生横倾角θ,则:

GM

P tg Y

θ??=

? 式中:Y —— P 重心横移的距离,右移取“+”,

左移取“-”。

(2)加减载荷

2

()P GM P tg Y

θ?+?=

?

式中:Y —— P 重心距中纵剖面的距离(m);

GM 2—— 载荷变动后的初稳性高度(m);

即:()

21i o Pi i

P KG Z GM GM P ∑?-=+

?+∑

θ —— 装载变动后所产生的横倾角。 五、作业(四)

1. 某轮出港时垂向总力矩为17500tm,设排水量为3500t 时,KM 为5.50m ,试求出港时的GM 值?若该轮抵目的港燃油消耗量50t ,其KP 为0.7m ,淡水消耗量30t ,KP 为3.0m ,使油、水柜产生自由

液面,设燃油比重0.85,油柜长7m ,宽14m ,

中间有纵向隔舱壁;淡水柜长2m ,宽6m ,试求抵港时的GM 值?

2. 某轮当时排水量6000t,因装货造成右倾9°,KG为6.52m,现在二层柜内加装300t

棉花,其重心高度为10.8m,分装于纵向中心线左右两翼各5.0m处,其KM为7.15m,求左右两翼各装多少吨货才能使船舶保持正浮状态?

3. 某轮排水量15000t,GM

0=0.45m,要求GM

1

=0.60m,现利用二层舱的盘元

(SF

H =0.45m3/t)和底舱的棉花(SF

L

=2.80m3/t)互换舱位来调整稳性(货物垂向移动

距离为6.0m),问各需移货多少吨?

第六节 对船舶稳性的要求

第六节对船舶稳性的要求 1.某船舶的宽深比为1.8,稳性衡准数为1.2,按我国法定规则的规定,该船的极限静倾角均可适当减小()。 A.0.8° B.1.5° C.3° D.0° 2.我国《船舶与海上设施法定检验规则》对船舶稳性的要求应()。 A.开航时必须满足 B.航行途中必须满足 C.到港时必须满足 D.整个航程必须满足 3.根据《船舶与海上设施法定检验规则》,对国内航行普通货船完整稳性的基本要求,均应为()后的数值。 A.进行摇摆试验 B.经自由液面修正 C.计及横摇角影响 D.加一稳性安全系数 4.稳性衡准数是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 5.极限静倾角是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 是()的指标。 6.GZ 30o A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 7.GM是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性

D.纵稳性 8.当风压倾侧力矩等于最小倾覆力矩时,稳性衡准数()。 A.等于1 B.大于1 C.小于1 D.以上均有可能 9.《IMO稳性规则》中规定:船舶受稳定横风作用时的风压倾侧力矩可用公式 M W =P W A W Z W 来计算,其中Z W 是指()。 A.A W 的中心至水下侧面积中心的垂直距离 B.A W 的中心至船舶水线的垂直距离 C.A W 的中心至船舶吃水的一半处的垂直距离 D.A或C 10.当风压倾侧力矩小于最小倾覆力矩时,稳性衡准数()。 A.等于1 B.大于1 C.小于1 D.以上均有可能 11.根据《船舶与海上设施法定检验规则》对船舶完整稳性的要求,国内航行的普通货船,在各种装载状态下的稳性衡准数应()。 A.小于1 B.大于1 C.等于1 D.B+C 12.某船舶的宽深比为2.4,稳性衡准数为1.5,按我国法定规则的规定,该船的极限静倾角均可适当减小()。 A.5° B.4° C.3° D.2° 13.我国《船舶与海上设施法定检验规则》对下列()船舶既提出基本稳性衡准要求,又提出特殊衡准要求。 ①散粮船;②集装箱船;③杂货船;④拖轮;⑤油轮;⑥冷藏船;⑦矿石专用船。A.①②③④⑤⑥⑦ B.①②④⑤⑥ C.①②④⑥ D.①②④ 14.我国《海船法定检验技术规则》对国内航行船舶完整稳性的基本要求共有()

船舶原理公式

船舶原理公式汇总 第一章 船型系数: 水线面系数C WP =A W /LB 中横剖面系数C M =A M /Bd 方形系数C B =排水体积/LBd 菱形系数C P =排水体积/A M L=排水体积/C M BdL=C B /CM 垂向菱形系数C VP =排水体积\A W d=排水体积/C WP LBd=C B /C WP 排水体积符号▽ 尺度比: 长宽比L/B :与船的快速性有关 船宽吃水比B/d:与船的稳性、快速性和航向稳定性有关 型深吃水比D/d :与船的稳性、抗沉性、船体的坚固性以及船体的容积有关 船长吃水比L/d :与船的回转性有关,比值越小,船越短小,回转越灵活 梯形法:A=?b a ydx A=l ?b ydx 0 =l(∑=n i yi 0 -(y 0+y 3)/2)注(y 0+y n )/2为首尾修正项 辛氏法:一法,A=1/3l(y 1+4y 2+y 3)二法,A=3l/8(y 1+3y 2+3y 3+y 4) 计算漂心X F =M oy /A W =? -2/2 /L L xydx /? -2 /2 /l l ydx 其中A W =2L δ∑yi ' M oy =2(L δ)2∑kiyi '所以X f =L δ∑kiyi '/∑yi ' 计算横剖面面积型心的垂向坐标Z a =M oy /A s =?d zydz 0 /?d ydz 0 其中横剖面面积As=2?d ydz 0 Moy=2?d zydz 0 又可以表达为As=2d δ∑yi '(注意首位修正) Moy=2(l δ)2∑kiyi '所以可以表达为za=d δ∑kiyi '/∑yi ' 第二章 浮心的计算dM yoz =x F A w d z dM xoy =zA w d z x F 为A w 的漂心纵向坐标 排水体积对中站面yoz 的静距M yoz =?d xfAwdz 0 浮心纵向坐标x B =M yoz /▽=? d xfAwdz 0 /?d Awdz 0 同理可以得排水体积对基平面xoy 的静距和浮心垂向坐标Mxoy=?d zAwdz 0 Zb=Mxoy/▽=?d zAwdz 0/?d Awdz 0 同理根据横剖面计算排水体积和浮心位置 dM yoz =x F A s d x dM xoy =z a A s d x 浮心纵向坐标Myoz=? -2/2 /l l xAsdx X B =Myoz/▽=? -2 /2 /l l xAsdx /? -2 /2 /l l Asdx

MSC.267_85__《2008年国际完整稳性规则》引言和A部分

《2008年国际完整稳性规则》引言和A部分 目录 引言 1 宗旨 2 定义 A部分-强制性衡准 第1章总则 1.1 适用范围 1.2 波浪中的动态稳性现象 第2章-总体衡准 2.1 总则 2.2 关于复原力臂曲线特性的衡准 2.3 强风和横摇衡准(气候衡准) 第3章-某些类型船舶的特殊衡准 3.1 客船 3.2 5,000载重吨及以上的油船 3.3 载运木材甲板货的货船 3.4 散装运输谷物的货船 3.5 高速船

引言 1 宗旨 1.1 本规则旨在提出强制性和建议性的稳性衡准及其他确保安全操作船舶的措施,最大限度地降低对这些船舶、船上人员以及环境构成的风险。本引言和规则的A部分涉及强制性衡准,B部分包含建议和附加的导则。 1.2 除非另行说明,本规则载有适用于长度为24 m及以上的以下类型船舶和其他海上运载工具: .1 货船; .2 运输木材甲板货物的货船; .3 客船; .4 渔船; .5 特种用途船舶; .6 近海供应船; .7 移动式近海钻井装置; .8 平底船;及 .9 甲板上装载集装箱的货船和集装箱船。 1.3 主管机关可以对新颖设计的船舶或本规则未作规定的船舶做出设计方面的补充要求。 2 定义 就本规则而言,下述定义适用。所用术语如未在本规则中定义,则经修订的《1974年安全公约》中的定义适用。 2.1 主管机关系指船舶有权悬挂其国旗的国家的政府。 2.2 客船系指经修正的《1974年安全公约》第I/2条所定义的载运12名以上旅客的船舶。 2.3 货船系指除客船、军事船舶和运兵船、非机动船、原始方式建造的木船、渔船和移动式近海钻井装置以外的任何船舶。 2.4 油船系指主要为了在其货物处所散装油类而建造或改造的船舶,包括混装船和《防污公约》附则II中定义化学品船(当其载运的货物全部或部分为散装油类时)。 2.4.1 混装船系指设计成既可散装运输油类又可散装运输固体货物的船舶 2.4.2 原油船系指从事原油运输的油船。

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

稳性的基本概念

第一节 稳性的基本概念 一、稳性概述 1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行 回复到原来平衡位置的能力。 2. 船舶具有稳性的原因 1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、 船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。 2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心 的相对位置等因素。 S M G Z =?? (9.81)kN m ? 式中: G Z :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。 ◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时, 船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M : 船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态 1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。 3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如: 1)圆锥在桌面上的不同放置方法; 2)悬挂的圆盘 5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具 有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。 6. 稳性大小和船舶航行的关系 1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易 受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时 间斜置于水面,航行不力。 二、稳性的分类 1. 按船舶倾斜方向分为:横稳性、纵稳性 2. 按倾角大小分为:初稳性、大倾角稳性 3. 按作用力矩的性质分为:静稳性、动稳性 4. 按船舱是否进水分为:完整稳性、破舱稳性 三、初稳性 1. 初稳性假定条件: 1)船舶微倾前后水线面的交线过原水线面的漂心F; 2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算 初稳性方程式:M R = ??GM?sinθ GM = KM - KG

第四章 船舶稳性

第四章船舶稳性 第一节船舶稳性的基本概念 (一)船舶平衡的3种状态 1、稳定平衡 >0 G点在M点之下,GM>0,M R 2、随遇平衡 G点与M点重合,GM=0,M =0 R 3、不稳定平衡 <0 G点在M点之上,GM<0,M R (二)稳性的定义 船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。 (三)稳性分类 分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水 ┏破舱稳性 稳性┫┏初稳性(小倾角稳性) ┃┏横稳性┫┏静稳性 ┗完整稳性┫┗大倾角稳性┫ ┗纵稳性┗动稳性 其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节船舶初稳性(1) (一)船舶初稳性的基本标志 1.稳心M 与稳心距基线高度KM 船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。 稳心M距基线的垂向坐标称为稳心距基线高度。 2.初稳性的衡准指标 稳心M至重心G的垂距称为初稳性高度GM。 初稳性高度GM是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。 3.初稳性中的假设(对于任一给定的吃水或排水量) (1)小倾角横倾(微倾); (2)在微倾过程中稳心M和重心G的位置固定不变; (3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧; (4)在微倾过程中倾斜轴过漂心。 (二)初稳性高度GM的表达式 GM=KB+BM-KG=KM-KG

第二节 船舶初稳性(2) (三) 初稳性高度的求取 1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。 2、 KG 的计算 式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t Z i —— 载荷P i 的重心距基线高度,m 3、Z i 确定 (1)舱容曲线图表查取法 船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下: i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ) 2.3()m (Z P KG i i ? *∑ =

干散货船稳性安全探析

第10卷 第7期 中 国 水 运 Vol.10 No.7 2010年 7月 China Water Transport July 2010 收稿日期:2010-05-03 作者简介:孙永煜(1971-),男,烟台海员职业中等专业学校工程师。 干散货船稳性安全探析 孙永煜 (烟台海员职业中等专业学校,山东 烟台 264000) 摘 要:近年来,因为稳性问题导致多艘干散货船发生事故,对此,笔者分析了船舶稳性的要求,研究了即将强制实施的IMSBC Code,结合自己的经验提出了应对措施。 关键词:船舶稳性;易流态化;安全;平舱 中图分类号:U698 文献标识码:A 文章编号:1006-7973(2010)07-0004-02 一、前言 自上世纪七八十年代以来,干散货船得到了迅猛发展,据Drewry 统计,目前干散货船队规模已达到4.5亿载重吨左右。虽然近几年国际航运市场低迷,船队运力闲置情况较严重,但据辛浦森航运咨询有限公司(SSY)研究中心主管John Kearsey 预测,依靠中国和印度等新兴市场的贸易大幅增加和发达国家经济的缓慢复苏,2010年的干散货海运贸易仍将呈现超过8%的增幅。的确,今年第一季度全球干散货船队运力规模净增长1,700万吨,而且还有持续上升的趋势。 干散货船兴盛的背后,也让我们看到了一些不谐现象:刚刚过去的4月份,一艘由辽宁锦州驶往江苏常熟的“上源9”货轮在大连海域沉没,事故原因就是满载炼钢铁矿砂的干散货船“上源9”因货物位置发生偏移,船员调整压载舱过程中,造成船偏向另一侧,从而导致沉船;3月份,满载黄沙的“豫信货2699”轮在38°23′N,118°33′E 遇险沉没…… 海损事故的不断发生,让我们不得不深思干散货船的安全问题。从今年刚发生的这几起案例来看,稳性是造成事故的主要元凶。我们再看看前几年发生的干散货船海难事故,看看在港外沉没但却仅有一人生还的“铭扬洲178”轮,也会同样感觉到稳性是影响散货船安全的重要原因。 二、船舶稳性要求 船舶稳性是指受外力矩作用,船舶发生倾侧而不致倾覆,当外力矩作用消失后,仍能回复到原平衡位置的能力。船舶的稳性可分为静稳性、动稳性、初稳性和大倾角稳性、完整稳性和破损稳性,营运中的船舶必须满足船舶稳性要求。鉴于稳性对船舶安全的重要性,IMO 海上安全委员会(MSC)第85次会议于2008年12月4日通过了MSC.267(85)决议——《通过<2008年国际完整稳性规则>》,根据随后通过的1974年海上人命安全公约(SOLAS)修正案,《2008年国际完整稳性规则》(简称《2008年IS 规则》)的引言和A 部分规定成为强制性要求,将于2010年7月1日正式生效。 《2008年IS 规则》的篇章结构为: 前言(Premeale)——回顾; 引言(Introduction)——目的与定义; PART A——强制性的衡准; PARTB——适用于某些类型船舶的建议和附加指南。 《2008年IS 规则》PART A 部分第二章对船长为24m 及以上的货船和客船提出了稳性最低衡准要求,第三章对某些其他类型船舶也提出了特殊衡准要求。对于干散货船装运谷物时,由于谷物的特性对船舶稳性的不利影响,除应满足对所有货船的稳性要求外,还应满足: 经自由液面修正后的初稳性高度应大于或等于0.30m。 由于谷物移动而引起的船舶横倾角应小于或等于12度,1994年1月1日以后建造的船舶应同时满足横倾角小于或等于12度及甲板边缘浸水角。 船舶剩余动稳性值应大于或等于0.075m.rad。 上述衡准要求是满足稳性安全的最低限,一般的,各海运公司为确保航运安全,在IMO 规定的最低限值的基础上,还会提出自己的强制要求。 三、干散货船稳性安全 理论上,船舶满足了《2008年IS 规则》,就能保证稳性安全,但是,从大量的海损事故看,干散货船事故往往是出发时能够满足稳性要求,而在航却发生了问题。2005年12月21日,满载陶土的“铭扬洲178”沉没,事后调查时没有获得散装陶土得到有效平舱处理的证据,经分析,散装陶土在船舶过度横摇时产生移位,从而导致在航船舶倾斜丧失稳性而发生事故。一般说来,在航干散货船极易因货物流态化或平舱不当、货物移位而影响稳性。 1.货物流态化影响船舶稳性 易流态化货物(Cargoes which may liquefy),在《国际海运固体散货安全操作规则》(IMSBC Code)中归为A 类散货,该类货物一般由较细颗粒状的混合物构成,包括精矿、煤粉或类似物理性质的货物。这类货物在海运时的潜在危险是:当它们的含水量超过其“适运水分限量”(TML—Transportable Moisture Limit)时,由于大量含水,在航行中因船舶的颠簸、振动,其水分逐渐渗出,表面形成可流动状态。表层流态化的货物在风浪中摇摆时会流向一舷,而船回摇时却不能完全流回,如此反复,将会使船舶逐渐倾斜

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

大工19春《船舶与海洋工程法规》在线测试2

(单选题)1: ()系指对舱内散装谷物经一切必要的和合理的平舱,即将谷物自由表面整平以便使甲板和舱口盖下方的所有空间尽可能装满,并将谷物装载到可能的最高水平面的任何货舱。A: 经分舱的满载舱 B: 经平舱的满载舱 C: 未经平舱的满载舱 D: 部分装载舱 正确答案: (单选题)2: 《2008年国际完整稳性规则》生效时间为()。 A: 2008年7月1日 B: 2009年7月1日 C: 2010年7月1日 D: 2011年7月1日 正确答案: (单选题)3: 一般通过合理的()布置来满足船舶的浮态与完整稳性及破舱稳性的要求。 A: 空间 B: 平面 C: 分舱 D: 平舱 正确答案: (单选题)4: 根据油船的破舱稳性衡准,油船在浸水的最后阶段,不对称浸水所产生的横倾角不得超过()。 A: 10° B: 15° C: 20° D: 25° 正确答案: (单选题)5: 《MARPOL73/78公约》附则Ⅳ为()。 A: 防止油类污染规则 B: 控制散装有毒液体物质污染规则 C: 防止船舶生活污水污染规则 D: 防止船舶造成空气污染规则 正确答案: (单选题)6: 集装箱船所核算的各种装载情况经自由液面修正后的初稳性高度GM均应不小于()。 A: 0.2m B: 0.3m C: 0.4m D: 0.5m 正确答案:

(单选题)7: ()是指船舶未受破损时受到外力作用发生倾斜而不致倾覆,当外力的作用消失后,它仍能回复到原来平衡位置的能力。 A: 破舱稳性 B: 完整稳性 C: 破损稳性 D: 完全稳性 正确答案: (单选题)8: 污油水舱(或一组污油水舱)的布置,应有留存洗舱后所产生的污油水、残油和污油压载水残余物所必需的容量,此总容量不得小于船舶载油容量的()。 A: 1% B: 2% C: 3% D: 5% 正确答案: (单选题)9: 计算集装箱船的稳性时,每只集装箱重心垂向位置应取在集装箱高度的()处。A: 1/2 B: 1/3 C: 1/4 D: 1/5 正确答案: (单选题)10: 海洋环境污染中有35%的污染是船舶造成的,而造成污染危害最严重的是()。A: 客船 B: 散装货船 C: 渔船 D: 大型油轮 正确答案: (多选题)11: 货船典型载况包括()。 A: 满载出港 B: 满载到港 C: 压载出港 D: 压载到港 正确答案: (多选题)12: 船舶与海洋平台造成的污染来源包括()。 A: 轮机设备 B: 货物 C: 船员及乘客 D: 压载水 正确答案:

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

特种用途船舶安全规则(SPS2008)

附件1 : 《特种用途船安全规则》2008版与前SPS规则(见《船舶与海上设施法定检验规则》(2008)国际航行篇第4A分册)的主要内容对比 章节主要变化 1、第7章标题“爆炸品的贮存”改为“危险品” 2、第11章增加新的一章“保安” 3、前言1、新增第1条的内容 2、删除原第5条有关对近岸航程的放宽要求 3、新增第8条的内容 4、第1章,第1.2条适用范围1、增加“适用于所有在2008年5月13日或以后发证” 2、增加“不适用于符合MODU规则的船” 3、增加“不适用于用以运输和装载不在船上工作的工业人员的船舶。” 5、第1章,第1.3条定义1、删除近岸航程的定义 2、1.3.12款增加脚注,对“非机械推进”和“客船”进行 说明 6、第1章,第1.7.4条删除原“提示”的内容 7、第2章1、完整稳性标准改为“应满足《2007年完整稳性规则》B 部分第2.5节的规定”; 2、原2.2至2.8的要求删除,由现在2.2至2.5条替代。 8、第3章第3.2条中“200名”改为“240名” 9、第4章第4.2和4.3条中的“50名”改为“60名” 10、第5章第5.2条中“200名”改为“240名” 11、第6章第6.1至6.3条中的“200名”改为“240名”,“50名” 改为“60名” 12、第7章整体修改,全面引进IMDG规则 13、第8章1、第8.2至8.4条中的“50名”改为“60名” 2、第8.3条的要求有较大变化 14、第9章删除原9.2条 15、第11章新增内容

附件2: 特种用途船舶安全规则(2008) 目录 第1章 通则 第2章 稳性与分舱 第3章 机械装置 第4章 电气装置 第5章 周期性无人值班机器处所 第6章 防火 第7章 危险品 第8章 救生设备 第9章 无线电通信 第10章 航行安全 第11章 保安 附件特种用途船舶安全证书格式

船舶初稳性高度计算

船舶初稳性高度计算 船舶初稳性高度计算 1.船舶装载后的初稳性高度GM: GM=KM--KG {KM--为船舶横稳心距基线高度(米) KG--为船舶装载后重心距基线高(米) KM--可由船舶资料静水曲线图按平均吃水查得} 2.舶装载后重心距基线高KG: KG=( DZg+∑PiZi) /Δ { D--空船重量(吨);查船舶资料得; Zg--空船重心距基线高度(米);查船舶资料得; Pi--包括船舶常数,货物总重量,船员及供应品,备品,油水重量(吨);Zi--载荷Pi的重心高度(米); ?--船舶排水量(吨);} 3.自由液面的影响δGMf : δGMf=∑ρix/Δ {ρ—舱内液体的密度(克/立方米) ix---液舱内自由液面对液面中心轴的面积横矩(M4)} 4.经自由液面修正后的初稳心高度GoM: GoM=KM--KG--δGMf 5.船舶横摇周期T?: T?=0.58f√(B+4KG)/GoM {0.58为常数; f—可由B/d查出; B—船舶型宽; d—船舶装载吃水;}

6.例题:某船装载货物后Δ=18500吨,全船垂向重量力矩∑PiZi= 143375吨.米,现有1号燃油舱自由液面对液面中心轴的面积横矩∑ρix= 58.7四次方米。淡水舱自由液面对液面中心轴的面积横矩∑ρix= 491.1四次方米。两舱均未装满,其中燃油密度ρ=0.97克/立方厘米。试计算经自由液面修正后的初稳性高度GoM(根据Δ查得KM=8.58米)。 解:1)求KG KG=( DZg+∑PiZi) /Δ=143375/18500=7.75米 2)计算自由液面影响的减小值δGMf : δGMf=∑ρix/Δ=(0.97*58.7+1.0*491.1)/18500 =0.03米 3)计算 GoM: GoM=KM—KG--δGMf =8.58-7.75-0.03 =0.80米

对船舶稳性的要求

对船舶稳性的要求 一、IMO对普通货船的稳性要求 1、船舶在各种装载情况下的初稳性高度GM≥0.15m 2、横倾角在0~30°之间静稳性曲线下的面积≥0.055m 3、在0~40°(或小于40°的进水角θf)之间静稳性曲线下的面积不小于0.09m?rad. 4、30°~40°(或小于40°的θf)之间静稳性曲线下的面积≥0.03m?rad. 5、θ≥30°处的复原力臂不小于0.02m. 6、最大复原力臂对应的角度最好大于30°,至少不少于25° 7、满足天气蘅准数的要求 二、我国“海船稳性规范”对普通货船的稳性衡准数要求 1、经自由液面修正后的GM≥0.15m 2、θ=30°或θf处的GZ≥0.20m 3、Gzmax对应的角度θmax≥30°或当静稳性曲线有两个峰值时,第一个峰值对应的角度不小于25° 4、稳性消失角θv不小于55°,即θv≥55° 5、船舶在各种装载状态下的稳性衡准数不小于1,如图所示,即Mhmin/Mw≥1;Mhmi n的求取要经过横摇角θi和进水角θf的修正;Mw为风压力矩Mw=ρw?Aw?Zw,ρw-风压,Aw-横风受风面积,Zw-吃水一半到Aw中心的垂直距离 (1) 求取Mhmin时经过横倾角θi的修正 MR P K M L 静N 稳Mhmin θ 性O θdmax θi

H MR θi Mhmin 动 A 稳 性θ O θdmax 57°.3 (2) 求取Mhmin时经过横倾角θf的修正(如果曲线在θf处中断) MR P K M 静N 稳Mhmin θ性O θf θi H

MR θi Mhmin 动 A 稳 性θ O θf 57°.3 三、散粮船,油船,集装箱船的GM≥0.30m,且散粮船的静倾角不能大于12° 四、木材船的GM≥0.10m

船舶稳性

船舶稳性 第二章我们学习了船舶的浮性,知道船舶在静水中平衡时受到重力和浮力两个力的作用,这两个力方向相反、大小相等、作用点(重心和浮心)在同一铅垂线上,那么当船受到另外一个倾斜力的作用后,船能否在倾斜力消失后恢复到平稳状态呢?这就是我们今天要学习的“船的稳性”问题。 本节课我们的主要内容有:稳性的概述,讨论稳性问题的关键知识点(也就是初稳性公式推导的准备和过程),初稳性公式及应用。 下面我们先看一下“稳性的概述”,这一部分主要有三个知识点:稳性概念、稳性分类、倾斜力矩和复原力矩。 一、稳性:船舶在外力作用下偏离其平衡位置而倾斜,当外力消失 后,能自行回复到原来平衡位置的能力,称为船舶稳性。或者说: 是船舶在外力作用消失后保持其原有位置的能力。 二、稳性分类: 按作用力矩性质分为:静稳性和动稳性,静稳性:假若倾斜力矩的作用是从零开始逐渐增加,使船舶倾斜时的角速度很小,可忽略不计,因此船舶在倾斜过程中不计角加速度和惯性矩;动稳性:若倾斜力矩是突然作用在船上,使船舶倾斜有明显的角速度的变化,则这种倾斜下的稳性称为动稳性。船舶在倾斜过程中计角加速度和惯性矩。 按倾斜方向分:横倾和纵倾,船舶的横向倾斜,即向左舷或右舷一侧的倾斜(简称横倾);纵向的倾斜,即向船首或船尾的倾斜(简称纵倾);倾斜力矩的作用平面平行于中横剖面时称为横倾力矩;倾斜力矩的作用平面平行于中纵剖面时称为纵倾力矩; 按倾斜角度分:初稳性(或称小倾角稳性):倾斜角度小于10度~15度或上甲板边缘开始入水前的稳性;大倾角稳性:一般指倾角大于10度~15度或上甲板边缘开始入水后的稳性。 因为在研究船舶小倾角稳性时可以引入某些假定,既使浮态的计算简化,又能较明确地获得影响初稳性的各种因素之间的规律。所以小倾角稳性即初稳性的研究具有重要意义。 三、力矩: 船舶在停泊或航行过程中会受到各种外力,这些外力作用对船施加一个力矩,即倾斜力矩;倾斜力矩的来源有:1)风浪的作用;2)船上货

船舶静力学计算及稳性衡准系统

船舶静力学计算及稳性衡准系统 4.1 2009年1月最新版 船舶静力学计算及稳性衡准系统V4.1_0901"(cyzwx) 是由中国船级社武汉规范研究所研制开发。 11全模块:静水力性能、舱容曲线、自由液面、完整稳性、倾斜试验、破舱稳性、随浪稳性、纵向下水、干舷吨位、总纵强度、应急响应 4.1.1 系统界面介绍 Windows应用程序的界面主要有三种,即单文档界面、多文档界面和资源管理器样式界面。顾名思义,单文档界面指只有一个窗体的界面,其应用程序只能打开一个文档,想要打开另一个文档时,必须先关闭已打开的文档。多文档界面指在主窗口中包含多个子窗口的界面,其应用程序允许用户同时显示多个文档,每个文档显示在它自己的窗口中,子窗口被包含在主窗口中(同时有两个或更多的窗口时,只有一个是活动的,用户可以用鼠标单击窗口的可见部分来将它激活),主窗口为应程序中的所有的子窗口提供工作空间。资源管理样式界面是包括有两个窗格(或者区域)的一个单独的窗口,通常是由右半部分的一个树形(或者层次型)的视图和右半部分的一个显示区所组成,其应用程序类似Windows资源管理器,左边窗格为主题,而右边窗格为选中的主题细节。 本程序系统采用多文档界面,同时具有资源管理器样式界面的风格,如图4.1所示。 计算功能

“船舶静力学计算及稳性衡准系统”的功能包括静水力性能计算、舱容曲线计算、自由液面修正计算、倾斜试验计算、完整稳性计算、可浸长度曲线计算、破舱稳性计算和下水计算等功能,在此基础上还将开发吨位计算、干舷计算和随浪稳性计算等功能。 1.3.1 静水力性能计算 1. 计算内容: 静水力曲线、邦戎曲线、费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线。 2. 计算方法: 费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线采用等体积法计算;静水力曲线和横截曲线可计入初始纵倾角的影响。 1.3.2 舱容曲线计算 1. 计算内容: 舱室要素和舱容曲线。 2. 计算方法: 采用特征点坐标描述舱室形状,自定义计算水线数目。 1.3.3 自由液面修正计算 1. 计算内容:

苏伊士运河航行规则有关船舶的技术要求

CCS通函 中国船级社 技术处(2014)通函第号总第号 2014 年月日(共页) 发:总部各有关业务处室、各审图中心、各分社(办事处)、船厂、船东、设计院 To relevant business departments of CCS Headquarters, plan approval centers, branches (offices), shipyards, shipowners, design units IMO关于液货船配备破损稳性计算机强制性要求 1. IMO第93届海上安全委员会及第66届海上环境保护委员会分别通过了 液货船强制配备稳性仪的相关修正案。所有修正案均于2016年1月1日生效:(1)国际散装运输液化气体船舶构造和设备规则(IGC) 修正案 (MSC.370(93)); (2)国际散装运输危险化学品船舶构造和设备规则 (IBC)修正案 (MSC.369(93) & MEPC.250(66)); (3)散装运输危险化学品船舶构造和设备规则(BCH) 修正案,(MSC.376(93) & MEPC.249(66)); (4)散装运输液化气体船舶构造和设备规则(GC) 修正案(MSC.377(93)); (5)现有散装运输液化气体船规则 (EGC) 修正案(MSC 93/22 Para 3.65 & Para 3.90及附件13); (6) MARPOL附则 I修正案(MEPC.248(66议)。 2. 主要内容 2.1 所有IBC/IGC/GC/BCH/EGC船舶及油轮均需安装能校核完整稳性和破 损稳性的稳性仪,稳性仪应符合相关性能标准,即2008国际完整稳性规则B部分第4章、经修订的MSC.1/Circ.1229通函“稳性仪审批导则”附件第4节和

干货船初稳性高度的计算

●专题讲座●●船舶货运技术系列讲座(三)● 干货船初稳性高度的计算 ?王建平? 船舶的初稳性高度G M(又称重稳矩)是船舶横稳性的重要衡量指标。目前的教科书中对这一问题的论述,有的理论较深,船员不能深入理解;有的不甚严谨,甚至给出了完全错误的公式。本讲介绍生产中实用的初稳性计算方法。 1.船舶重心高度的计算 1.1 货物重心高度 生产中计算船舶的重心高度时,有些大副为简便,每一货舱只取一个重心。这种做法是不妥当的,因其误差太大甚至导致对船舶稳性作出错误的判断而危及船舶的航行安全。我们建议,每一货舱中的货物按票分别计算,将重心取在堆高的一半处,并且考虑如下各项修正: 堆高修正。严格地说,货堆高度是指货物衬垫物的上表面即货堆底面到货物上表面间的垂直距离。一般,货堆的底面可保证基本水平,但最上一票货物的上表面常常不水平。这种情况下,货物的上表面常为凸形,一般可取货物表面在凸形最低点的高度另加最高点和最低点距离的1 3作为一半该票货物的重心高度。为了能较准确地看清货物上表面的位置,建议在前后舱壁和左右两舷以1m为刻度用油漆漆出若干标尺。 舱形修正。显然,船中部矩形货舱的货物重心在堆高的一半处,首尾尖底形货舱的货物重心在堆高的2 3处。其余货舱中的货物重心可取在堆高的1 2~2 3处。 包件修正。较大包件的货物,其重心一般偏于底部,可按包件上标注的重心高度计算。 衬垫修正。底部的衬垫对货物重心的高度有所增加。 1.2 油水 油水的重心按舱柜计算,即每一舱柜取一重心高度。满载舱柜的重心取在舱柜的几何中心处,该值可在船舶稳性计算书中查得;部分装载舱柜的重心按液体液面位置从舱柜容积曲线上查取。 1.3 常数与空船 船舶越大、船龄长、常数越大,其值只能利用各种方法估算,一般的万吨级干货船的常数为200t左右。有的教科书中建议对船舶常数的重心位置进行测算,这是不实际的。这里我们建议将船舶常数重心取在空船重心上,这是因为船舶常系由不明载荷构成,而不明载荷可能分布在船体的任何位置上。空船的重心是固定的,可在船舶稳性计算书中查得。 1.4 船舶重心高度的计算 在上述各项的基础上,重心高度的计算用下述二公式进行 ?=6P i K G=6P i Z i? 式中,?是船舶排水量(t);K G为船舶重心高度(m);P i为第i项重量(t);Z i为P i的重心高度(m)。 2.GM的计算 船舶的初稳性高度G M是其初横稳心距基线高度与船舶重心高度的差值,其计算公式为 GM=KM-K G 这里,KM是初横稳心距基线的距离(m),利用船舶排水量为引数在静水力参数表中查取。我们指出,船舶的静水力参数应尽可能从静水力参数表上查取,从载重量表尺和静水力曲线上查取均会产生较大误差。 对于一般的万吨级船舶来说,空船正浮时的KM可达15m,但随排水量的增加而锐减;当排水量为满载值的一半左右时,KM为10m左右;其后随排水量的进一步增加KM缓慢减小;当排水量达到满载值的3 4左右时,KM达到最低值,约为8.5m 左右;其后,随排水量的增大KM略有增大,在满载排水量时KM约为9m左右。在某一排水量下,船舶发生小倾角(10°以内)横倾时,KM的改变量很小而可忽略,因而可以用G M来说明船舶的稳性。当船舶 ? 2 5 ?世界海运1996,N o.6

相关主题
文本预览
相关文档 最新文档