当前位置:文档之家› CNC数控系统通讯参数设置

CNC数控系统通讯参数设置

CNC数控系统通讯参数设置
CNC数控系统通讯参数设置

CNC数控系统通讯参数设置

来源:https://www.doczj.com/doc/8013420068.html,/ AllenBradley(美国:AB)

Acramatic(美国:辛辛那提·米拉克龙)

Anilam(美国:艾科瑞)

Bosch(美国:博世·力士乐)

Haas(美国:哈斯)

Boss

DeltaDynaPath(美国:)

FadalCNC(美国:法道)

Fanuc(日本:发那科)

Fanuc 0(M/T)

Mazak(日本:马扎克)

Mitsubishi(日本:三菱)

Okuma(日本:大隈)

Yasnac(日本:安川)

Amada(日本:天田)

Heidenhain(德国:海德汉)

Hinumerik(德国:)

Sinumerik(德国:西门子)

Traub(德国:特劳伯)

Fagor(西班牙:发格)

传输故障的解决

1. 检查PC和CNC 的端口参数设置是否一致,波特率速度设置不宜太快(太快可能会丢失数据),也不宜太慢(速度慢当然效率就低了) ;

2. 连接电缆是否有断线,接触不良,焊接是否正确;

3. 通讯软件选择不对,有一些系统必须用原厂的通讯软件;

4. 传输的文件格式不正确;

5. 有较大干扰,选择优质屏蔽电缆做传输线;

6. 如果上述都正确,那就是端口损坏。

另外,曾经使用过数据传送,参数设置也正确的情况下,同样也会发生传送故障,这时把PC的FIFO缓冲区取消或者使“接收缓冲区”与“传输缓冲区”为最低即可。

置方法如下:

打开PC“控制面板”—“系统”—“硬件”—“设备管理器”—“端口”—“通讯端口”,右键,“属性”—“端口设置”—“高级”—“使用FIFO缓存”,使“接收缓冲区”与

“传输缓冲区”为最低即可,或者取消“使用FIFO缓存”。

数控系统通讯_

数控系统外设通讯 一.FANUC控制单元与PC电脑通讯 1.借助RS232接口完成与PC电脑间的通讯 (1)建立链接 ①[程序]→[附件]→[通讯]→[超级链接]→[(在“默认Telnet程序”对话框,选“是”)] →(进入“建立超级链接对话框”); ②[(“名称”= 任意起名;“图标”= 任选)]→[(进入“连接到”对话框)]→[选“中国”,“区 号、电话号”任选,“连接时使用”= COM1]→[(进入“COM1属性”对话框)]→[“每秒位数”=9600;“数据位”=8;“奇偶校验”=无;“停止位”=1;“数据流控制”=Xon/Xoff]→[(确认后,则所起名命名的链接被建立)]→(进入“命名连接”窗口); ③[文件]→[属性]→(进入“命名属性”对话框),或:[程序]→[附件]→[通讯]→[超级终端] →[(命名连接窗口)]→[文件]→[属性]→(进入“命名属性”对话框); ④[(选择“设置”选项卡)]→[选择“ASCII码设置”按钮]→[(进入“ASCII码设置”框)] →[(勾选全部,或“将换行符附加到传入行末尾”不勾选,其余全选)]→[“确定”退出“ASCII 码设置”框]→[“确定”退出“命名属性”对话框]。 ⑤数控系统外设超级链接建立完成,并已启动该外设。 (2)启动数控系统外设,进行传输操作 【注】:两设备通讯时,一定要首先使“接收设备”进入“接收状态”,然后才启动输出设备的进入输出状态。 ①数据接收(外设电脑作接收) [传送]→[捕获文字]→[进入“捕获文字”对话框]→[选择将要把捕获到的文字,存放 在何处。]→[按“启动”软钮]→(接收设备进入接收状态)。 ②数据发送(CNC作发送) [MDI方式]→[“设置”软键]→[“写参数”=1(可写入)]→[“SYSTEM”硬键]→[设定 参数:PRM0000.1=1、PRM0020=0、PRM0024=0、PRM0100.2-1=1-1、PRM0101.7-3-0=1- 1-1、PRM0103=11]→[编辑方式,或急停状态]→[选按将要发送的数据软键]→[按“输 出”软键]→(CNC进入发送状态)。 【注释】用上述步骤操作时,若CNC出现“无法使用输入输出设备”报警时,应设置参数PRM24=255,且按[RESET]硬键,之后修改参数为PRM24=0。此时,进入正常 超级链接方式数据传输。 ③CNC接收数据 [MDI方式]→[“设置”软键]→[“写参数”=1(可写入)]→[“SYSTEM”硬键]→[设定 参数:PRM0000.1=1、PRM0020=0、PRM0024=0、PRM0100.2-1=1-1、PRM0101.7-3-0=1- 1-1、PRM0103=11]→[编辑方式,或急停状态]→[选按将要接收的数据软键]→[按“输 入”软键]→(CNC进入接收状态)。 ④外设电脑发送数据 [程序]→[附件]→[通讯]→[超级终端]→[(命名终端连接)]→[(起动命名的超级终端 窗口)]→[传送]→[发送文本文件]→[进入“发送文本文件”窗口]→[选择将要发送的

数控系统的国内外发展及应用现状

数控技术课大作业 专业: 学号: 学生: 指导教师: 完成日期:

数控系统的国内外发展及应用现状 目录 第1章序言 第2章数控系统的发展过程和趋势 2.1数控系统的发展过程 2.2数控系统的发展趋势 第3章国外和国内数控系统功能介绍与应用分析 3.1 国外数控系统功能介绍与应用分析 3.1.1 西门子SINUMERIK 840D 3.1.2FANUC 数控系统6 3.2国内数控系统功能介绍与应用分析 3.2.1 华中“世纪星”数控系统 3.2.2 广州数控GSK27全数字总线式高档数控系统 第4章国内外数控系统比较及差距分析 4.1国内外数控系统比较 4.1.1 西门子公司数控系统(SIEMENS)的产品特点 4.1.2 FANUC公司数控系统的产品特点 4.2 我国数控系统与国外数控系统的差距 参考文献

第一章序言 数控即数字控制(Numerical Control,NC)。数控技术是指用数字信号形成的控制程序对一台或多台机械设备进行控制的一门技术。 数控机床,简单的说,就是采用了数控技术的机床。即将机床的各种动作、工件的形状、尺寸以及机床的其他功能用一些数字代码表示,把这些数字代码通过信息载体输入给数控系统,数控系统经过译码、运算以及处理,发出相应的动作指令,自动地控制机床的刀具与工件的相对运动,从而加工出所需要的工件。 因此,数控机床就是一种具有数控系统的自动化机床。它是典型的机电一体化产品,是现代制造业的关键设备。 第二章数控系统的发展过程和趋势 2.1数控系统的发展过程 1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。六年后,即在1952年,计算机技术应用到了机床上。在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。 1.数控(NC)阶段 (1952-1970年)早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控(NC)。随着元器件的发展,这个阶段历经了三代,即1952年第一代——电子管;1959年第二代——晶体管;1965年第三代——小规模集成电路。 2.计算机数控 (CNC)阶段(1970——现在)到1970年,通用小型计算机业已出现并成批生产。其运算速度比五、六十年代有了大幅度的提高,这比专门"搭"成的专用计算机成本低、可靠性高。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。到1971年美国lintel公司在世界上第一次将计算机的两个最核心的部件——运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处器,又可称中央处理单元(简称CPU)。到1974年微处理器被应用于数控系统。由于微处理器是通用计算机的核心部件,故仍称为仿计算机数控。到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可满足作为数控系统核心部件的要求,而且PC机生产批量很大,价格便宜,可靠性高。数控系统从此进入了基于PC的阶段。总之,计算机数控阶段也经历了三代。即1970年第四代——小型计算机;1974年第五代——微处理器和1990年第六代——基于PC的阶段(国外称为PC-BASED)。必须指出,数控系统近五十年来经历了两个阶段六代的发展,只是发展到了第五代以后,才从根本上解决了可靠性低,价格极为昂贵,应用很不方便等极为关键的问题。因此,即使在工业发达国家,数控机床大规模地得到应用和普及,是在七十年代未八十年代初以后的事情,也即数控技术经过近三十年

凯恩帝数控系统性能参数

凯恩帝数控系统性能参数 一、系统特征 1 插补周期1ms 2 可扩展数字接口、模拟量接口、IO接口(512点) 3 联动轴数:2, 4(可选) 4 安装于pc机的通讯传送软件exe 5 系统界面的中英文显示 二、系统功能 1 高速小线段加工 2 自动加减速功能快速进给:直线型加减速;工进或手动进给:指数型加减速 3 MDI运行模式 4 螺纹加工: 快速退尾,退尾角可调 螺距误差补偿 丝杠螺距误差补偿功能:反向间隙补偿 切直螺纹G22 x_ F_; 切锥螺纹G32 x_ z_ F_; 切割变螺距螺纹G34 x_ z_ F_ K_ 多头螺纹加工G32 X_ Z_ F_ Q_; 5 手动进给1或2轴 6 回参考点:手动回参考点,程序自动回参考点 7 手轮模拟功能 8 硬件限位软件限位 9 防护门 三、系统辅助功能 1 完整的帮助信息 2 加工时间、零件计数 3 绝对坐标x y z和增量坐标u v w 直径编程和半径编程 4 行程校验:参数设定刀具不可进入的范围 最大行程:设定在限位挡块前面,起缓冲作用 5 快速进给倍率与进给速度倍率分开 6 图形显示刀具轨迹,图像参数设定 7 主轴功能S:s**** (r/min), s** (档位) 8 卡盘控制:M10 M11 台尾控制:M78 M79 9 预留M指令:可直接作用于输入输出点 10刀具功能:T0102,在使用01号刀具,02刀补 参数:刀具长度补偿,刀具半径补偿刀具偏置量 11英制/公制转换(G20 G21) 12 程序跳转M9 P**;跳转到**行指令 13 固定循环:单一固定循环(G90 G92 G93 G94,复合固定循环(G70~G76)

与国内外数控系统的比较

2011年7月,中国机床工具工业协会执行副理事长王黎明日前指出:中国95%的高档机床数控系统仍依赖进口,国内高档系统的自给率不到5%,其中日本成为主要的进口国,约占1/3。在国际市场上,中、高档数控系统主要由以日本发那科公司、德国西门子公司为代表的少数企业所垄断,其中发那科占一半左右。在国内市场上,主要规模生产企业有20多家,以华中数控、广州数控、大连大森、北京凯恩帝、南京华兴等5家企业为代表。质量稳定性(可靠性)国内外存较大的差距 目前世界上的数控系统种类繁多,形式各异,组成结构上都有各自的特点。这些结构特点来源于系统初始设计的基本要求和工程设计的思路。例如对点位控制系统和连续轨迹控制系统就有截然不同的要求。对于T系统和M系统,同样也有很大的区别,前者适用于回转体零件加工,后者适合于异形非回转体的零件加工。对于不同的生产厂家来说,基于历史发展因素以及各自因地而异的复杂因素的影响,在设计思想上也可能各有千秋。例如,美国Dynapath系统采用小板结构,便于板子更换和灵活结合,而日本FANUC系统则趋向大板结构,使之有利于系统工作的可靠性,促使系统的平均无故障率不断提高。然而无论哪种系统,它们的基本原理和构成是十分相似的。 一般整个数控系统由三大部分组成,即控制系统,伺服系统和位置测量系统。控制系统按加工工件程序进行插补运算,发出控制指令到伺服驱动系统;伺服驱动系统将控制指令放大,由伺服电机驱动机械按要求运动;测量系统检测机械的运动位置或速度,并反馈到控制系统,来修正控制指令。这三部分有机结合,组成完整的闭环控制的数控系统。 数控系统到目前为止共发展了六代,第一代是电子管数控系统,第二代是晶体管数控系统,第三代是集成电路数控系统,第四代是小型计算机数控系统,第五代是微型计算机数控系统,第六代是PC数控系统。 PC数控系统目前是最先进的结构体系,PC数控系统的发展,形成了PC嵌入NC的“NC+PC”结构和NC嵌入PC的“PC+NC”结构两大主要流派。后者又正在演变成PC+I/O的“软件化”结构。 在NC+PC系统方面,起主导作用的是一些老的数控系统生产大厂。因为他们在数控系统方面有着深厚的基础,为使所掌握的技术优势与新的PC化潮流相融合,因此走出了一条以传统数控平台为基础(完成实时控制任务),以流行PC为前端(完成非实时任务)的PC数控系统发展道路,并在商品化方面取得了显著成绩。NC+PC系统的典型代表有日本FANUC 公司的18i、16i系统、德国西门子公司的840D系统、法国NUM公司的1060系统、美国AB公司的9/360系统等。 在PC+NC系统方面,主导公司是一些后起之秀。由于他们没有历史包袱,因此彻底摆脱了传统NC的约束,直接站在PC平台基础上,通过增扩NC控制板卡(如基于DSP的运动控制卡等)来发展PC数控系统。典型代表有美国DELTA TAU公司用PMAC多轴运动控制卡构造的PMAC-NC系统、日本MAZAK公司用三菱公司的MELDASMAGIC 64构造的MAZA TROL 640系统、中国华中数控系列产品、航天数控系列产品、广州数控部分产品、南京四开公司产品等。 从目前的情况看,新推出的PC数控系统已越来越多地采用PC+NC结构,NC+PC结构的发展已呈下降趋势。 随着PC技术水平和数控软件设计水平的提高,PC+NC结构正逐渐发展成PC+I/O的软件化结构和PC+实时网络的分布式结构。典型代表有美国MDSI公司的OPEN CNC、德国POWER AUTOMA TION公司的PA8000 NT、大连光洋公司、陕西华拓科技公司等系列产品。 常用的数控系统有发那科、西门子、三菱、广数、华中等数控系统。 发那科(FANUC)系统 FANUC系统在设计中大量采用模块化结构。这种结构易于拆装、各个控制板高度集成,使可靠性有很大提高,而且便于维修、更换。FANUC系统设计了比较健全的自我保护电路。FANUC系统性能稳定,操作界面友好,系统各系列总体结构非常的类似,具有基本统一的操作界面。FANUC系统可以在较为宽泛的环境中使用,对于电压、温度等外界条件的要求不是特别高,因此适应性很强。 西门子(SINUMERIK)数控系统 SINUMERIK 不仅意味着一系列数控产品,其力度在于生产一种适于各种控制领域不同控制需求的数控系统,其构成只需很少的部件。它具有高度的模块化、开放性以及规范化的结构,适于操作、编程和监控。 三菱(MITSUBISHI)数控系统

数控系统的国内外发展及应用现状

数控技术课大作业 专业: 学号: 学生: 指导教师: 完成日期:

数控系统的国内外发展及应用现状 目录 第1章序言 第2章数控系统的发展过程和趋势 2.1数控系统的发展过程 2.2数控系统的发展趋势 第3章国外和国内数控系统功能介绍与应用分析 3.1 国外数控系统功能介绍与应用分析 3.1.1 西门子SINUMERIK 840D 3.1.2 FANUC 数控系统6 3.2 国内数控系统功能介绍与应用分析 3.2.1 华中“世纪星”数控系统 3.2.2 广州数控GSK27全数字总线式高档数控系统

第4章国内外数控系统比较及差距分析 4.1 国内外数控系统比较 4.1.1 西门子公司数控系统(SIEMENS)的产品特点 4.1.2 FANUC公司数控系统的产品特点 4.2 我国数控系统与国外数控系统的差距 参考文献 第一章序言 数控即数字控制(Numerical Control,NC)。数控技术是指用数字信号形成的控制程序对一台或多台机械设备进行控制的一门技术。 数控机床,简单的说,就是采用了数控技术的机床。即将机床的各种动作、工件的形状、尺寸以及机床的其他功能用一些数字代码表示,把这些数字代码通过信息载体输入给数控系统,数控系统经过译码、运算以及处理,发出相应的动作指令,自动地控制机床的刀具与工件的相对运动,从而加工出所需要的工件。 因此,数控机床就是一种具有数控系统的自动化机床。它是典型的机电一体化产品,是

现代制造业的关键设备。 第二章数控系统的发展过程和趋势 2.1数控系统的发展过程 1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。六年后,即在1952年,计算机技术应用到了机床上。在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。 1.数控(NC)阶段 (1952-1970年)早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控(NC)。随着元器件的发展,这个阶段历经了三代,即1952年第一代——电子管;1959年第二代——晶体管;1965年第三代——小规模集成电路。 2.计算机数控 (CNC)阶段(1970——现在)到1970年,通用小型计算机业已出现并成批生产。其运算速度比五、六十年代有了大幅度的提高,这比专门"搭"成的专用计算机成本低、可靠性高。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。到1971年美国lintel公司在世界上第一次将计算机的两个最核心的部件——运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微

基于通用数控系统伺服接口的设计

课程设计 题目伺服电机驱动器计算机接口设计 基于通用数控系统的伺服接口设计学院工学院 专业机械设计制造及其自动化 班级2012卓越工程师 学生 学号 指导教师 二〇一四年十二月二十六日

摘要 数控伺服系统是根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置的专用计算机系统。 数控伺服系统是以机械位置或角度作为控制量的自动控制系统,在数控机床、机器人系统中,由伺服系统接收控制指令经变换和传递放大,转化为伺服电动机驱动机械部件的高精度运动。 数控伺服系统通常控制系统提供C语言函数库和Windows动态链接库,实现复杂的控制功能。伺服电机驱动器控制接口能够将控制函数与自己控制系统所需的数据处理,界面显示等联系在一起。控制接口包括通用的计算机接口(如PS2 USB VGA LAN)以及运动控制专用接口,可以实现普通PC机的所有基本功能,是一种理想的方案。伺服电机可以用驱动器控制两路甚至多路电机,可以实现机床的各种功能。 伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。 国内外伺服控制器的水平主要体现在三个方面:硬件方案、核心控制算法以及应用软件功能。国内的伺服控制器所采用的硬件平台和国外产品没有太大的差距。国内伺服控制器的差距主要体现在控制算法和二次开发平台的易用性方面。尤其是在全数字化的高性能伺服驱动技术方面还有很大差距,已经成为我国发展高性能数控系统产业的“瓶颈”问题。国外的产品提供了比较好的产品升级功能及良好的软件开发环境,降低了对开发人员的要求,在一定程度上促进了产品的市场推广。同时提供了丰富的通讯接口可以方便的与其他设备进行数据交互,人性化好。 关键词:机电系统;伺服接口;数控系统;接口设计

数控系统参数调整

返回首页 数控系统参数调整 一、实验的性质与任务 数控机床的性能在很大程度上是由系统软件的运行性能决定,在系统中对参数设置不同的值可以改变系统的运行状态。为了使数控机床运行良好,在数控机床生产过程中、生产完成以后都会根据机床以及系统的配置和测试性能对系统参数进行调试。通过该实验期望通过该实验对数控系统及其调试有更为深刻的了解。 二、实验的目的和要求 在完成实验过程中,熟悉数控系统参数手册的使用方法,了解数控系统的参数构成及其种类。通过完成参数调整实验的过程,以及观测参数调整完成后系统以及机床的运行性能,了解系统参数的变化对机床的影响。对学生的要求是: 1、养成安全、认真、踏实、严谨、一丝不苟的工作作风。 2、熟悉查阅数控系统参数手册的方法; 3、了解系统参数的体系架构; 4、掌握在数控系统中查找、修改参数的方法; 6、掌握方法; 7、撰写符合实验过程、内容的实验报告; 8、现场操作指导教师要求的实验内容; 三、预备知识 数控系统的参数体系是比较繁杂,参数种类比较多,我们在调整参数前必须对各系统参数有较为详细的了解。系统参数种类繁多,涉及到对系统的各个方面的调整。 在数控机床中,不管是那一种系统,参数按其不同功能土要有以下几种:

1.系统参数 这些参数一般由机床开发部制造商根据用户的选择进行设置,并有较高级别的密码保护,其中的参数设置对机床的功能有一定的限制,他其中的内容一般不容许用户修改。 2.用户参数 这是供用户在使用设备时自行设置的参数,内容以设备加工时所需要的各种要求为主,可随时根据用户使用的情况进行调整,如设置合理可提高设备的效率和加工精度。 2.通信参数 用以数据的输入/输出(i/o)转送。 3. PLC参数 设置PLC中容许用户修改的定时、计时、计数,刀具号及开通PLC中的一些控制功能。 4.机械参数 有些也包括在用户参数内,主要以机床行程规格,原点位置,位置的测量方式,伺服轴、主轴调整,丝杆螺距、间隙补偿方面为主,特别是伺服,主轴控制参数,设置不当设备就不能正常工作并且造成机床精度达不到要求,甚至于机床不能使用。各种不同类型的数控系统,参数的分类方法不一定相同,有些虽不明显地进行分类,但总包含着以上的内容。正常情况下,数控机床的参数厂方一般已按要求调整设置,使用中,因操作不当误改,机床使用较长时间后部分机械的磨损,断电或电路板损坏引起参数丢失,电气参数的改变等因素都会造成机床使用中出现异常,因此在故障发生后,对这些因参数引起的故障,核对并进行改正,故障就能排除,对一些可以利用参数进行调整的故障,在进行确认后,记下原来的参数,进行调整后,机床也能恢复正常。 四、实验准备工作 在进行该项实验以前,学生必须基本了解相关系统的参数说明书或者系统调试指南,能够熟练操作系统操作面板以及了解每一个按键的操作方法及意义,熟悉系统菜单的操作及含义。 五、实验内容与学时安排 总的实验时间为2天,计学时为16个学时。该实验的平台为数控实训基地北京机电院数控加工中心。本项实验将练习一些常用参数的调整,以及练习螺距误差的参数补偿。 (一) 西门子系统的螺距误差补偿 1、螺距误差补偿(LEC) 机床在出厂前,需进行螺距误差补偿(LEC)。螺距误差补偿是按轴进行的,与其有关的轴参数只有两个:

SINUMERIK数控系统的基本原理

实验一数控系统的基本原理、组成与RS-SY-802CBL操作编程 一、实验目的: 1、了解数控系统的特点、基本组成和应用。 2、了解数控系统常用部件的原理及作用。 3、熟悉数控系统综合实验台,了解数控系统综合实验台的连接和基本操作。 4、了解数控系统的基本操作 5、了解数控系统的基本编程 二、实验设备: 1、RS-SY-802CBL数控机床综合实验系统 三、实验必备知识: (一)数控系统的基本原理和组成 数控技术是传统的机械制造技术、液压气动技术、传感检测技术、现代控制技术、计算机技术、信息处理技术、网络通讯技术的集成,是制造自动化的关键基础。 数控系统一般由输入输出装置、数控装置(或数控单元)、主轴单元、伺服单元、驱动装置(或称执行机构)、可编程控制器PLC及电气控制装置、辅助装置、测量装置组成如图1所示。 图1 数控系统的组成 (1)输入输出装置 输入输出装置主要用于零件加工程序的编制、存储、打印和显示或是机床的加工的信息的显示等。简单的输入输出装置只包括键盘和若干个数码管,较高级的系统一般配有CRT显示器和液晶显示器。一般的输入输出装置除了人机对话编程键盘和CRT显示器外,还有磁盘等。 (2)数控装置 数控装置是数控系统的核心,这一部分主要包括微处理器、存储器、外围逻辑电路及与数控系统其它组成部分联系的接口等。其原理是根据输入的数据段插补出理想的运动轨迹,然后输出到执行部件(伺服单元、驱动装置和机床),加工出所需要的零件。因此,输入、轨迹插补、位置控制是数控装置的三个基本部分。

(3)伺服单元和驱动装置 伺服单元接受来自数控装置的进给指令,经变换和放大后通过驱动装置转变成机床工作台 的位移和速度。因此伺服单元是数控装置和机床本体的联系环节,它把来自数控装置的微弱指令信号放大成控制驱动装置的大功率信号。根据接受指令的不同伺服单元有脉冲式和模拟式之分,而模拟式伺服单元按电源种类又分为直流伺服单元和交流伺服单元。 驱动装置把放大的指令信号变成为机械运动,通过机械连接部件驱动机床工作台,使工作台精确定位或按规定的轨迹作严格的相对运动,最后加工出符合图纸要求的零件。与伺服单元相对应,驱动装置有步进电机、直流伺服电机和交流伺服电机。 伺服单元和驱动装置可合称为伺服驱动系统,它是机床工作的动力装置。从某种意义上说,数控机床功能强弱主要取决于数控装置,性能的好坏主要取决于伺服驱动系统。 (4)可编程控制器 可编程控制器(PC,Programmable Controller)是一种以微处理器为基础的通用型自动控制装置,专为在工业环境下应用而设计的。由于最初研究这种装置的目的,是为了解决生产设备的逻辑及开关量控制,故也称为可编程逻辑控制器(PLC,Programmable Logic Controller)。当PLC用于控制机床顺序动作时,也可称为可编程逻辑机床控制器(PMC,Programmable Machine Controller)。 PLC主要完成与逻辑运算有关的一些动作,没有轨迹上的具体要求,它接受数控装置的控制代码M(辅助功能)、S(主轴转速)、T(选刀、换刀)等顺序动作信息,对其进行译码,转换成对应的控制信号,控制辅助装置完成机床相应的开关动作,如工件的装夹、刀具的更换、冷却液的开关等一些辅助动作;它还接受机床操作面板的指令,一方面直接控制机床动作,另一方面将指令送往数控装置用于加工过程的控制。 (5)主轴驱动系统 主轴驱动系统和进给伺服驱动系统有很大的差别,主轴驱动系统主要是旋转运动。现代数控机床对主轴驱动系统提出了更高的要求,这包括有很高的主轴转速和很宽的无级调速范围等,为满足上述要求,现在绝大多数数控机床均采用鼠笼式感应交流异步电动机配矢量变换变频调速的主轴驱动系统 (6)测量装置 测量装置也称反馈元件,通常安装在机床的工作台或丝杠上,它把机床工作台的实际位移转变成电信号反馈给数控装置,与指令值比较产生误差信号以控制机床向消除该误差的方向移动。此外,由测量装置和数显环节构成数显装置,可以在线显示机床坐标值,可以大大提高工作效率和工件的加工精度。常见测量装置有光电编码器、光栅尺、旋转变压器等。 按有无检测装置,CNC系统可分为开环与闭环数控系统,而按测量装置的安装位置又可分为闭环与半闭环数控系统。开环数控系统的控制精度取决于步进电机和丝杠的精度,闭环数控系统的精

国内外数控技术发展

国内外数控技术发展 20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械制造设备中的应用是世纪内制造业发展的最重大的技术进步。自从1952年美国第1台数控铣床问世至今已经历了50个年头。数控设备包括:车、铣、加工中心、镗、磨、冲压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有10~20万台,产值上百亿美元。世界制造业在20世纪末的十几年中经历了几次反复,曾一度几乎快成为夕阳工业,所以美国人首先提出了要振兴现代制造业。90年代的全世界数控机床制造业都经过重大改组。如美国、德国等几大制造商都经过较大变动,从90年代初开始已出现明显的回升,在全世界制造业形成新的技术更新浪潮。如德国机床行业从2000年至今已接受3个月以后的订货合同,生产任务饱满。 我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。从1995年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤

其是在1999年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。从2000年8月份的上海数控机床展览会和2001年4月北京国际机床展览会上,也可以看到多品种产品的繁荣景象。但也反映了下列问题: (1)低技术水平的产品竞争激烈,互相靠压价促销; (2)高技术水平、全功能产品主要靠进口; (3)配套的高质量功能部件、数控系统附件主要靠进口;(4)应用技术水平较低,联网技术没有完全推广使用; (5)自行开发能力较差,相对有较高技术水平产品主要靠引进图纸、合资生产或进口件组装。 当今世界工业国家数控机床的拥有量反映了这个国家的经济能力和国防实力。目前我国是全世界机床拥有量最多的国家(近300万台),但我们的机床数控化率仅达到1.9%左右,这与西方工业国家一般能达到20%的差距太大。日本不到80万台的机床却有近10倍于我国的制造能力。数控化率低,已有数控机床利用率、开动率低,这是发展我国21世纪制造业必须首先解决的最主要问题。每年我们国产全功能数控机床3000~4000台,日本1年产5万多台数控机床,每年我们花十几亿美元进口7000~9000台数控机床,即使这样我国制造业也很难把行业中数控化率大幅度提上去。因此,国家计委、经贸委从“八五”、“九五”就提出数控化改造的方针,在“九五”期间,我协会也曾做过调研。当时提出数控化改造的设备可达8~10万台,需投入80~100亿资金,但得到的经济效益将

发那科0i mate-TC数控系统参数的设置方法

发那科0i mate-TC数控系统参数的设置方法 摘要:数控系统参数设置的正确与否直接影响数控机床的使用,本文介绍了发那科0i mate-TC数控系统参数设置的方法,通过对参数设置过程的描述,便于掌握此系统参数的设置方法和参数设置过程中的注意事项。 关键词:数控系统参数设置 无论哪个公司的数控系统都有大量的参数,有的一项参数又有八位,粗略计算起来一套CNC系统配置的数控机床就有近千个参数要设定。这些参数设置正确与否直接影响数控机床的使用和其性能的发挥。特别是用户能充分掌握和熟悉这些参数的设置,将使一台数控机床的使用和性能发挥上升到一个新的水平,也给数控机床的故障诊断和维修带来很大的方便,参数的修改还可以开发CNC系统某些在数控机床订购时没有表现出来的功能,对二次开发会有一定的帮助。 1.显示参数的操作 1)按MDI面板上的“SYSTEM”功能键数次,或者按“SYSTEM”功能键一次,再按[参数]软键,选择参数画面。 2)参数画面由多页组成,可以通过以下两种方法选择需要显示的参数所在的画面。 (1)用光标移动键或翻页键,显示需要的画面。 (2)由键盘输入要显示的参数号,然后按下[搜索]软健,这样可显示指定参数所在的页面,光标同时处于指定参数的位置。 2.用MDI设定参数 1)在操作面板上选择MDI方式或急停状态。 2)按下“OFS/SET”功能键,再按[设定]软键,可显示设定画面的第一页。 3)将光标移动到“参数写入”处,按[操作]软键,进入下一级画面。 4)按[NO:1]软键或输入1,再按[输入]软键,将“参数写入”设定为1;这样参数处于可写入状态,同时CNC发生100号报警。 5)按“SYSTEM”功能键,再按[参数]软键,进入参数画面,找到需要设定参数的画面,将光标置于需要设定的位置上。 6)输入参数,然后按“INPUT”键,输入的数据将被设定到光标指定的参数中;

数控系统国内外现状分析

数控系统是一种利用数字信号对执行机构的位移、速度、加速度和动作顺序等实现自动控制的控制系统。从1952年美国麻省理工学院研制出第1台实验性数控系统,到现在已走过了半个世纪。数控系统也由当初的电子管式起步,发展到了今天的开放式数控系统。中高档数控系统的需求也越来越大。以往中高档数控系统基本被国外厂商占领,因此我国中高档数控系统技术必须加快发展。 一、国外数控系统现状 在国际市场,德国、美国、日本等几个国家基本掌控了中高档数控系统。国外的主要数控系统制造商有西门子、发那克、三菱电机、海德汉、博世力士乐、日本大隈等。 1.纳米插补与控制技术已走向实用阶段 纳米插补将产生的以纳米为单位的指令提供给数字伺服控制器,使数字伺服控制器的位置指令更加平滑,从而提高了加工表面的平滑性。将“纳米插补”应用于所有插补之后,可实现纳米级别的高质量加工。除了伺服控制外,“纳米插补”也可以用于Cs轴轮廓控制;刚性攻螺纹等主轴功能。西门子的828D所独有的80bit浮点计算精度,可使插补达到很高的轮廓控制精度;三菱公司的M700V 系列的数控系统也可实现纳米级插补。 2.机器人使用广泛 未来机床的功能不仅局限于简单的加工,而且还具有一定自主完成复杂任务的能力。机器人作为数控系统的一个重要应用领域,其技术和产品近年来得到快速发展。机器人的应用领域延伸到了机床上下料、换刀、切削加工、测量、抛光及装配领域,从传统的减轻劳动强度的繁重工种,发展到IC封装、视觉跟踪及颜色分检等领域,大大提高了数控机床的工作效率。典型的产品有德国的KUKA,FANUC公司的M-1iA、M-2000iA、M-710ic。 3.智能化加工不断扩展 随着计算机领域中人工智能的不断渗透和发展,数控系统的智能化程度也得到不断提高。应用自适应控制技术数控系统能够检测到过程中的一些重要信息,并自动调整系统中的相关参数,改进系统的运行状态;车间内的加工监测与管理可实时获取数控机床本身的状态信息,分析相关数据,预测机床状态,使相关维护提前,避免事故发生。先进的伺服控制技术能通过自动识别由切削力导致的振动,产生反向的作用力,消除振动。应用主轴振动控制技术,在主轴嵌入位移传感器,机床可以自动识别当前的切削状态,一旦切削不稳定,机床会自动调整切削参数,保证加工的稳定性。 4.CAD/CAM技术的应用 当前,为了使数控机床操作者更加便利地编制数控加工程序,解决复杂曲面的编程问题,国际数控系统制造商将图形化、集成化的编程系统作为扩展数控系统功能、提高数控系统人机互动性的主要途径。最新的CAD/CAM技术为多轴多任务数控机床加工提供了有力的支持,可以大幅地提高加工效率。ESPRIT、CIMATRON 等一些著名CAM软件公司的产品除了具备传统的CAM软件功能模块,还开发了多任务编程、对加工过程的动态仿真等新的功能模块。 二、国内数控系统现状 随着国际学术及产业界对开放式数控系统研究的日益推进,我国的相关研究也越来越受到重视。经过几十年的发展,我国机床行业也形成了具有一定生产规模和技术水平的产业体系,国产数控系统产业发展迅速,在质与量上都取得了飞跃。

840D数控系统的基本构成

——西门子数控系统调试,编程和维修概要 西门子840D系统的组成 SINUMERIK840D是由数控及驱动单元(CCU或NCU), MMC,PLC模块三部分组成,由于在集成系统时,总是将 SIMODRIVE611D驱动和数控单元(CCU或NCU)并排放在一起,并用设备总线互相连接,因此在说明时将二者划归一处。 ●人机界面 人机交换界面负责NC数据的输入和显示,它由MMC和OP组成: MMC(Man Machine Communication) 包括:OP(Operation panel)单元, MMC,MCP(Machine Control Panel)三部分。 MMC实际上就是一台计算机,有自己独立的CPU,还可以带硬盘,带软驱;OP单元正是这台计算机的显示器,而西门子MMC的控制软件也在这台计算机中。 1.MMC 我们最常用的MMC有两种: MMCC100.2和MMC103,其中MMC100.2的CPU为486,不能带硬盘; 而MMC103的CPU为奔腾,可以带硬盘,一般的,用户为SINUMERIK810D配MMC100.2,而为SINUMERIK840D配MMC103. ※PCU(PC UNIT)是专门为配合西门子最新的操作面板OP10、OP10S、OP10C、OP12、OP15等而开发的MMC模块,目前有三种PCU模块——PCU20、PCU50、PCU70, PCU20对应于MMC100.2,不带硬盘,但可以带软驱;PCU50、PCU70对应于MMC103,可以带硬盘,与MMC不同的是:PCU50的软件是基于WINDOWS NT的。PCU的软件被称作 HMI,HMI有分为两种:嵌入式HMI和高级HMI。一般标准供货时,PCU20装载的是嵌入 式 HMI,而PCU50和PCU70则装载高级HMI. 2.OP OP单元一般包括一个10.4〞TFT显示屏和一个NC键盘。根据用户不同的要求,西门子为用户选配不同的OP单元,如:OP030,OP031,OP032,OP032S等,其中OP031最为常用。 3.MCP MCP是专门为数控机床而配置的,它也是OPI上的一个节点,根据应用场合不同,其布局也不同,目前,有车床版MCP和铣床版MCP两种。对810D和840D,MCP的MPI地址分别为14和6,用MCP后面的S3开关设定。 对于SINUMERIK840D应用了MPI(Multiple Point Interface)总线技术,传输速率为187.5k/秒,OP单元为这个总线构成的网络中的一个节点。为提高人机交互的效率,又有OPI (Operator Panel Interface)总线,它的传输速率为1.5M/秒。 ●数控及驱动单元 1.NCU数控单元 SINUMERIK840D的数控单元被称为NCU(Numenrical Controlunit)单元:中央控制单元,负责NC所有的功能,机床的逻辑控制,还有和MMC的通讯它由一个COM CPU板. 一个 PLC CPU板和一个DRIVE板组成。 根据选用硬件如CPU芯片等和功能配置的不同,NCU分为 NCU561.2,NCU571.2,NCU572.2,NCU573.2(12轴),NCU573.2(31轴)等若干种,同

数控系统的国内外发展及应用现状

数控系统的国内外发展 及应用现状

数控技术课大作业 专业: 学号: 学生: 指导教师: 完成日期:

数控系统的国内外发展及应用现状 目录 第1章序言 第2章数控系统的发展过程和趋势 2.1数控系统的发展过程 2.2数控系统的发展趋势 第3章国外和国内数控系统功能介绍与应用分析 3.1 国外数控系统功能介绍与应用分析 3.1.1 西门子SINUMERIK 840D 3.1.2 FANUC 数控系统6 3.2 国内数控系统功能介绍与应用分析 3.2.1 华中“世纪星”数控系统 3.2.2 广州数控GSK27全数字总线式高档数控系统 第4章国内外数控系统比较及差距分析 4.1 国内外数控系统比较 4.1.1 西门子公司数控系统(SIEMENS)的产品特点 4.1.2 FANUC公司数控系统的产品特点 4.2 我国数控系统与国外数控系统的差距 参考文献

第一章序言 数控即数字控制(Numerical Control,NC)。数控技术是指用数字信号形成的控制程序对一台或多台机械设备进行控制的一门技术。 数控机床,简单的说,就是采用了数控技术的机床。即将机床的各种动作、工件的形状、尺寸以及机床的其他功能用一些数字代码表示,把这些数字代码通过信息载体输入给数控系统,数控系统经过译码、运算以及处理,发出相应的动作指令,自动地控制机床的刀具与工件的相对运动,从而加工出所需要的工件。 因此,数控机床就是一种具有数控系统的自动化机床。它是典型的机电一体化产品,是现代制造业的关键设备。 第二章数控系统的发展过程和趋势 2.1数控系统的发展过程 1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。六年后,即在1952年,计算机技术应用到了机床上。在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。 1.数控(NC)阶段 (1952-1970年)早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控

fanuc数控系统参数表

fanuc数控系统参数表 FANUC系统有很丰富的机床参数,为数控机床的安装调试及日常维护带来了方便条件。根据多年的实践,对常用的机床参数在维修中的应用做一介绍。 1.手摇脉冲发生器损坏。一台FANUC 0TD数控车床,手摇脉冲发生器出现故障,使对刀不能进行微调,需要更换或修理故障件。当时没有合适的备件,可以先将参数900#3置“0”,暂时将手摇脉冲发生器不用,改为用点动按钮单脉冲发生器操作来进行刀具微调工作。等手摇脉冲发生器修好后再将该参数置“1”。 2.当机床开机后返回参考点时出现超行程报警。上述机床在返回参考点过程中,出现510或511 超程报警,处理方法有两种: (1)若X轴在返回参考点过程中,出现510或是511超程报警,可将参数0700LT1X1数值改为 +99999999(或将0704LT1X2数值修改为-99999999)后,再一次返回参考点。若没有问题,则将参数0700或0704数值改为原来数值。 (2)同时按P和CAN键后开机,即可消除超程报警。 3.一台FANUC 0i数控车床,开机后不久出现ALM701报警。从维修说明书解释内容为控制部上部的风扇过热,打开机床电气柜,检查风扇电机不动作,检查风扇电源正常,可判定风扇损坏,因一时购买不到同类型风扇,即先将参数RRM8901#0改为“1”先释放ALM701报警,然后在强制冷风冷却,待风扇购到后,再将PRM8901改为“0”。 4.一台FANUC 0M数控系统加工中心,主轴在换刀过程中,当主轴与换刀臂接触的一瞬间,发生接触碰撞异响故障。分析故障原因是因为主轴定位不准,造成主轴头与换刀臂吻合不好,无疑会引起机械撞击声,两处均有明显的撞伤痕迹。经查,换刀臂与主轴头均无机械松动,且换刀臂定位动作准确,故采用修改N6577参数值解决,即将原数据1525改为1524后,故障排除。 5.密级型参数0900~0939维修法。按FANUC 0MC操作说明书的方法进行参数传输时,密级型参数0900~0939必须用MDI方式输入很不方便。现介绍一种可以传输包含密级型参数0900~0939在内的传输方法,步骤如下: (1)将方式开关设定在EDIT位置; (2)按PARAM键,选择显示参数的画面; (3)将外部接收设备设定在STAND BY(准备)状态; (4)先按EOB键不放开,再按OUTPOT键即将全部参数输出。 6.一台FANUC 0MC立式加工中心,由于绝对位置编码电池失效,导致X、Y、Z丢失参考点,必须重新设置参考点。 (1)将PWE“0”改为“1”,更改参数NO.76.1=1,NO.22改为00000000,此时CRT显示“300”报警即X、Y、Z轴必须手动返回参考点。 (2)关机再开机,利用手轮将X、Y移至参考点位置,改变参数NO.22为00000011,则表示X、

网络数控制造系统中常用DNC通讯接口模式

网络数控制造系统中常用DNC通讯接口模式 关键字:DNC 通讯接口网络数控制造 DNC 分布式数字控制( DiSTributed Numerical Control) , 是以计算机技术、通讯技术、数控技术等为基础,把数控机床与上层控制计算机集成起来,从而实现数控机床的集中控制、管理,以及数控机床与上层控制计算机间的信息交换。它是现代机械加工企业实现设备集成、信息集成、功能集成的一种新方法,是制造自动化的重要模式,也是实现CIMS 等集成制造系统的重要组成部分。 在过去十几年,人们将大量的精力投向FMS(Flexible ManufactureSystem)系统的研究,但实际应用结果表明, FMS 的这种不仅注重信息流的集成,更强调物流的集成与自动化,虽然具有运行效率高和自动化程度高等优点,但投资风险大、见效慢、可靠性较差。相对于FMS, DNC 是投资小、见效快、并具有较好柔性的集成制造系统。随着计算机技术、数控技术和网络通信技术的发展, DNC 的内涵和功能也在不断扩大,目前DNC 系统已具备制造数据传送、状态数据采集与处理、刀具管理、生产调度与监控、单元控制和CAD/CAPP/CAM 接口等功能。 在分析现有DNC 主机与数控系统通信接口功能的基础上,从DNC 通信接口功能的角度可将DNC 分为基本DNC、狭义DNC 和广义DNC 三种。基本内容如表1 所示。 表1 DNC 分类 目前,在实际DNC 系统集成应用中,常采用基于串行口通讯的接口模式、以太网络模式。笔者重点对以上DNC 的二种通讯接口模式分别介绍。 1 基于串行口通讯的DNC 接口模式 利用数控机床提供的RS232C 或RS485 接口,采用点对点型或星形拓扑结构,实现串行通信。这是目前在车间中应用最多的一种通信方法,但这种通信方法存在工控微机多、投入成本高、管理和维护工作量大和易于出错等缺点。目前使用的数控系统大多带有RS232C 串行通信接口。利用该RS232C 接口可直接实现基本DNC 通信和狭义DNC 通信功能。 1.1 带串口扩展卡的DNC 通讯接口模式 带串口扩展卡的DNC 接口模式是上世纪90 年代中期出现的模式,,在当时大家还普遍使用单机传输的年代,此方式是一种创新,可以说它代表了当时我国DNC 产品的最高水平。MOXA C320Turbo 卡(或其它多路串行通讯卡)是通过ISA(或PCI)插卡的方式与计算机连接,再通过一根带屏蔽的10 芯电缆线连接通讯模块,每个通讯模块带8 个通讯口,可以实现多个通讯模块级联,每个通讯口最多带8 个节点,每个计算机又可以扩展4 个ISA(或PCI)插卡,这样一台计算机最多可以扩展256 个RS- 232 接口。通讯模块与计算机之间距离不能太长,一般在十几米左右。 1.2 带串口服务器的DNC 通讯接口模式 串口服务器的功能是将来自TCP/IP 协议的数据包,解析为串口数据流;反之,也可以将串口数据流打成TCP/IP 协议的数据包,从而实现数据的网络传输,它能将多个串口设备连接并能对串口数据流进行选择和处理,把现有的RS232 接口的数据转化为IP 端口的数据,这样就能够将传统的串行数据送上流行的IP 通道,而无须过早的淘汰原有的不带以太网模块的数控系统设备,从而提高现有设备的利用率,节约了投资,简化了布线,。在数据处理方面,串口服务器完成的是一个面向连接的RS232 链路和面向无连接以太网之间的通讯数据的存储控制,系统对来自串口设备的串口数据流进行处理,并进行格式转换,使之成为可以在以太网中传播的数据帧,对来自以太网的数据帧进行判断,并转换成串行数

相关主题
文本预览
相关文档 最新文档