当前位置:文档之家› 必修二 立体几何复习+经典例题

必修二 立体几何复习+经典例题

必修二  立体几何复习+经典例题
必修二  立体几何复习+经典例题

一、判定两线平行的方法

1、平行于同一直线的两条直线互相平行

2、垂直于同一平面的两条直线互相平行

3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直

线就和交线平行

4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行

5、在同一平面内的两条直线,可依据平面几何的定理证明

二、判定线面平行的方法

1、据定义:如果一条直线和一个平面没有公共点

2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个

平面平行

3、两面平行,则其中一个平面内的直线必平行于另一个平面

4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面

5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面

三、判定面面平行的方法

1、定义:没有公共点

2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行

3 垂直于同一直线的两个平面平行

4、平行于同一平面的两个平面平行

四、面面平行的性质

1、两平行平面没有公共点

2、两平面平行,则一个平面上的任一直线平行于另一平面

3、两平行平面被第三个平面所截,则两交线平行

4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面

五、判定线面垂直的方法

1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直

2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直

3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面

4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面

6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面

六、判定两线垂直的方法

90角

1、定义:成?

2、直线和平面垂直,则该线与平面内任一直线垂直

3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜

线垂直

4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射

影垂直

5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直

七、判定面面垂直的方法

1、定义:两面成直二面角,则两面垂直

2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面

八、面面垂直的性质

90

1、二面角的平面角为?

2、 在一个平面内垂直于交线的直线必垂直于另一个平面

3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面

九、各种角的范围 1、异面直线所成的角的取值范围是:?≤

4、二面角的大小用它的平面角来度量;取值范围是:?≤

1、 内心:内切圆的圆心,角平分线的交点

2、 外心:外接圆的圆心,垂直平分线的交点

3、 重心:中线的交点

4、

垂心:高的交点

【例题分析】

例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面P AD .

【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.

证明:方法一,取PD 中点E ,连接AE ,NE .

∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,

∴MA ∥CD ,.21

CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.2

1

CD NE =

∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .

又AE ?平面P AD ,MN ?平面P AD , ∴MN ∥平面P AD .

方法二取CD 中点F ,连接MF ,NF .

∵MF∥AD,NF∥PD,

∴平面MNF∥平面P AD,

∴MN∥平面P AD.

【评述】关于直线和平面平行的问题,可归纳如下方法:

(2)

例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.

【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.

证明:连接AC1.

∵ABC-A1B1C1是直三棱柱,

∴AA1⊥平面ABC,

∴AB⊥AA1.

又AB⊥AC,

∴AB⊥平面A1ACC1,

∴A1C⊥A B.①

又AA1=AC,

∴侧面A1ACC1是正方形,

∴A1C⊥AC1.②

由①,②得A1C⊥平面ABC1,

∴A1C⊥BC1.

【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.

例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC ⊥平面PBC.

【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.

证明:

∵平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,且AB⊥BC,

∴BC⊥平面P AB,

∴AP⊥BC.

又AP⊥PB,

∴AP⊥平面PBC,

又AP?平面P AC,

∴平面P AC⊥平面PBC.

【评述】关于直线和平面垂直的问题,可归纳如下方法:

例5如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.

(Ⅰ)求证:直线EF∥平面A1ACC1;

(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .

∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,

又F 是BC 的中点,∴EF ∥A 1C .

∵A 1C ?平面A 1ACC 1,EF ?平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当

3

1

=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .

∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,

3

1

=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .

又EG ?平面EFG ,∴平面EFG ⊥平面ABC .

例6 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.

(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1. 【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.

证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.

∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ?平面BEC 1,

∴平面BEC 1⊥平面ACC 1A 1.

(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .

∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ?平面BEC 1,AB 1?平面BEC 1, ∴AB 1∥平面BEC 1.

例7 在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .

(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ; (Ⅱ)求四棱锥P -ABCD 的体积.

【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .

证明:(Ⅰ)在△ABD 中,

由于AD =4,BD =8,54=AB ,

所以AD 2+BD 2=AB 2. 故AD ⊥BD .

又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ?平面ABCD , 所以BD ⊥平面P AD ,

又BD ?平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,

由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,

又△P AD 是边长为4的等边三角形.因此.3242

3

=?=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,

所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为55

85

484=?,即为梯形ABCD 的高,

所以四边形ABCD 的面积为.2455

82

5452=?+=

S 故

.31632243

1

=??=-ABCD P V

9.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F

是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥

A BCF -,其中2

BC =

. (1) 证明:DE //平面BCF ;

图 4

(2) 证明:CF ⊥平面ABF ;

(3) 当2

3

AD =时,求三棱锥F DEG -的体积F DEG V -.

形ABC 中,AD AE =

9. 【答案】(1)在等边三角

AD AE

DB EC ∴

=

,在折叠后的三棱锥A BCF -中

也成立,//DE BC ∴ ,DE ? 平面BCF ,

BC ?平面BCF ,//DE ∴平面BCF ;

(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,

12BF CF =

=

.

在三棱锥A BCF -中,

2BC =

,222BC BF CF CF BF ∴=+∴⊥②

BF CF F CF ABF ?=∴⊥ 平面;

(3)由(1)可知//GE CF ,结合(2)可得GE

DFG ⊥平面

.

111111132323323324F DEG E DFG

V V DG FG GF --?∴==????=?????= ??

4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点.

(1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积. 4. 如图,连接AC ,

∵ABCD 为矩形且F 是BD 的中点,

∴AC 必经过F

1分

又E 是PC 的中点, 所以,EF ∥AP

2分

∵EF 在面PAD 外,PA 在面内,∴EF ∥面PAD

(2)∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD 面ABCD=AD ,∴CD ⊥面PAD ,

又AP ?面PAD ,∴AP ⊥CD

又∵AP ⊥PD ,PD 和CD 是相交直线,AP ⊥面PCD 又AD ?面PAD ,所以,面PDC ⊥面PAD

(3)取AD 中点为O ,连接PO ,

因为面PAD ⊥面ABCD 及△PAD 为等腰直角三角形,所以PO ⊥面ABCD , 即PO 为四棱锥P —ABCD 的高

∵AD=2,∴PO=1,所以四棱锥P —ABCD 的体积1233

V PO AB AD =

??= 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2AA 1,D 是棱

AA 1的中点

(I)证明:平面BDC 1⊥平面BDC

(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.

1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A ,∴1DC BC ⊥,

由题设知0

1145A DC ADC ∠=∠=,∴1CDC ∠=0

90,

即1DC DC ⊥,

又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵

1DC ?面1BDC ,

∴面BDC ⊥面1BDC ;

(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132

+???=1

2,

由三棱柱111ABC A B C -的体积V =1,

∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1.

B 1 C

B

A

D

C 1

A 1

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高一必修二经典立体几何专项试题

高一必修二经典立体几何专项试题

作者: 日期:

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交一一有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示 a a a Aa =A a //a 22直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行, 则该直线与此平面平行。 简记为:线线平行,则线面平行。符号表示: a B => a // b 2.2.2平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则 这两个平面平行。 符号 示:

// b // 2、判断两平面平行的方法有三种: (1) 用定义; (2) 判定定理; (3) 垂直于同一条直线的两个平面平行。— 223 — 224直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任 平面与此平面的交线与该直线平行 作用:利用该定理可解决直线间的平行问题 么它们的交线平行。 符号表示: // □ Y =a 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 、、亠 1 注意点: a)定理中的“两条相交直线”这一条件不可忽视; 简记为:线面平行则线线平行。 符号表示: 2、 ] a // b // 2.3.1直线与平面垂直的判定 1、定义:如果直线L 与平面a 内的任意一条直线都垂直,我们就说直线 L 与平 面a 互相垂 直,记作L 丄a ,直线L 叫做平面a 的垂线,平面a 叫做直线 L 的垂

高中数学必修二知识点整理

高中数学 必修2知识点 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积2 2 R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++ =)3 1 下下 上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 D C B A α L A · α 222r rl S ππ+=

必修二立体几何复习+经典例题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 就和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平 行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成90 角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5 、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角, 则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为90

必修二立体几何初步知识点整理.

必修二立体几何初步知识点整理 一、基础知识(理解去记) (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共 点叫做顶点。 旋转体——把一个平面图形绕它所在平面的一条定直线旋转形成的封闭几何体。其中,这条定直线 称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①????????→??????? →???? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 补充知识点 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】2 22211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角 分别是αβγ,,, 那么2 2 2 cos cos cos 1αβγ++=,2 2 2 sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则 222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

人教版高中数学必修二教学案-《立体几何初步》全章复习

人教版高中数学必修一教学讲义 年级:上课次数: 学员姓名:辅导科目:数学学科教师: 课题《立体几何初步》全章复习 课型□预习课□同步课■复习课□习题课 授课日期及时段 教学内容 《立体几何初步》全章复习 【知识网络】 【要点梳理】 知识点一:空间几何体的结构与特征 本章出现的几何体有:①棱柱与圆柱统称为柱体;②棱锥与圆锥统称为锥体;③棱台与圆台统称为台体;④球体. 柱体常以直三棱柱、正三棱柱、正四棱柱、正六棱柱、圆柱等为载体,锥体一般以正三棱锥、正四棱锥、正六棱锥、圆锥等为载体,计算高、斜高、边心距、底面半径、侧面积和体积等.在研究正棱锥和圆锥、正棱台和圆台时要充分利用其中的直角三角形:高线,边心距,斜高组成的直角三角形;高线,侧棱(母线),外接圆半径(底面半径)组成的直角三角形. 空间几何体的三视图:主视图:它能反映物体的高度和长度;左视图:它能反映物体的高度和宽度;俯视图:

【典型例题】 类型一:空间几何体的三视图 例1.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图 (2)求该安全标识墩的体积 (3)证明:直线BD 平面PEG 【思路点拨】(1)由于墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH,故其正视图与侧视图全等. (2)由三视图我们易得,底面为边长为40cm的正方形,长方体的高为20cm,棱锥高为60cm,代入棱柱和棱锥体积公式,易得结果. 【解析】(1)侧视图同正视图,如下图所示.

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

必修二立体几何证明题

C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =I ,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=2。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =I ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。 3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E , 分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

(完整版)高中数学必修二立体几何知识点梳理

立体几何初步 1、 柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' ' E D C B A ABCDE -或用对角线的端点字母,如五棱柱' AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥' ' ' ' ' E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' ' E D C B A P - 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高, ' h为斜高,l为母线) ch S= 直棱柱侧面积 rh Sπ2 = 圆柱侧

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

新课标人教A版高中数学必修二空间几何体知识点总结

高中数学必修2 空间几何体知识点总结 1.1柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱'''''E ABCDE-或用对角线的端点字母,如 B A C D 五棱柱' AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形; 侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E A P- C B D 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E B P- A D C 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的

高一数学必修二立体几何练习题含答案

一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1、下列命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同一直线的两条直线平行。 2、下列命题中错误的是:( ) A. 如果α⊥β,那么α内一定存在直线平行于平面β; B. 如果α⊥β,那么α内所有直线都垂直于平面β; C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ. 3、右图的正方体ABCD-A ’B ’C ’D ’ 中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中, 二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 900 5.在空间中,下列命题正确的是 A.若三条直线两两相交,则这三条直线确定一个平面 B.若直线m 与平面α内的一条直线平行,则α//m C.若平面βα⊥,且l =βαI ,则过α内一点P 与l 垂直的直线垂直于平面β D.若直线a 与直线b 平行,且直线a l ⊥,则b l ⊥ 6.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =( ) A .3 B .9 C .18 D .10 7.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π 8. 正方体的内切球和外接球的半径之比为( ) A. 3 B. 3 C. 3 D. 39.已知△ABC 是边长为a 2的正三角形,那么它的斜二侧所画直观图A B C ⅱ?V 的面积为 ( ) a 2 a 2 a 2 a 2 10.若正方体的棱长为2,则以该正方体各个面的中心为顶点的多面体的体积为 ( ) 11. 在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,EF=2,求AD 与 BC 所成角的大小.( ) A B D A ’ B ’ D ’ C C ’

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

必修二立体几何 习题及答案

必修二立体几何 高一 未命名 一、单选题 1.设,m n 为两条不同的直线,γβα,,为三个不重合平面,则下列结论正确的是 ( ) A .若m αP ,n α∥,则m n ∥ B .若m α⊥, ,αβ⊥则β∥m C .若αγ⊥,βγ⊥,则αβP D .若m α⊥,m n ∥,则n α⊥ 【答案】D 【解析】 【分析】 根据空间中线线、线面、面面位置关系,逐项判断,即可得出结果. 【详解】 A 选项,若m αP ,n α∥,则,m n 可能平行、相交或异面;故A 错; B 选项,若m α⊥, αβ⊥,则β∥m 或m β?,故B 错; C 选项,若αγ⊥,βγ⊥,因为γβα,,为三个不重合平面,所以αβP 或αβ⊥,故C 错; D 选项,若m α⊥,m n ∥,则n α⊥,故D 正确; 故选D 【点睛】 本主要考查命题真假的判定,熟记空间中线线、线面、面面位置关系,即可得出结果. 2.下列说法正确的是( ) A .任意三点确定一个平面 B .梯形一定是平面图形 C .平面α和β有不同在一条直线上的三个交点 D .一条直线和一个点确定一个平面 【答案】B 【解析】 【分析】 根据平面性质中的公理及其推论逐个验证即可.

A选项,不共线的三点确定一个平面,A错. C选项,两个平面有公共点,则有一条过该公共点的公共直线,如没有公共点,则两平面平行,C错. D选项,一条直线和直线外的一点可以确定一个平面. B选项,两条平行直线,确定一个平面,梯形中有一组对边平行,故B对, 故选:B. 【点睛】 本题考查了平面性质中的公理及其推论,属于基础题.注意公理1的作用是判断直线在面中,公理2的作用是判断点共线或线共点,公理3及其推论的作用是判断平面的存在性与唯一性. 3.如图,已知正方体ABCD?A1B1C1D1的棱长为1,则四棱锥A1?BB1D1D的体积为() A.√2 3B.1 3 C.√2 6 D.1 4 【答案】B 【解析】 【分析】 先确定锥体的高,再根据锥体体积公式得结果. 【详解】 由正方体性质得A1C1⊥平面BB1D1D, 所以四棱锥A1?BB1D1D的体积为1 3×A1C1 2 ×S BB 1D1D =1 3 ×√2 2 ×1×√2=1 3 ,选B. 【点睛】 本题考查锥体体积,考查基本求解能力,属基础题. 4.一个球的表面积是16π,那么这个球的体积为() A.16 3πB.32 3 πC.64 3 πD.256 3 π 【答案】B

人教版高中数学必修二教案全套

第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

必修二立体几何测试题

1 2013年高一数学必修二立体几何测试题 一:选择题(4分10 ?题) 1.下面四个条件中,能确定一个平面的条件是() A. 空间任意三点 B.空间两条直线 C.空间两条平行直线 D.一条直线和一个点 2. 1 l, 2 l, 3 l是空间三条不同的直线,则下列命题正确的是( ). A. 12 l l ⊥, 23 l l ⊥ 13 // l l ?B. 12 l l ⊥, 23 // l l? 13 l l ⊥ C. 233 //// l l l? 1 l, 2 l, 3 l共面D. 1 l, 2 l, 3 l共点? 1 l, 2 l, 3 l共面3.已知m,n是两条不同的直线,,, αβγ是三个不同的平面,下列命题中正确的是:A.若, αγβγ ⊥⊥,则α∥βB.若, m n αα ⊥⊥,则m∥n C.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β 4.在四面体ABC P-的四个面中,是直角三角形的面至多有() A.0 个 B.1个 C. 3个 D .4个 5,下列命题中错误 .. 的是 A.如果平面αβ ⊥平面,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C.如果平面αγ ⊥平面,平面βγ ⊥平面,l= β αI,那么lγ ⊥平面D.如果平面αβ ⊥平面,那么平面α内所有直线都垂直于平面β 6.如图所示正方体 1 AC,下面结论错误的是() A. 1 1 //D CB BD平面 B. BD AC⊥ 1 C. 1 1 1 D CB AC平面 ⊥ D. 异面直线 1 CB AD与角为? 60 7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是() A. ? 120 B. ? 150 C. ? 180 D. ? 240

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

高中数学必修二立体几何讲义

高中数学 必修2知识点 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底3 1 3台体的体积 h S S S S V ?++=)3 1 下下上上( 4球体的体积 334R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 222r rl S ππ+= D C B A α L A · α

相关主题
文本预览
相关文档 最新文档