当前位置:文档之家› 用双指示剂法测定混合碱组成方法原理是什么

用双指示剂法测定混合碱组成方法原理是什么

用双指示剂法测定混合碱组成方法原理是什么
用双指示剂法测定混合碱组成方法原理是什么

用双指示剂法测定混合碱组成的方法原理是什么?

所谓双指示剂法就是分别以酚酞和甲基橙为指示剂,在同一份溶液中用盐酸标准溶液作滴定剂进行继续滴定,根据两个终点所消耗的盐酸标准溶液体积计算混合碱各组分的含量。实验目的:确定混合碱的组成及含量

实验仪器及药品:

常用分析仪器-酸式滴定管50ml。容量瓶250ml。吸液管25ml。三角瓶250ml。分析天平和称量瓶等.

盐酸标准溶液-0.1mol/L。

酚酞指示剂-10g/L。

甲基橙指示剂-1g/L.

实验步骤:准确称取试样1克溶解后放入容量瓶中,稀释至刻度摇匀.吸出25ml至三角瓶中,加2滴酚酞指示剂,用盐酸标准溶液滴定至无色,记下滴定管读数V1.再加一滴甲基橙指示剂,继续滴定至橙色,记下滴定管读数V2.连续读数,V2中包括V1.

判断与计算:如果V2=2V1,说明是纯碳酸钠。如果V2小于2V1,说明含有NaOH和Na2CO3,用V2计算碳酸钠,用

V1-V2计算氢氧化钠。如果V2大于2V1,说明含有Na2CO3和NaHCO3,用V1计算碳酸钠,V2-V1计算碳酸氢钠.

思考:

采用双指示剂法测定混合碱的含量时,当加入甲基橙指示剂后,在接近重点前,为什么要将溶液加热至近沸,冷却后再继续滴定到终点?

实验中终点时生成的是H2CO3饱和溶液,pH为3.9,

为了防止终点提前,必须尽可能驱除CO2,

接近终点时要剧烈振荡溶液,或者加热使得H2CO3分解为CO2逸出

实验混合碱的测定

一、实验原理

HCl + Na2CO3=NaCl + NaHCO3 pH=8.3 酚酞变色

HCl + NaHCO3=NaCl + CO2 + H2O pH=3.9 甲基橙变色

二、 实验步骤

1.取样(按教师指定的混合碱样品号)

2.测定(平行测定三次)

三、计算总碱度

记下体积V 1

用HCl 滴至粉色几乎褪去 加入1滴酚酞 试样25.00mL 于锥形瓶中

用移液管(自用)吸取容量瓶中 加入1滴甲基橙

用HCl 滴定至溶液由黄变橙 记下体积V 2

用移液管(公用)吸取

混合碱试样25.00mL

混合碱是指NaOH、Na2CO3、与NaHCO3中两种组分NaOH与Na2CO3或Na2CO3与NaHCO3的混合物。在试液中,先加酚酞指示剂,用盐酸标准滴定溶液滴定至溶液由红色恰好褪去,消耗HCl 溶液体积为V1。反应式如下:

NaOH + HCl = NaCl + H2O

Na2CO3 + HCl = NaHCO3 + NaCl

然后在试液中再加甲基橙指示剂,继续用HCl标准滴定溶液滴定至溶液由黄色变橙色,消耗HCl溶液体积为V2,反应式为:

NaHCO3 + HCl = NaCl + H2O + CO2↑

三、试剂

1.HCl标准滴定溶液c(HCl)=0.1mol/L。

2.甲基橙指示剂(1g/L)。

3.酚酞指示剂(10g/L)。

四、实训内容

准确称取1.5~2.0g碱试样于250mL烧杯中,加水使之溶解后,定量转入250mL容量瓶中,用水稀释至刻度,充分摇匀。

用移液管移取25.00mL试液于锥形瓶中,加酚酞指示液2滴,用0.1mol/LHCl标准滴定溶液滴定至溶液由红色恰好变为无色,记下HCl溶液用量V1,然后,加入甲基橙指示液1~2滴,继续用HCl 标准滴定溶液滴定至溶液由黄色变为橙色。记下HCl溶液用量V2(即终读数减去V1)。平行测定三次。

根据V1、V2判断混合碱组成,并计算各组分的含量。

五、计算公式

1.若V1>V2混合碱则为NaOH和Na2CO3的混合物;

2.若V1<V2混合碱则为Na2CO3和NaHCO3的混合物。

式中ω(NaOH)——NaOH的质量分数,%;

ω(Na2CO3)——Na2CO3的质量分数,%;

ω(NaHCO3)——NaHCO3的质量分数,%;

c(HCl)——HCl标准滴定溶液的浓度,mol/L;

V1——酚酞终点时消耗HCl标准滴定溶液的体积,mL;

V2——甲基橙终点时消耗HCl标准滴定溶液的体积,mL;

m——试样的质量,g ;

M(NaOH)——NaOH的摩尔质量,g/mol;

M(1/2Na2CO3)——1/2Na2CO3的摩尔质量,g/mol;

M(NaHCO3)——NaHCO3的摩尔质量,g/mol。

双碱法脱硫物料平衡计算过程

双碱法 计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内流速:取s m v /2.3= m v Q r r v vs Q 17.12 .314.33600/49532121=?==???==ππ D=2r=2.35m 即塔径为2.35米。底面积S=∏r 2=4.3m 2 塔径设定为一个整数,如2.5m (2)脱硫塔高度计算: 液气比取L/G= 4 烟气中水气含量设为8% SO2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4 ①循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台 ②计算循环浆液区的高度: 取循环泵8min 的流量 H 1=24.26÷4.3=5.65m

如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m,管道采用碳钢即可。 ③计算洗涤反应区高度 停留时间取3秒 洗涤反应区高度H2=3.2×3=9.6m ④除雾区高度取6米 H3=6m ⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的NaOH1.075Kg。每小时消耗85%的CaO60.585Kg。石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是24.26 m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重0.129吨。 蒸发水分量2.16 m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液 进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h

双碱法烟气脱硫工艺流程设计

第一章绪论 (2) 1.1设计的背景及意义 (2) 1.2国内外研究现状 (3) 1.2.1 烟气脱硫技术现状 (3) 1.2.2 我国烟气脱硫技术研究开发进展 (5) 1.3课程设计任务及采用技术 (8) 1.3.1 设计任务及目的 (8) 1.3.2 脱硫工艺采用的技术 (8) 第二章脱硫工艺 (10) 2.1脱硫过程 (10) 2.2低阻高效喷雾脱硫工艺 (11) 2.3脱硫系统组成 (12) 2.4本技术工艺的主要优点 (15) 2.5物料消耗 (15) 第三章工程计算 (17) 3.1脱硫塔 (17) 3.2物料恒算 (18) 第四章脱硫工程内容 (20) 4.1脱硫剂制备系统 (20) 4.2烟气系统 (20) 4.3SO2吸收系统 (20) 4.4脱硫液循环和脱硫渣处理系统 (22) 4.5消防及给水部分 (23) 第五章流程图 (25) 5.1方框流程图 (25) 5.2管道仪表流程图 (25) 第六章参考文献 (26)

第一章绪论 1.1 设计的背景及意义 中国是燃煤大国,能源结构中约有70%的煤。而又随着近年来中国经济的快速发展,由日益增多的煤炭消耗量所造成的二氧化硫污染和酸雨也日趋严重,给农业生产和人民生活带来极大的危害,因此,采取有效的烟气治理措施,切实削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量,事关国家可持续发展战略,是目前及未来相当长时间内中国环境保护的重要课题之一。就目前的技术水平和现实能力而言,烟气脱硫((Flue gas desulfurization,缩写FGD)技术是世界上应用最广泛、最经济、最有效的一种控制SO2排放的技术。按照脱硫方式和产物的处理形式划分,烟气脱硫一般可分为湿式脱硫、干式脱硫和半干式脱硫三类。湿法脱硫占世界80%以上的脱硫市场,是目前世界上应用最广的FGD工艺,具有设备简单、投资少、操作技术易掌握、脱硫效率高等特点。而湿式石灰石/石灰法又占湿法的近80%。湿式钙法的优点是效率和脱硫剂的利用率高,缺点是设备易结垢,严重时造成设备、管道堵塞而无法运行,且工程投资大、运行成本高,对于中小型锅炉和窑炉不合适。双碱法正是中小型燃煤锅炉和发电厂应用较广的烟气脱硫技术,为了克服湿法石灰/石灰石-石膏法容易结垢和堵塞的缺点而发展起来的。该法种类较多,有钠钙双碱法、钙钙双碱法、碱性硫酸铝法等,其中最常用的是钠钙双碱法。由于主塔内采用液相吸收,吸收剂在塔外的再生池中进行再生,从而不存在塔内结垢和浆料堵塞问题,从而可以使用高效的板式塔或填料塔代替目前广泛使用的喷淋塔浆液法,减小吸收塔的尺寸及操作液气比,降低成本,再生后的吸收液可循环使用。另外,该工艺有钠碱法中反应速度快的优点,脱硫效率高--可达90%以上,应用较为广泛。因此双碱法脱硫工艺在中小型燃煤锅炉的除尘脱硫上有推广价值,符合国家目前大力提倡的循环经济,具有显著的环境效益和社会效益。 以前我国燃煤电厂烟气脱硫项目的引进大多对硬件比较重视,而对软件的重视程度不够,不少引进项目大多停留在购买设备上,但现在越来越注重烟气脱硫技术的国产化。而国产化的关键在于掌握烟气脱硫的设计技术,只有实现烟气脱硫设计国产化,才能按市场规则选用更多质量优良、价格合理的脱硫设备,才有资格、有能力对脱硫工程实行总承包,承担全部技术责任,推动烟气脱硫设计国

实验五混合碱的测定

实验五 混合碱的测定 内容: P196-199 一、实验目的(明确) 1. 了解测定混合碱的原理 2. 掌握用双指示剂法测定混合碱中NaOH 与Na 2CO 3或NaHCO 3与Na 2CO 3的含量 3. 了解强碱弱酸盐滴定过程中pH 值的变化及酸碱滴定法在碱度测定中的应用 二、实验原理(讲清) 所谓混合碱通常是指NaOH 与Na 2CO 3或NaHCO 3与Na 2CO 3混合物,它们的测定通常采用双指示剂法,即在同一试液中用两种指示剂来指示两个不同的终点。原理如下: 在混合碱试液中先加入酚酞指示剂,用HCl 标准溶液滴定至由红色刚变为无色。若试液为NaOH 与Na 2CO 3的混合物,这时溶液中NaOH 将被完全滴定,而Na 2CO 3被滴定生成NaHCO 3,即滴定反应到达第一终点,设此时用去HCl 溶液的体积为V 1,反应式为: NaOH + HCl ═ NaCl + H 2O Na 2CO 3 + HCl ═ NaCl + NaHCO 3 然后,再加甲基橙指示剂,继续用HCl 标准溶液滴定至由黄色变为橙色,设所消耗HCl 溶液的体积为V 2,这时,NaHCO 3全部被滴定,产物为H 2CO 3(CO 2+H 2O ),反应式为: NaHCO 3 + HCl ═ NaCl + H 2CO 3 2+H 2O 所以甲基橙变色时滴定反应到达第二终点。 可见,滴定Na 2CO 3所需的HCl 溶液是两次滴定加入的,从理论上讲,两次用量相等。故V 2 是滴定NaHCO 3所消耗HCl 的体积,NaOH 所消耗HCl 溶液的量为(V 1—V 2)。 那么各组分的含量按下式计算: 1000 V 1M 1000 2V 1V C 1×× = ω- 1000 V 2M 1000 2V C 2××= ω 式中: ω1 —— 混合碱中NaOH 的含量,g ·L –1 ; ω2 —— 混合碱中NaHCO 3的含量,g ·L –1 ; C —— HCl 溶液的浓度,mol ·L –1 ; V 1 —— 滴定过程中一阶段HCl 溶液的用量,mL ; V 2 —— 滴定过程中二阶段HCl 溶液的用量,mL ; V —— 混合碱的体积,mL ; M 1 —— NaOH 的摩尔质量, g ·mol –1 、 M 2 —— NaHCO 3的摩尔质量, g ·mol –1 试样若为NaHCO 3与Na 2CO 3的混合物。此时V 1

35种废气处理工艺流程图

35种废气处理工艺流程图 简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分,达到保护环境、净化空气的一种环保设备。 处理原理: 页脚内容30

稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 多介质催化氧化工艺 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 页脚内容30

自用分析化学教案混合碱的分析(双指示剂法)

自用分析化学教案混合碱的分析(双指示剂 法) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

实验六混合碱的分析(双指示剂法) 预习提要: 1、多元酸盐(碳酸钠)滴定过程中溶液pH值的变化。 2、酸碱指示剂、混合酸碱指示剂及选择指示剂的原则。 3、查出百里酚蓝-甲酚红混合指示剂的变色点pH、酸式色、碱式色。 4、吸量管、移液管的使用;试液的转移与稀释。 5、以酚酞为指示剂测定混合碱组分时,在终点前,由于操作上失误,造成溶液中盐酸局部过浓,使部分碳酸氢钠过早地转化为碳酸,V1测定结果有何影响为避免盐酸局部过浓,滴定时应怎样进行操作 一、实验目的 1.掌握混合碱分析的测定原理、方法和计算; 2.进一步熟练滴定操作和滴定终点的判断; 3.进一步掌握酸式滴定管的使用,熟悉移液管的使用方法。 二、实验原理 混合碱系指Na 2CO 3 与NaHCO 3 或Na 2 CO 3 与NaOH等类似的混合物。测 定各组分的含量时,可以在同一试液中分别用两种不同的指示剂来指示 终点进行测定,这种测定方法即“双指示剂法”。若混合碱是由Na 2CO 3 和NaHCO 3 组成,先以酚酞作指示剂,用HCl标准溶液滴定至溶液由红色 变成无色,这是第一个滴定终点,此时消耗的HCl溶液的体积记为 V 1 (mL),溶液中的滴定反应为: Na 2CO 3 + HCl = NaHCO 3 + NaCl 再加入甲基橙指示剂,滴定至溶液由黄色变成橙色,此时反应为: NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ↑ 消耗的HCl的体积为V 2(mL)。根据V 1 、V 2 值求算出试样中 Na 2CO 3 ,NaHCO 3 的含量。若混合碱为Na 2 CO 3 和NaOH的混合物,可以用上述

双碱法脱硫技术方案

(一)脱硫系统设计 1、双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充; (2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2CO3 + SO2→ Na2SO3 + CO2↑ (1) 2NaOH + SO2→ Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O → 2NaHSO3(3) 其中:

式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 → Na2SO4 (4) NaHSO3 + 1/2O2 → NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6) Ca(OH)2 + 2NaHSO3→ Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程 CaSO3 + 1/2O2 → CaSO4 (8) 式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统,再生的NaOH可以循环使用。 本钠钙双碱法脱硫工艺,以石灰浆液作为主脱硫剂,钠碱只需少量补充添加。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。 (三)双碱法湿法脱硫的优缺点 与石灰石或石灰湿法脱硫工艺相比,双碱法原则上有以下优点:

实验四 混合碱的组成及其含量的测定

实验四、混合碱的组成及其含量的测定 一、实验目的 1、学习多元酸盐及混合碱的滴定 2、酸碱指示剂、混合指示剂的使用 3、进一步练习容量瓶、吸管的使用、滴定操作 二、实验原理 NaOH NaCO 3 NaOH NaHCO 3 NaCO 3 NaHCO 3 双指示剂法:两种指示剂混合测定混合酸碱性,例如二甲基黄—溴甲酚绿或再加甲 基橙(橙红色) NaCO 3 NaOH H C L v 1 O H 2CO 3 H C L v 2 2CO 3(CO 2+H 2O) 1、 V1=V2 NaCO 3 2、 V1>V2 NaOH+Na2CO 3 3、 V2>V1 NaCO 3+NaHCO 3 4、 V1=0 NaHCO 3 5、 V2=0 NaOH 三、实验步骤 1、准称0.13—0.15g 的混合碱; 2、分别加50mL 蒸馏水,搅拌至溶解; 3、加1滴1%酚酞指示剂,用0.1molL -1 HCl 标准溶液滴定到无色(略带粉色)。记下所用的HCl V 1; 4、加4~5滴溴甲酚绿—二甲基黄混合指示剂,继续用HCl 标准滴定到溶液为亮黄色,记下所用的HCl V 2;

5、根据V 1及V 2 判断混合碱的组成,并计算V Na2CO3 /V NaHCO3 。 混合碱溶液 1、准取25.00ml碱液+50ml水+5d百里酚蓝-甲酚红(黄色水溶液) 淡蓝——微红 V1=? 2、加几滴溴甲酚绿—二甲基黄混合指示剂——亮黄色 记录 1ml 1、各碱的质量(25ml) 2、各碱的百分比 3、相当Na2O的质量 四、数据处理 W Na2CO3=[C HCL V HCL×M NaCO3]/ W总 W 1Na2O →[C HCL V HCL ×M Na2O ]/ W 总 W NaOH = [C HCL (V 1HCL -V 2 )M NaOH ]/ W 总 W 2Na2O →[C HCL (V 1 -V 2 )1/2×M Na2O ]/W 总 W Na2O总 =W1+W2 实际样W→溶于250ML容量瓶中→取25ML滴定:计算如下 Na 2CO 3 +NaHCO 3 nNa 2 CO 3 =V1C HCL →W%=n×M/W总×W nNaHCO 3 =(V 2 -V 1 ) Na 2O%= W Na2O /W 总 =[V 1平均 C HCl +1/2(V 2平均 -V 1平均 )C HCl ]×62×10/ W 总 五、思考题 1、20mlNaOH与Na2CO3的混合溶液,以酚酞作指示剂,用去0.1molHCl15ml;继续以甲基橙作指示剂,又用去HCl5ml。问NaOH与Na2CO3在此混合液中的当量浓度是否相等,各等于多少? 2、如果NaOH标准溶液在保存过程中吸收了空气中CO2,用它滴定盐酸,以甲基橙为指示剂,NaOH溶液的当量浓度会不会改变?若酚酞为指示剂进行滴定,该标准溶液浓度会不会改变?为什么?

实验五--混合碱的测定

实验五--混合碱的测定

实验五混合碱的测定 内容:P196-199 一、实验目的(明确) 1. 了解测定混合碱的原理 2. 掌握用双指示剂法测定混合碱中NaOH与Na2CO3或NaHCO3与Na2CO3的含量 3. 了解强碱弱酸盐滴定过程中pH值的变化及酸碱滴定法在碱度测定中的应用 二、实验原理(讲清) 所谓混合碱通常是指NaOH与Na2CO3或NaHCO3与Na2CO3混合物,它们的测定通常采用双指示剂法,即在同一试液中用两种指示剂来指示两个不同的终点。原理如下: 在混合碱试液中先加入酚酞指示剂,用HCl标准溶液滴定至由红色刚变为无色。若试液为NaOH 与Na2CO3的混合物,这时溶液中NaOH将被完全滴定,而Na2CO3被滴定生成NaHCO3,即滴定反应到达第一终点,设此时用去HCl溶液的体积为V1,反应式为: NaOH + HCl ═NaCl + H2O

Na 2CO 3 + HCl ═ NaCl + NaHCO 3 然后,再加甲基橙指示剂,继续用HCl 标准溶 液滴定至由黄色变为橙色,设所消耗HCl 溶液的 体积为V 2,这时,NaHCO 3全部被滴定,产物为 H 2CO 3(CO 2+H 2O ),反应式为: NaHCO 3 + HCl ═ NaCl + H 2CO 3 CO 2+H 2O 所以甲基橙变色时滴定反应到达第二终点。 可见,滴定Na 2CO 3所需的HCl 溶液是两次滴定 加入的,从理论上讲,两次用量相等。故V 2是滴 定NaHCO 3所消耗HCl 的体积,NaOH 所消耗HCl 溶液的量为(V 1—V 2)。 那么各组分的含量按下式计算: 1000 V 1M 10002 V 1V C 1××=ω- 1000 V 2M 10002V C 2××=ω 式中: ω1 —— 混合碱中NaOH 的

35种废气处理工艺流程图

35种废气处理工艺流程图简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分, 达到保护环境、净化空气的一种环保设备。 处理原理: GAGGAGAGGAFFFFAFAF

稀释扩散法 GAGGAGAGGAFFFFAFAF

原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污 GAGGAGAGGAFFFFAFAF

泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 多介质催化氧化工艺 GAGGAGAGGAFFFFAFAF

原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 GAGGAGAGGAFFFFAFAF

混合碱中碳酸钠和碳酸氢钠含量的测定

实验五、混合碱中碳酸钠和碳酸氢钠含量的测定 一、实验目的 1.了解双指示剂法测定混合碱的原理; 2.理解混合碱中各组分的测定方法以及相关计算。 二、实验原理 混合碱试样溶液(含Na 2CO 3、NaHCO 3) ↓酚酞指示剂 红色 ↓HCl 溶液滴定(V 1mL ) 无色(反应:Na 2CO 3+HCl=NaHCO 3+NaCl ),(cV 1)HCl =n(Na 2CO 3)=n 1(NaHCO 3) ↓溴甲酚绿-二甲基黄指示剂(混合指示剂) 绿色 ↓HCl 溶液滴定(V 2mL ) 亮黄色(反应:NaHCO 3+HCl=NaCl+H 2O+CO 2),(cV 2)HCl =n 1(NaHCO 3)+n 2(NaHCO 3) 1000 01 .84))((%10000 .106)(%123132??-= ??= s s m V V HCl c NaHCO m V HCl c CO Na 又 Na 2O+CO 2=Na 2CO 3 n 1(Na 2O)=n(Na 2CO 3)=(cV 1)HC l Na 2O+2CO 2+H 2O=2NaHCO 3 n 2(Na 2O)=n(2NaHCO 3)=1/2n(NaHCO 3)=1/2c(V 2-V 1)HCl 所以 n(NaO)=n 1(Na 2O)+n 2(Na 2O)=1/2c(V 1+V 2)HCl 1000 ))((21 %212?+=s m V V HCl c O Na 三、实验内容

1.混合碱试样溶液(由实验室提供) 配制流程:mL g 1000试样 00.50定容定量转溶解??→????→???→?移 2.试样溶液的测定及数据处理[已知c(HCl)= mol·L -1]

双碱法烟气脱硫计算

双碱法计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 ⑴ 塔径及底面积计算: 塔内流速:取s m v /2.3= m v Q r r v vs Q 17.12 .314.33600/49532121=?==???==ππ D=2r=2.35m 即塔径为2.35米。底面积S=∏r 2=4.3m 2 塔径设定为一个整数,如2.5m ⑵ 脱硫塔高度计算: 液气比取L/G= 4,烟气中水气含量设为8% SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4 ① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台 ② 计算循环浆液区的高度: 取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m 如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。 ③ 计算洗涤反应区高度

停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m ④除雾区高度取6米 H3=6m ⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的NaOH 1.075Kg。每小时消耗85%的CaO 60.585Kg。石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是24.26 m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重0.129吨。 蒸发水分量2.16 m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h 若氧化还原池按两塔5小时排出浆液量计算,则容积应为3.6×2×5=36 m3 如果采用塔外循环,循环水池也即再生、沉淀、碱水池可设定容量为250m3,有效容积200m3,池高度≤4m(便于抽沉淀),循环水停留时间设定为1小时。石灰采用人工加料,沉淀用离心渣泵或潜水渣泵抽出,采用卧式离心机脱水。

现运行的各种脱硫工艺流程图汇总

现运行的各种脱硫工艺流程图汇总 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、 干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态 下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等 优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水 废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、 设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗 活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾

干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫 海水脱硫技术

实验一混合碱的分析

工业分析专业实验混合碱的测定(双指示剂法) 姓名:孙明辉 专业班级:应化0704班 学号: 07220413 日期: 2010年3月19日 指导教师:陈萍

实验一混合碱的分析一、摘要 通过配制适当浓度的HCl,然后用分析纯无水Na 2CO 3 进行标定,精确称量4 g 左右的混合碱试样,溶解后用已标定的HCl标准溶液,采用双指示剂法进行滴定, 根据前后两次消耗HCl的体积判断试样的成分。结果表明,该试样为Na 2CO 3 与NaHCO 3 的混合物。 二、实验目的 1.掌握HCl标准溶液的配制和标定方法以及移液管的使用。 2.掌握用双指示剂法判断混合碱的组成及测定各组分含量的原理和方法 3.进一步熟练滴定操作和滴定终点的判断 三、实验原理 混合碱是NaOH;和Na 2CO 3 或NaHCO 3 和Na 2 CO 3 的混合物。欲测定试样中各组分的 含量,可用HCl标准溶液滴定,根据滴定过程中pH值变化的情况,选用两种不同的指示剂分别指示第一、第二终点的到达,即“双指示剂法”。 此方法简便、快速,在生产实际中应用广泛。 在滴定时,先以酚酞作指示剂,用HCl标准溶液滴定至溶液由红色变为浅粉色,这是第一个滴定终点,此时消耗HCl V 1 (mL),溶液中的滴定反应为: Na 2CO 3 +HCl=NaHCO 3 +NaCl , NaOH+HCl=H 2 O+NaCl ,再加入甲基橙试剂,滴定 至溶液由黄色变为橙色,此时反应为:NaHCO 3 + HCl=NaCl+H 2 O+CO 2 ↑,消耗HCl 的体积为V 2 (mL)。 若V1>V2时,试液为NaOH和Na2CO3的混合物,NaOH和Na2CO3的含量(百分含量),若V1<V2时,试液为Na2CO3和NaHCO3的混合物。 同时计算将Na 2CO 3 与NaHCO 3 转化为Na 2 O的形式,计算出试样总碱度。 四、主要仪器和试剂 酸式滴定管 25.00ml、分析天平、容量瓶 250mL、移液管 25.00mL、量筒10ml、盐酸 0.2mol·L-1、酚酞 2g·L-1乙醇溶液、甲基橙(0.2%)、混合碱试样。 五、实验步骤 1.0.1mol·L-1盐酸溶液的配制和标定

混合碱的测定(双指示剂法)

混合碱的测定(双指示剂法) (3学时) 一、目的要求1.掌握双指示剂法测定混合碱中NaOH 和Na 2CO 3含量的原理和方法 2.了解混合指示剂使用及其优点 二、实验原理 工业混合碱通常是Na 2CO 3与NaOH 或Na 2CO 3与NaHCO 3混合物。欲测定同一试样中各组分的含量,可用标准酸溶液进行滴定分析。根据滴定过程中pH 值变化的情况,选用两种不同的指示剂分别指示终点,这种方法称为双指示剂法。此法简便、快速,在实际生产中普遍应用,但准确度不高。 首先在混合碱溶液中加入酚酞指示剂(变色的pH 值范围8.0~10.0),用HCl 标准溶液滴定到溶液颜色由红色变为无色时,混合碱中的NaOH 与HCl 完全反应(产物NaCl+H 2O )而Na 2CO 3与HCl 反应一半生成NaHCO 3,反应产物的pH 值约为8.3。设此时消耗HCl 标准溶液的体积为V 1mL 。然后,再加入甲基橙指示剂(变色的pH 值范围3.1~4.4),继续用HCl 标准溶液滴定到溶液颜色由黄色转变为橙色时,溶液中NaHCO 3与HCl 完全反应(产物NaCl+H 2CO 3),化学计量点时pH 值为3.8~3.9。设此时消耗HCl 标准溶液的体积为V 2mL 。当V 1>V 2时,试样为Na 2CO 3与NaOH 的混合物。滴定Na 2CO 3所需的HCl 是由两次滴定加入的,并且两次的用量应该相等。因此滴定NaOH 消耗HCl 的体积为(V 1-V 2)mL 。则试样中Na 2CO 3和NaOH 的质量分数分别为: 100()(10)()(1 3232132×??×??=???g m mol g CO Na M L V L mol HCl c CO Na 样品质量)ω100()(10)()()(1 3211×??×???=???g m mol g NaOH M L V V L mol HCl c NaOH 样品质量)ω当V 1

双指示剂法测定混合碱样的含量

双指示剂法测定混合碱样的含量 实验原理 混合碱是Na 2CO 3 与NaOH 或 Na 2CO 3与NaHCO 3的混合物。可采用双指示剂法进行分析,测定各组分的含量。 在混合碱的试液中加入酚酞指示剂用HCL 标准溶液滴定至溶液呈微红色。此时试液中所含NaOH 完全被中和。Na 2CO 3也被滴定成NaHCO 3。此时是第一个化学计量点,PH=反应方程式如下: NaOH+HCl=NaCl+H 2O Na 2CO 3+HCl=NaHCO 3+NaCl 设滴定体积V 1ml ,再加入甲基橙指示剂,继续用HCl 标准溶液滴定至溶液由黄色变为橙色即为终点,此时NaHCO 3被中和成H 2CO 3,此时是第二个化学计量点,PH= 反应方程式如下: NaHCO 3+HCl=NaCl+H 2O+CO 2 设此时消耗HCl 标准溶液的体积为V 2 ml 根据V 1和V 2可以判断出混合碱的组成。 当V 1>V 2时,试液为Na 2CO 3 与NaOH 的混合物。 当V 1V 2时,试液为NaOH 和Na 2CO 3的混合物,NaOH 和Na 2CO 3的含量(以质量浓度g·L -1表示)可由下式计算: %1001000)(%21m M V V C NaOH NaOH -=; %1001000212%32232m M V C CO Na CO Na ??= 当V 1

双碱法脱硫的操作

双碱法脱硫的操作 主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。3种生成物均溶于水。在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等。上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料。 因此可做到废物综合利用,降低运行费用。 用NaOH脱硫,循环水基本上是NaOH的水溶液。在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养。 为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题。脱硫剂用量计算如下: 脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量。用量需要过量5%以上(按5%计算)。 前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h。 SO2和CO2中和反应用氢氧化钠量为: (80×42÷64+80×2 161÷44)×105% =4 180 kg 脱硫过程由于NaOH的转换实际消耗是石灰。折算成生石灰消耗量56×4 180÷80=2 926 kg 生石灰日消耗量为70 224 kg 综上所述,脱硫过程的碱消耗量是很大的。但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用。所以改进后的双碱法脱硫工艺是值得推荐和推广应用的。 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3—; SO2(g)= = = SO2

实验六混合碱分析(双指示剂法)

实验六:混合碱分析(双指示剂法) 一、实验目的 1、了解多元弱碱滴定过程中溶液pH值的变化及指示剂的选择; 2、掌握双指示剂法测定混合碱中碳酸钠和碳酸氢钠以及总碱量的原理和方法; 3、进一步练习滴定、移液、定容等基本操作。 二、实验原理 混合碱系指NaOH和Na 2CO 3 或Na 2 CO 3 和NaHCO 3 等类似的混合物,可采用双指 示剂法进行分析,并测定各组分的含量。若混合碱是由NaOH和Na 2CO 3 组成, 先以酚酞作指示剂,用HCl标准溶液滴至溶液略带粉色,这时NaOH全部被滴定, 而Na 2CO 3 只被滴到NaHCO 3 ,此时为第一终点,记下用去HCl溶液的体积V1。 过程的反应如下:酚酞变色:OH-+H+=H 2O ,CO 3 2-+H+=HCO 3 -然后加入甲 基橙指示剂,用HCl继续滴至溶液由黄色变为橙色,此时NaHCO 3被滴至H 2 CO 3 , 记下用去的HCl溶液的体积为V2,此时为第二终点。显然V2是滴定NaHCO 3 所消 耗的HCl溶液体积,而Na 2CO 3 被滴到NaHCO 3 和NaHCO 3 被滴定到H 2 CO 3 所消耗的HCl 体积是相等的。甲基橙变色时:HCO 3-+H+=H 2 CO 3 (CO 2 +H 2 O) 由反应式可知: V 1>V 2 ,且Na 2 CO 3 消耗标准溶液的体积为2V 2 ,NaOH消耗标准溶液的体积为(V 1 —V 2 ), 据此可求得混合碱中NaOH和Na 2CO 3 的含量。若混合碱系Na 2 CO 3 和NaHCO 3 的混合 物,以上述同样方法进行测定,则V 2>V 1 ,且Na 2 CO 3 消耗标准溶液的体积为2 V 1 , NaHCO 3消耗HCl标准溶液的体积为(V 2 —V 1 )。由以上讨论可知,若混合碱系由未 知试样组成,则可根据V1与V2的数据,确定混合碱的组成,并计算出各组分的 含量。 三、实验用品 mol·L-1HCl标准溶液,%酚酞指示剂,%溴甲酚绿-二甲基黄指示剂,混合碱试样 四、实验步骤 准确移取碱灰试样三份,分别置于200mL锥型瓶中,各加50ml蒸馏水,加2滴酚酞指示剂,用HCl标准溶液滴至溶液略带粉色终点,记下用去HCl溶液的体积V 1 ;再加入9滴溴甲酚绿-二甲基橙指示剂,用HCl继续滴至溶液由绿色变 为亮红色,用去的HCl溶液的体积为V 2 。重复测定2~3次,其相对偏差应在%以

双碱法脱硫

双碱法脱硫技术介绍 碱法, 脱硫, 技术 (一)双碱法烟气脱硫技术介绍 双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。 (二)双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2SO3 + SO2 →NaSO3 + CO2↑(1) 2NaOH + SO2 →Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O →2NaHSO3 (3) 其中: 式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 →Na2SO4 (4) NaHSO3 + 1/2O2 →NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3 →2 NaOH + CaSO3 (6) Ca(OH)2 + 2NaHSO3 →Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程

相关主题
文本预览
相关文档 最新文档