当前位置:文档之家› BPC电波授时编码详细格式

BPC电波授时编码详细格式

BPC电波授时编码详细格式
BPC电波授时编码详细格式

今天网上闲逛时在某个角落发现它了。。对比了一下。发现以前网友猜测的BPC编码格式,部分位有错,基本上还是和该文件吻合的,部分网友未解开的校验位,该文件也详细描述到了。

我对比了论坛老帖子里记录的帧信息,确认此文件是正确的

现在看来,BPC的编码是完全没有加密,并没有之前想像的那样在未知位里加入了“通知正版用户升级之类的陷阱”。而且BPC的编码是相当巧妙,相对与国际上其他的编码方案,在相等的时间内信息量大。一分钟内有三组完整数据,部分位,比如年,占用了3秒啊的信息量,3秒数据最多能表达到63,如果占用4秒的话,能表达到255,又造成数据位的浪费,,BPC编码者从校验位中借出信息。。非常巧妙。但是,貌似BPC也有千年虫问题。年份占用7个二进制位,最大表达到127,所以年份的十进制表达最大肯定是99,年的前两位没有在BPC信息里。还有,BPC利用的是每秒帧宽度来表达信息,宽度有4中,0,0.1s,0.2s,0.3s。在噪音比较大的情况下,接收的识别相对于国际上其他电波钟编码,肯定会差的。这也是个不小的遗憾。BPC编码者考虑到此,在每组数据的前10秒和后十秒分别加入了奇偶校验。接受程序的校验位一定有。

以下为专利描述的正文:

BPC电波授时编码

本文为西安****公司为国家电波授时设计的专利文件,还没有对外开放哦

摘要:

本发明涉及一种电波授时编码。其特征在于:帧周期为20秒,每分钟包含三帧;以秒脉冲宽度表示四进制数的0,1,2,3,以四进制数表示相应的“分”,“时”,“日”,“月”,“年”,“星期”等时间信息;以帧标志表示帧所在的时间段,以缺少秒脉冲作为帧间隔和帧预告标志;采用码位复用技术。本发明克服了现有的时间编码帧周期过长的缺陷,接收一帧时间信息所用的最少时间由1分钟减少到20秒,提高了接收机效率,降低了对抗干扰的要求。

名词术语解释:

时间编码:以数字脉冲信号的方式对“分”,“时”,“日”,“月”,“年”,“星期”等时间信息进行编码。

方波秒脉冲:数字脉冲信号的波形为方波,其周期为1秒。

帧(即时间信息帧):一组包含“分”,“时”,“日”,“月”,“年”,“星期”等时间信息和必要的校验标志位的编码(或代码)。

帧周期:一帧的起始到下一帧的起始所用的时间。

背景技术:

电波授时是将高精度原子钟导出的精确时间信息用时间编码方式,通过无线电发射装置以低频(20KHz—100KHz)无线电波进行传播,用户端利用无线电接收机接收信号并解调以恢复时间编码,再经过微处理器对编码进行一定的处理(解码)得到精确时间信息。目前在德国,美国,英国,日本等国家,电波授时已广泛应用于电力,通信,民航,铁路以及个人计时器等各个领域。

电波授时所采用的时间编码是影响时间信息传播准确性和可靠性以及发射,接收装置制

造难易程序的重要因素。现有时间编码包括DCF(德国),MDF(英国),WWVB(美国),JJY/JG2AS(日本)等,这些时间编码的共同特征是:以方波秒脉冲形成时间编码;以脉冲前沿标志1秒的起始,以不同的脉冲宽度(即方波脉冲信号持续时间)表示二进制数的1或0,以二进制数表示“分”,“时”,“日”,“月”,“年”,“星期”等时间信息,1分钟一帧,即周期为1分钟。由于无线电波传播过程中不可避免地要受到各种干扰,因此信息失真,错码,漏码等就成为可能。虽然现有时间编码中设置了必要的校验位用于判断所接收信息的正解性,但这种简单的校验方式的误判率仍然较高。有效的做法也是目前被广泛采用的方法是:在接收信号时先利用校验码对每组编码进行初步校验,然后对连续接收到的二到三帧信息进行比较后作出最终判断。因此,要接收到一组完整准确的时间编码信息至少要二到三分钟时间。这不公使接收机的效率低,而且当干扰比较严重时,尤其是在远距离发射地,信号微弱或信号有时无的情况下,使得接收信号非常困难甚至不可能。

发明内容:

本发明的目的是为了克服现有时间编码帧周期过长的缺陷,以提高接收机效率,减少由于干扰或信号微弱对接收信息的影响。

本发明采取的技术方案是:以方波秒脉冲的形式形成时间编码,不减少现有时间编码的帧信息容量,将帧周期缩短为20秒;每分钟包含三帧,并将每分钟划为三个时间段(0至19秒,20至39秒,40至59秒),使每帧各占一个时间段;以帧标志表示帧所在的时间段;每个方波秒脉冲宽度以不同的秒脉冲宽度表示四进制数0,1,2,3,以四进制数表示相应的“分”,“时”,“日”,“月”,“年”,“星期”等时间信息;以缺少秒脉冲作为帧间隔和帧预告标志,每帧当中加入二个校验码,将每个校验码之前所接收到的代码的值转换成二进制表达式后的“1”,的个数配置成偶数和奇数;利用一位代码可能的4个值,将某位代码赋予两种或两种以上的含义(称之为“代码复用”)。

本发明所产生的有益效果:接收一帧时间信息所用的最少时间由1分钟减少到20秒,采用三帧比较结果检错时,其最少时间由3分钟减少到1分钟,提高了接收机效率,降低了对抗的要求,并且远离发射台,信号微弱的情况下接收时间信息成为可能。同时仍采用了以秒脉冲形式进行编码与现有时间编码保持兼容,因此信号接收不需要昂贵的专用接收系统,可利用现有的时码接收芯片和成熟的解码技术可靠地接收授时信号。有利于电波授时技术在我国普及应用和加速发展。

附图为本发明实施例,现结合附图对本发明技术方案作进一步说明:

图中将一分钟的三个时间段折叠在一起,其包含的三帧所表示的时间信息是相同的。帧

周期为20秒。

方波秒脉冲有0.1S,0.2S,0.3S,0.4S四种脉冲宽度状态,分别表示四进制的0,1, 2,3,采用四进制数表示时间信息增加了每位码位的信息容量。现有的时间编码都以二进制表示时间信息,是为了采用微处理器解码方便。但四进制只是数值的一种表示方式,并不影响微处理器把它作为二进制处理,或者采取简单的变换就可变成真正的二进制数。

P1为帧标志,P1=0表示帧起于第1秒,P1=1表示帧起始于21秒,P1=2表示帧起始于41秒。帧标志是必需的,它用来确定整分的起始。例如:当接收完一组包含着“10时38分”的时间编码时,如果帧标志标明该帧为第二帧,就可以在下一帧的起始时标定为10时38分41秒,再过20秒便是10时39分的起始。

P0设在每分钟0,20,40秒,以缺少秒脉冲使帧与帧隔开,同时作为帧起始预告。

P3是校验位,与“午前”,“午后”标志复用。0和2表示“P1”,“P2”,“时”,“分”,“星期”各位码的值转换成二进制表达式后,其“1”的个为偶数,1和3表示“P1”,“P2”“时”,“分”,“星期”各位码的什转换成二进制表达式后,其“1”的个数为奇数,0和1同时表示午前,2和3同时表示午后。

P4是校验位与“年”的最高位利用,0和2表示“日”“月”“年”的低三位各位码的值转换成二进制表达式后,其“1”的个数为偶数,1和3表示“日”“月”“年”的低三位各位码的值转换成二进制表达式后,其“1”的个数为奇数,0和1同时表示“年”的最高位的值为0,2和3同时表示“年”的最高位的值为1。

P2为预留位。用于需要要扩充信息。

图中帧状态的时间编码为:0021033021021030101。表示的时间信息为:2004年3月9日,星期二,午前09时15分。该帧起始时间为:15分01秒

北斗校时服务器装置介绍

北斗校时服务器装置介绍 在科技的发展下,人们对于时间精度的要求也越来越高,所以一些简单的机械式时钟就会被精度更高的时钟所代替,为达到更高的时间精度,时钟的授时方式和种类就需要改变,比如北斗校时服务器、CDMA时钟服务器、GPS时钟服务器。其中北斗校时服务器装置是指接收中国北斗卫星导航系统,进行授时的时间服务器。 北斗校时服务器装置以北斗卫星信号作为标准时间源的,北斗校时服务器装置内置卫星接收机,可以接收卫星时间信号,然后将卫星信号通过网络传输给终端设备,并对终端设备的时间进行校准,使局域网内终端设备和北斗校时服务器装置的时间同步,达到终端设备和卫星时间一致。北斗校时服务器内置高精度恒温晶振,恒温晶振具有守时功能,在卫星失锁或时间服务器断电的情况下,也不用担心时间错误,保证了场所内的时间精确。北斗校时服务器具体工作原理如;授时天线接收卫星信号后由同轴电缆传递到时间服务器,时间服务器

接收到卫星信号后,通过网口输出将卫星时间传递给终端设备。 目前西安同步电子科技有限公司,所生产的北斗校时服务器,如SYN2151型NTP时间同步服务器,内置GPS北斗卫星信号接收机,定时精度≤30ns、跟踪灵敏度≤-160dBm。时间同步服务器网络输出为10M/100M/1000M自适应、网络授时精度0.5-10ms。支持Web管理软件监控管理。SYN2151NTP时间同步服务器还具有,防火墙保护 SYN-flood防御,软硬件看门狗设计,QoS功能,中英文选择功能,监控NTP网络授时运行状态,网络诊断等多种功能,可用于各个行业满足各种客户需求。 北斗校时服务器装置目前市场上的供应商居多,但对于北斗校时服务器装置的功能来说,一般的授时功能都是可以满足的,但在特殊要求或功能的条件下,有的供应商就不能满足了。西安同步电子科技有限公司的北斗校时服务器装置增加其他功能和许多选件,比如天线放大器,天馈线避雷器,高精度授时接收机,双电源,铷原子钟、驯

《导航定位与授时》稿件格式模板

《导航定位与授时》稿件格式模板 字体字号行距等供参考,主要是相关内容要素(注意中英文摘要及图题表题需要中英文对照)齐全即可。 巡航导弹红外成像导引头辅助导航技术研究* (题名:三号黑体居中,20汉字之内,也不应出现非共知共用的缩略语、符号和代号等。) 朱××,杨××(作者姓名,五号楷体) (西北工业大学航天学院,陕西西安710072)(作者单位,五号楷体) 摘要:针对巡航导弹中制导段飞行时间长、纯惯性导航精度低、中/末制导交接班困难的问题,提出了一种基于红外成像导引头/捷联惯导的新组合导航方案。巡航导弹中制导段红外成像导引头识别并跟踪已知坐标的地标点(或地物),采用卡尔曼滤波算法实现导引头和捷联惯导的信息融合,从而获取较高精度的导航信息。建立了红外成像导引头/捷联惯导组合导航系统的数学模型,给出了一种基于无迹卡尔曼滤波(UKF)的信息融合算法并进行了数字仿真。仿真结果表明,该方案可以实现巡航导弹中制导段高精度导航。 (摘要:五号,楷体,通栏。注:摘要采用报道性文摘,应拥有与论文同等量的主要信息,中英文摘 要均须包括研究目的、方法、结果和结论四要素,突出工作创新性。一般以200-300字左右为宜。) 关键词:巡航导弹;红外成像导引头;捷联惯导;组合导航;卡尔曼滤波 (关键词:五号,楷体,通栏。应给出3-8个关键词) 中图分类号:查阅网站中国图书馆图书分类法文献标识码:A 文章编号: Research on aided navigation technology for cruise-missile IR imaging seeker (英文题名:三号Times New Roman居中。首字母和缩写单词大写,其他小写。) ZHU Xue-ping, YANG Jun (姓氏的全部字母大写,复姓连写,名字的首字母大写,双名中间加连字符) (College of Astronautics, Northwestern Polytechnical University,Xi’an 710072,China) Abstract:A new integrated navigation scheme is put forward based on IR imaging seeker/strap-down inertial nav-igation regarding the problems of long flight time in midcourse guidance phase for cruise-missile, low inertial nav-igation accuracy and difficulty in midcourse/terminal guidance handover. Cruise-missile IR imaging seeker identi-fies and tracks landmark points (or surface features) by known coordinate in midcourse navigation phase, and em-ploys Kalman filtering algorithm to carry out information fusion between seeker and strap-down inertial naviga-tion,then it gains navigation information with high accuracy. The mathematical model of integrated navigation sys-tem is established and an information fusion algorithm based on UKF is drawn out with mathematical simulation. The simulation results show that this scheme can reach navigation with high accuracy in cruise-missile midcourse phase. (英文摘要:能准确译出中文摘要最佳,也可适当扩充一些重要信息,原则上中文摘要编写的注意事项都适用于英文摘要,但还应遵循英语的表达方式和语言规范,不可逐词逐句硬性翻译。所做的工作使用一般过去时加被动语态,结论用一般现在时。摘要中勿出现文献号。) Keywords: Cruise missile; IR imaging seeker; Strap-down inertial navigation; Integrated navigation; Kalman filtering (关键词:首字母大写。) 0 引言(一级标题:小四黑体,上下各空一行。)(引言:应介绍论文的写作背景和目的,充分概括相关领域内前人所作研究,目前研究的热点、存在问题,作者的意图与分析的依据,研究的内容及前

北斗授时

1.北斗授时工作机理 在现代卫星导航系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。利用统计平均的方法建立一个系统时间来实现。星上通常以原子钟为参考钟。 系统时间与UTC之间协调方法,需要考虑国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最重要一环。 系统钟的同步方法,主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响,比对测量和钟驾驭方法的研究是时钟同步的基础。 系统授时方法,包括卫星电文中的与时间有关的信息的制定与产生,用户终端定时技术涉及到接收、比对及控制技术等。 对用户来说,北斗的授时精度主要由授时模块来提供,通常20ns,由秒脉冲同步来保证。 2.为何要时间同步 对于一个进入信息社会的现代化大国,导航定位和授时系统是最重要、而且也是最关键的国家基础设施之一。现代武器实(试)验、战争需要它保障,智能化交通运输系统的建立和数字化地球的实现需要它支持。现代通信网和电力网建设也越来越增强了对精度时间和频率的依赖。为了提高民用定位定时的性能和可靠性、安全

性,利用这些卫星系统建立广域增强系统(Waas)美国、日本、欧洲和俄罗斯也在计划或研制之中。 这些系统导航定位的基本概念都是以精度时间测量为基础的。正如有人所指出的那样,我们人类生活在余割四维的世界(x、y、z、t)其中一维就是时间,而另外三维的精度确定,就今天而言,没有精确的定时也是难以实现的。 单从授时出发,不难理解系统发播时间的精确控制是不可缺少的。而对于导航定位,系统内部钟(星载钟和地面监测和控制台站的钟)的同步就极为关键。没有原子钟的支持,没有钟同步和保持技术的支持,实现星基导航和定位是不可能的。在完成精确时间的传递过程,需要对传播时延作精确修正,而这又需要知道用户的精确地理位置。 从以上分析可以看出,无论在系统概念、技术、装备或管理上,与其他通讯和卫星系统相比,导航定位卫星系统与高精度卫星授时系统有很好的兼容性和互补性,二者是相辅相成的。从资源共享和合理利用出发,先进的卫星系统应该成为一个导航授时一体化的高精度星基四维(x、y、z、t)信息源, GPS、北斗、Glonass和正在研制中的Galileo,无不把其授时功能提到仅次于导航定位的重要地位。以便满足个行各业对精度时间和频率日益增长的需求。 一般的电子设备晶振的精度为6~12ppm,亦即每秒有约9微秒(平均)的误差,1小时累积约32毫秒误差,1天累积约0.8秒误差,一个月累积约23秒误差,1年累积约280秒误差。可见日常工

BPC电波授时信号伪造

时间都去哪了?! ——BPC电波授时信号的“零成本”伪造 阿里巴巴移动安全 工作日,上班路上,看一眼情人节女友刚送的六局电波表。咦,出门明明还早,怎么眼看要迟到!别慌,可能只是你被“黑”了。 什么,你戴iWatch?那可以看看这篇:GPS信号伪造。 电波钟/表顾名思义就是通过接收电波授时信号实现自动对时的钟表。以“电波表”为关键字在淘宝搜索,可以看到相关产品很多。其中主要是几个日系的手表大厂,如卡西欧、西铁城、精工、东方双狮等,此外国产品牌也有几个,就不一一列举了。我们后面实验中用到的是一台挂钟,由国产品牌康巴丝生产。 授时电波一般由国家负责标准时间的专门机构进行播发。所广播的时间是国家标准时,由多台高精度原子钟组成的守时钟组产生。授时电波采用频率低于100千赫的长波波段,不易被遮挡,因此一个发射站就可以基本覆盖一国国土。中英美日德等国有各自标准的长波授时服务,不仅名称不一,所用的频率和编码也不同,也就是开头提到的所谓六局(日本面积虽小,但有两局). 我国的长波授时服务BPC,由中科院国家授时中心与某企业合作建立,面向民用。BPC广播站设立在河南商丘,频率为68.5千赫。采用脉宽调制,码率1赫兹。每个编码脉冲宽度为0.1s,0.2s,0.3s或0.4s,分别代表四进制的 0,1,2,3。而这一串四进制的数字是由播发时刻的秒、时、分、星期、日、月、年插入几个校验位组成的,长度为20s,并无任何加密手段。也就是说20秒的信号才可以完整传达当前日期和时间。这一编码方式相比其他各国60秒一帧的方法,对时过程更快。另外需要提醒一下,BPC电波授时编码属于

某企业的专利技术,不能私自用于商业盈利。既然是专利,就不妨再公开引用一次,编码示意图如下。 说了这么多,同学们应该对电波授时和电波钟表也有了大概的了解。下面讲讲如何“黑”的问题。思路很简单:伪造授时电波信号,盖过真正的BPC电波,电波钟也就乖乖听咱的了。 如何产生信号呢,我们采用了一台安捷伦最新款PSG系列信号发生器——开玩笑的,我司怎会有这,只有笔记本电脑。好吧,就用笔记本。是的,就用笔记本! 笔记本电脑就位后,照着专利说明书写一个程序,将日期时间翻译成BPC编码,然后将编码通过电脑自带的音频输出播放出来。为了避免笔记本自身杂散电磁辐射造成干扰,我们利用耳机作为播放设备。为了增强信号强度,我们把耳机粘在钟表背后靠近接收天线的位置,把音量调到最大。编造一个错误的时间,运行程序开始发播信号,人耳可以听见脉冲通断的声音。按下电波钟背后的对时按钮三秒钟,表针暂停,进入对时模式。静待几分钟,电波钟从信号中获取错误的时间,表针快速旋转至指定时间,对时成功! (对时过程有视频为证,点击查看视频) 讲到这里,肯定有同学要说,声卡最高只能输出22千赫的声音,怎么能发出68.5千赫,还是电波信号,你不要骗我!且慢,其实是笔者刚有意漏掉一个关键点现在来讲。电

北斗卫星导航系统空间信号授时设计分析

北斗卫星导航系统空间信号授时设计分析 摘要 北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 关键词:卫星导航系统;精准授时;卫星定位;北斗系统

目录 摘要 (1) 第1章绪论 (1) 1.1 课题研究背景 (1) 1.2 理论概述 (1) 第2章北斗系统 (2) 2.1北斗一号 (2) 2.2北斗二号 (2) 第3章授时分析 (3) 3.1基本概念 (3) 3.2授时原理 (3) 3.3北斗授时 (5) 第4章误差分析 (6) 第5章总结 (6) 参考文献 (8)

第1章绪论 1.1 课题研究背景 中国北斗卫星导航系统(英文名称:BeiDou Navigation Satellite System,简称BDS)是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 1.2 理论概述 卫星导航、定位和授时系统中需解决的技术问题有: (1)系统时间建立的概念及实现方法 在现代卫导系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。利用统计平均的方法建立一个系统时间来实现。其建立的概念和实现方法,直接影响到系统时间的好坏,进而影响到整个卫导系统中各个钟的同步。这个研究对系统中原子钟的选择与配置也有指导意义。 (2)系统时间与UTC协调方法 系统时间与UTC协调方法是授时所必要的。这需要研究国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最要一环。 (3)系统钟的同步方法 这主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响。比对测量和钟驾驭方法的研究是它的基础。

北斗授时介绍

卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪

无线控制授时技术(RCT)及其应用

无线控制授时技术(RCT) CT发射机及接收机技术原理、RCT编码技术以及RCT技术目前在各国的应用情况。给 关键词:无线控制授时 BPC WWCB MSF DFC JJY RCT 1C 情况正确的时间在人们日常生活中是不可或缺的。随着微处理器在家用电器、工业产品中的日益普及,许多产品中嵌入了时间处理、显示模块。目前多数产品中的时钟源由晶体振荡产生比较精确的时间。但是在许多场合,由于晶体振荡需要电源供给,在掉电或更换电池时,原有时间会丢失,系统时间被复位,此时必须依照广播、电视或电话公司提供的标准时间手工重新校对;另外在跨时区旅行时,也需要重新校对时间。这给人们带来许多不便。目前随着RCT技术的应用,使得需要标准时间的系统通过内嵌微型RCT接收装置自动设置标准时间,时间精度一般为秒级且与国家标准时间同步、无需手工调整。从而实现了计时装置计量时间和显示时间的精确性(与授时中心的标准时间同步)、统一性(所有接收该时间信号的计时装置都显示同一时间)。在RCT技术广泛应用之前,也有使用GPS(全球定位系统)接收标准时间的装置,但由于其电路复杂、成本高昂而没有得到普及。在北美及欧洲,由于RCT技术的普及,使得市场对具有自动接收时间功能的钟表及其它计时装置产生了很高的需求。不同的国家使用了不同的时间编码格式和发射频率。表1给出了目前已发射长波授时信号的几个主要国家的时间编码标准及其使用频率。表1 各国RCT技术使用的时间编码及发射频率国家名时间编码标准发射基站地点使用的频率发射功率接收半径中国BPC陕西西安68.6kHz100kW2000km美国WWVBFort Collins60kHz50kW2000km英国MSFRugby60kHz251200km 德国DFCFrankfurt77.5kHz50kW1500km日本JJY40JJY60本州福岛九州富网40kHz60kHz50kW50kW1000km1000km①中国的长波授时编码标准为BPC。目前该长波授时的时间编码还未正式公开,其专利由西安高华实业有限公司持有。同时该公司也是中国第一台长波授时电波钟的开发者。②美国的长波授时编码标准为WWVB,发射基站位于Colorado州的FortCollins。由于美国只建有一个长波授时的发射站,因而在距离发射站较远的地区信号较弱,对接收芯片的灵敏度要求比较高。③英国的长波授时编码标准为MSF,发射基站位于Teddington的Rugby。由于英国本土面积较小,一个长波授时发射站就可以覆盖英伦三岛,时间编码信号较强,对接收芯片的灵敏度要求不高。④德国的长波授时编码标准为DCF,与MSF类似。20世纪50年代末,德国就在Frankfurt建立了长波授时中心。德国国土面积较小,且DFC的长波授时信号发射站功率很强,是RCT技术中对接收芯片的灵敏度要求最低的,因而比较容易开发。⑤日本的长波授时编码标准为JJY。由于日本地形狭长,在本洲福岛的40kHz(JJY40)发射机不能覆盖日本全国。日本通信综合研究所于2001年10月在九州富冈新建了60kHz的授时发射站(JJY60)。[!--empirenews.page--]图2 MSF授时信号编码格式2RCT的技术原理无线控制授时系统由时间编码信号的长波授时发射台及其接收装置共同组成。最初的无线授时系统(包括短波授时和长波授时)只应用于军事目的,现已转为民用。2.1无线控制授时系统的授时信号发送原理RCT系统授时信号发送装置的系统构成如图1所示。首先,通过在标准授时中心内的铯(或铷)原子钟产生标准时间。例如,铯原 进行分频产生实时的标准时间信息,如年、月、日、时、分、秒、毫秒、微秒等。然后将标准时间信号传送给时间编码发生器编码,编码后的时间信号通过调制器调制到长波载波信号(40kHz~80kHz)上,经过功率放大器将信号沿传输线传送到天线塔发射出去。由于授时信号属于长波信号,以地波形式沿地球表面传播。2.2RCT技术系统授时信号的接收原理RCT接收机通过内置微型无线接收系统接收长波时间编码信号,由专用芯片

北斗卫星授时介绍

北斗卫星授时介绍 北斗卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪该卫星信号。经过一定的信息处理和时延后,再按确定的格式同时向两颗地球同步卫星播发自己的应答信号。两颗地球同步卫星将其应答信号转发到地面中心站。地面中心站接收到该应答信号以后,测量整个应答信号的往返总时延,并根据地面中心站至两颗同步卫星的距离、用户机的高度等数据信息,解算出该用户机(即载体)在地球表面或空中的当前位置。再由地面中心站经过地球同步卫星把该位置信息传送给用户机,在用户机的显示器上显示其当前地理坐标位置,完成了用户机的单收双发定位工作模式。如果用户机同时接收到两颗地球同步卫星的信号,并测量出两个询问信号的时差后,将该时差通过一颗地球同步卫星转发给地面中心站,地面中心站的计算机根据该时差值就可以解算出用户机(即载体)在地球表面或空中的当前位置,并发送给用户机,完成了双收单发的定位工作模式。 地面中心站发送广播询问信号的同时也可以传送通信电文。用户机可以通过自己的应答信号向地面中心站传送需要发送的通信信息,因而该系统具备双向通信功能。地面中心站所发送的广播询问信号中还可以发播标准时间信号,用户机应用这些信号可以进行校时,所以该系

GPS授时系统

GPS授时系统设计 摘要:使用GPS25一LVS OEM板(接收机)接收卫星信号,通过串口异步通信把数据传送给89C51单片机,单片机通过并口控制LED显示,从而实现GPS准确授时.同时,介绍了GPSOEM板输出的数据形式,并采用NMEA_0183格式中最常用的“$GPGGA”格式输出,由“$G —PGGA”数据输出格式可编写出相关的接收程序. 关键词:GPS授时;0EM板;秒脉冲 0 引言 时间信号的准确与否,直接关系到人们的日常生活、工业生产和社会发展.人们对时间精度的要求也越来越高.天文测时所依赖的是地球自转,而地球自转的不均匀性使得天文方法所得到的时间(世界时)精度只能达到9 10-.因此“原子钟”广 10-,“原子钟”精度可达12 泛运用到精密测量和日常生活、生产领域.GPS接收机授时系统是利用接收机接收卫星上的“原子钟”时间信号,然后把数据传输给单片机进行处理并显示出时间,由此可制作出GPS精密时钟.目前已有专门用于授时的授时型接收机,可以提供ns级的精确时间,但由于其价格昂贵,多数用户难以接受,因此无法普及.本文采用具有定时功能的GPS 0EM板的串口输出的协调世界时进行授时,可提供经济、实用、准确的公众时间,避免了因时钟不准确给生活、生产带来的不便.. 0.1 GPS系统简介

1973年12 月,美国国防部组织陆海空三军联合研制新一代的卫星导航系统:“Navigation Satellite Timing and Ranging/Global Positioning System”,意为“卫星测时测距导航全球定位系统”,简称 GPS。原系美国国防部军事系统中的一个组成部分,现已广泛应用于航海、航天、测量、通信、导航、智能交通等诸多领域。它是新一代精密卫星定位系统,是现代科学技术迅速发展的结晶。 GPS 是一种全球性、全天候的卫星无线电导航系统,可连续、实时地为无限多用户提供。由于 GPS 定位技术具有精度高、速度快、成本低的显著优点,因而己成为目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统。这个系统向全球范围内的用户提供高精度的三维位置和精密时间信息。 0.2 GPS系统的组成 GPS 系统主要由 3 大部分组成,即空间星座部分、地面控制部分和用户设备部分(图 0-1)。 图 0-1 GPS 系统的组成 (1)、空间星座部分

北斗授时终端现状概述

北斗授时终端现状概述 近些年来,北斗卫星导航系统的逐渐崛起使得北斗授时终端应时而生。毫无疑问,北斗授时终端相关产业和方向的研究也必将会成为一大热门。 一、北斗授时终端简介 授时技术一般来说主要包括短波授时、长波授时、网络授时和卫星授时。其中卫星导航授时因为其具有精度高、覆盖范围广、全天时、全天候和设备成本低等诸多优点,越来越受到各类用户的青睐。 利用所接收导航信号解算的高精度时间信息综合实现了NTP、B码、PTP和串口等的高精度授时服务的设备即为授时终端。 电力、金融、电信是与国家安全和人民利益息息相关的重要领域,它们对时间系统的同步性往往都有着很高的要求。之前我国在这些领域使用的都是美国GPS授时技术,不但受制于人,还存在着极大的安全隐患。但是随着我国北斗卫星导航系统(BDS)和北斗授时技术的快速发展,北斗授时产品目前正在逐步替代着GPS授时产品。 二、北斗授时原理 北斗授时根据其授时方式的不同,大致可以分为单向授时和双向授时两种。 1、单向授时 单向授时是由授时终端接收卫星信号,解算出基本观测量信息和导航电文信息,进而获得钟差修正本地时间,使得本地时间与UTC同步。当然,单向授时细分之下也可分为RNSS 单向授时与RDSS单向授时两种模式。鉴于文章篇幅原因,这里不再赘述。 简单来说,单向授时是北斗授时终端可以自主实现的一种定时功能。 2、双向授时 相对于单向授时而言,双向授时具有较高的授时精度。 首先,双向授时设备具备出站信号接收和应答发射入站信号的能力。它通过与地面中心站进行往返测量,由中心站获得授时终端与地面中心站的时间差值。这样它就可以避免授时终端天线位置误差、电离层/对流层改造残差等诸多不确定因素引起的单向授时偏差。 授时终端发起授时申请,与地面中心站进行交互,向地面中心站发送定时申请,地面中心站计算其与授时终端的时间差,并通过出站信号播发给该授时终端,授时终端返回的正向传播时延信息T正向及出站电文获得的RDSS系统时间与UTC时间差值?T(GNT-UTC),修正本地时间使其与UTC时间同步完成双向授时。?TJST-UTC=T测量-T正向-T接收零值+?TGNT-UTC(5)。

北斗卫星导航和授时系统的地位和作用

北斗卫星导航和授时系统的地位和作用各国对自主建设卫星导航和授时系统的必要性,均有充分认识。 一、空间战略发展的需要 卫星导航系统是空间战略系统的重要组成部分,也是大国综合实力的体现。同时,卫星上天需要轨道位置,系统运行也需要频率资源。目前这些资源的大部分,已被美国的GPS和俄罗斯的格罗纳斯所占据,在剩余的资源中,按照“先用先赢”的国际法原则,北斗系统先建成,就先占用,而欧盟的伽利略系统由于只发射了4颗卫星,已注定在这场空间资源争夺赛中败下阵来。我们在空间战略上,已抢占了主动把握了先机。 二、国家安全的战略需要 2003年3月20日,伊拉克战争爆发,美军大批轰炸机、巡航导弹猛扑巴格达,炸弹和导弹一一精准命中目标,迅速摧毁了伊军作战力量。其中,指引方向和提供定位的,正是美军卫星导航系统—GPS。我们使用他国的卫星导航和授时系统,将在诸多方面受困:一是使用权上受制于人。伊拉克战争期间,我国的一艘远洋货轮就因拒绝了美军拦截检查,船用GPS导航仪遭信号关闭,被迫停驶。二是使用精度上受制于人。目前,世界上应用最广泛是美国的GPS系统,但其高精度的军用信号就连英国、法国等国也享用不到。所以,欧盟联合研制了自己的卫星导航系统—伽利略系统。三是易受电子欺骗。在战时,敌人可通过GPS系统注

入定位和时间误差,实施欺骗,这将导致导弹失准,指控失调、作战失败的灾难性后果。美、俄等国明确规定,国家安全系统不允许使用国外导航定位和授时服务。 三、社会经济发展的需要 卫星导航系统作为重要的空间基础设施,具有巨大的社会经济效益,有力地促进了国家经济建设,推动了社会发展。目前,已在测绘、电信、水利、气象、煤炭、交通、渔业、勘探、农业、森林防火和应急救援等各个领域发挥着重要作用。同时导航系统本身就是一个巨大的市场,而目前全球95%的市场份额被GPS所占据。

国家电网公司_时钟同步标准

ICS XX. XX Q/GDW 国家电网公司企业标准 Q/GDW XXX.1-200X 电网时间同步系统技术规范Technical Specification for Time Synchronism System of Grid (征求意见稿) 2008年01月 200X-XX-XX发布200X-XX-XX实施 国家电网公司发布

前言 目前,我国电网各厂站和调度控制中心主站大多配备了以GPS为主的分散式时间同步系统,各网、省公司也出台了相应的技术规范。但由于缺少统一技术要求和配置标准,也缺乏时钟同步和时间精度检测的有效手段,现有时间同步系统配置不尽相同,运行情况也不够稳定,部分时钟设备时间精度不能满足要求。由调度自动化系统、变电站自动化系统、故障录波装置和安全自动装置等电力二次系统或设备提供的事件记录数据,存在时间顺序错位,难以准确描述事件顺序,不能给电网事故分析提供有效的技术支持。 为了规范、指导我国电网时间同步系统的设计、建设和生产运行,满足电网事故分析的要求,特制订《电网时间同步系统技术规范》。 《电网时间同步系统技术规范》根据国内外涉及时间统一技术的有关标准、规范和要求,本着“资源整合,信息共享”的原则,结合我国电网的工程实践和时间同步系统的现状制订而成,其要点如下: 规范时间同步系统结构、功能和技术要求; 规范调度主站、变电站的时间同步系统配置标准; 规范时间同步系统电气接口和信号类型; 统一IRIG-B 时码实现电力二次设备与时间同步系统的对时; 结合技术的发展,构建基于地面时钟源的电网时间同步系统。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准由江苏省电力公司江苏电力调度通信中心负责起草,国家电网公司国家电力调度通信中心、江苏省电力设计院、江苏省电力试验研究院、中国电力科学研究院、上海电力调度通信中心等单位参加编制。 本标准的主要起草人:

北斗授时仪

中新创科北斗授时仪DNTS-84-OB 产品型号:DNTS-84-OB 产品尺寸:19英寸1U 4网口:恒温晶振高精度守时 产品概况 北京中新创科技有限公司研制开发的北斗授时仪DNTS-84-OB是一种高科技智能的、可独立工作的基于NTP/SNTP协议的高精度时钟同步服务器。DNTS-84-OB从北斗地球同步卫星上获取标准时钟信号信息,将这些信息在网络中传输,网络中需要时间信号的设备如计算机,控制器等设备就可以与标准时钟信号同步。当北斗接收机无信号时,DNTS-84-OB使用内置的恒温晶振守时,守时精度可达1E-9。北斗授时仪DNTS-84-OB使用标准的时钟信息通过TCP/IP网络传输,DNTS-84-OB支持多种流行的时间发布协议,如NTP,time/UDP,还可支持可设置的UDP端口的中新创科定义的时间广播数据包。NTP和time/UDP的端口号分别固定于RFC-123和RFC-37指定的123和37。北斗授时仪DNTS-84-OB同时支持SNTP协议的广播工作模式。 北斗授时仪DNTS-84-OB有4个10/100M自适应的以太网口,网口间物理相互隔离,完全保证数据安全性,可全设置同一个网段或者不同网段,具有冗余性,某个网口的故障将不会影响其他网口正常工作。每个以太口必须设置独立IP地址。

详细参数 授时精度1-10ms 支持协议NTP/SNTP V10,V20,V30,V40,SNMP,UDP,Telnet,IP,TCP 网口数量4个10/100M自适应以太网口 CPU双CPU同时工作,32位CPU为双核处理器,性能及大提高卫星接收机北斗2代接收机 守时功能恒温晶振精度可达1E-9,GJB2242-94 吞吐量可满足每秒每口2000次时间请求 授时记录保存最新50条 本地告警干接点告警 输出接口RS232/485,IRIG-B,10M,1PPS,支持GJB2911A-2008 规格描述 产品尺寸19英寸1U机架式 接收机北斗2代接收机 内置时钟内置恒温晶振,当卫星信号丢失情况下仍须输出标准时间信号 液晶显示 LCD液晶显示时间,2行每行20个字符,显示时间、卫星颗数及设备工作状态 LED分别指示电源,卫星锁定状态,保持工作状态,告警,NTP有效指示吞吐量可满足每秒每口2000次时间请求 本地告警支持SNMP告警,本地干接点告警输出,最大电流10A 输出接口RS232/485,IRIG-B,10M,1PPS, 10M正弦波输出,BNC接口 1PPS输出,BNC接口 IRIG-B码输出,BNC接口 IRIG-B码输入,BNC接口 RS232输出,支持TL1协议 输入接口串口输入,可人工设置时间,可做外部时钟源 守时功能当北斗信号丢失情况下仍须输出标准时间信号,恒温晶振精度达1E-9以上加密验证提供MD5加密验证功能

北斗三号授时系统设计分析

北斗三号授时系统设计分析 摘要 近日,中国科学院国家授时中心时间频率基准实验室研究人员利用北斗三号卫星,采用双频共视法,实现了我国时间基准UTC(NTSC)与捷克国家时间基准UTC(TP) 的亚欧长基线国际时间比对。在当前北斗三号共视可视卫星比北斗二号数少一半的情况下,达到共视比对精度1.2ns,提升幅度约19%。目前,北斗三号已经成功发射了19颗全球组网卫星,包括18颗正常服务的MEO卫星和一颗在轨测试的GEO卫星,其基本系统现已建成并开始提供全球服务。北斗三号卫星上搭载了更高性能的铷原子钟和氢原子钟,铷原子钟天稳定度为E-14量级,氢原子钟天稳为E-15量级,比北斗二号星载钟的稳定度提高了一个数量级。 关键词:北斗三号;原子钟;授时精度

第1章绪论 1.1 研制背景 从建立一个现代化国家的大系统工程总体考虑,导航定位和授时系统应该说是基础中的基础,它对整体社会的支撑几乎是全方位的,星基导航和授时是未来发展的必然趋势。美国投入巨资建成了全球定位系统(GPS),俄罗斯也使自己的全球导航卫星系统(GLONASS)投入了运行。欧盟一些国家也正在联合开展伽利略(Galileo)卫星导航系统的研制。 孙家栋院士这样评价北斗:“卫星导航,只有想不到,没有做不到。未来,北斗将为我国提供统一的时空基准服务,在我国国家安全和国民经济社会各领域得到广泛应用,保障国家国家经济社会安全,转变国民经济发展方式,成为战略性新兴产业,促进信息化建设的跨越式发展。”一方面,我们“不能把登山的保险绳交到别人手里”,发展北斗是保障我国国家安全的重要举措,另一方面,我们“不愿自己家的钥匙掌握在别人手里”,发展北斗有利于促进社会经济的发展,人民生活水平的提高。 第2章北斗卫星的授时系统 2.1 授时原理 授时是指接收机通过某种方式获得本地时间与北斗标准时间的钟差,然后调整本地时钟使时差控制在一定的精度范围内。卫星导航系统通常由三部分组成:导航授时卫星、地面检测校正维护系统和用户接收机。对于北斗一号局域卫星系统,地面检测中心要帮助用户一起完成定位授时同步。 2.1.1单向授时 北斗时间为中心控制站精确保持的标准北斗时间,用户钟时间为用户钟的钟面时间,若两者不同步存在钟差,则北斗时间和用户钟时间虽然读数相同其出现时刻却是不同的。地面中心站在出站广播信号的每一超帧单向授时就是用户机通过接收北斗通播电文信息,由用户机自主计算出钟差并修正本地时间,使本地时间和北斗时间同步。周期内的第一帧数据段发送标准北斗时间(天、时、分信号与时间修正数据)和卫星的位置信息,同时把时标信息通过一种特殊的方式调制在出站信号中,经过中心站到卫星的传输延迟、卫星到用户机的延迟以及其它各种延迟(如对流层、电离层等)之后传送到用户机,也就是说用户机在本地钟面时间为观测到卫星的时间,由用户机测量接收信号和本地信号的时标之间的时延获得,后则根据导航电文中的卫星位置信息、延迟修正信息以及接收机事先获取的自身位置信息计算。 一般来说,对已知精密坐标的固定用户,观测1颗卫星,就可以实现精密的时间测量或者同步。若观测2颗卫星或者更多卫星,则提供了更多的观测量,提高了定时的稳健性。 2.1.2双向授时 双向授时的所有信息处理都在中心控制站进行,用户机只需把接收的时标信号返回即可。为了说明方便,给出简化模型:中心站系统在T0时刻发送时标信号ST0,该时标信号经过延迟后到达卫星,经卫星转发器转发后经到达授时用户机,用户机对接收到的信号进行的处理也可看做信号转发,经过空间的传播时延到达卫星,卫星把接收的信号转发,经过空间的传播时延传送回中心站系统。也即表示时间T0的时标信号ST0,最终在T0 + + + + 时刻重新回到中心站系统。中心站系统把接收时标信号的时间与发射时刻相差,得到双向传播时延+ + + ,除以2得到从中心站到用户机的单向传播时延。中心站把这个单向传播时延发送给用户机,定时用户机接收到的时标信号及单向传播时延计算出本地钟与中心控制系统时间的差值修正本地钟,使之与中心控制系统的时间同步。 2.1.3 双向授时和单向授时的对比 从双向授时和单向授时的原理介绍中可以看出,双向授时和单向授时的主要差别在于从中心站系统到用户机传播时延的获取方式:单向授时用系统广播的卫星位置信息按照一定的计算模型由用户机自主计算单向传播时延,卫星位置误差、建模误差(对流层模型、电离层模型等)都会影响该时延的估计精度,从而影响最终的定时精度;双向授时无需知道用户机位置和卫星位置,通过来回双向传播

北斗对时设备

北斗对时设备--北斗网络时钟--北斗授时装置 北斗对时设备是目前国内应用最为广泛的授时装置,基本工作原理就是接收北斗卫星定时信号,输出各种授时信号,同步其它设备的时钟设备。影响北斗授时器价格的因素主要由外部参考源选择,内部时钟源选择,输出授时信号种类,授时信号路数,授时精度等因素决定。 1、北斗对时设备外部参考源 北斗授时器一般都是接收北斗卫星信号,但是有些也是可以接收gps卫星授时信号,glonass卫星授时信号,增加这两个信号价格也会相应提高,如果使用gps北斗双模卫星授时,价格基本增加不多,如果选择三模卫星授时,那价格会增加比较多,一般都要增加几千元。另外外部参考源还有IRIG-B,1PPS,10MHZ,DCF77等,增加一种价格就会增加一点,最贵的就是全部功能都有,价格是最高的。 联系人:刘池 手机:189********qq:2563113967 公司:西安同步电子科技有限公司 2、北斗网络时钟内部时钟源

北斗授时器内置时钟源一般包括温补晶振,恒温晶振,铷钟等,温补晶振最便宜,恒温晶振会比温补晶振贵1000元左右,铷钟会比恒温晶振价格贵1-2万元。选择以上三种内置时钟源的区别主要是守时精度的不同,比如温补晶振一天就会误差几百毫秒,恒温晶振会误差几毫秒,铷钟一天就会误差几微妙,如果对守时精度没有要求可以选择性价比高的温补晶振,如果用户对守时精度有要求那就务必按照技术指标来选择。 3、北斗授时装置输出信号种类 北斗授时器熟悉信号种类主要包括1pps,串口tod,NTP,SNTP,PTP,IRIG-B 码等信号,1pps和串口tod相对比较便宜,如果增加NTP/SNTP一路价格会贵2000元左右,如果增加PTP价格会增加5000元左右,如果增加IRIG-B码价格会增加3000元左右,具体的输出信号要根据实际应用环境来选择,如果不是很懂可以咨询我们的售前技术工程师,他们都是长期工作在一线的技术工程师,技术经验丰富,可以提出合理的授时解决方案。 4、北斗授时设备出路数 在上面北斗授时器输出信号种类的基础上增加输出路数,价格也会有相应的区别,一般1pps和tod增加一路在几百元,增加一路ntp/sntp在2000元左右,增加一路PTP在5000元左右,路数的增加肯定带来硬件成本的增加和系统的复杂程度,所以价格肯定也会高一些,建议预算充足的用户可以预留一些备用接口,以防后期使用。 5、北斗授装置授时精度 北斗授权授时精度是最关键的影响价格的因素,一般北斗授时精度在30ns 左右,如果授时精度要提高到20ns,那么价格就会增加几千元,如果要提高到10ns,那么价格就会提高几万元,如果要提高到几个ns,那么价格就会很昂贵,具体的价格就要和厂家直接沟通才可以确定。 6、北斗授时设备厂家 西安同步电子科技有限公司研发生产的北斗授时设备采用厂家直销,不需要中间商,直接让利给用户,用户直接与厂家签订合同,售后保障无忧,价格更是有保障。

相关主题
文本预览
相关文档 最新文档