当前位置:文档之家› 蛋白质的离子交换层析

蛋白质的离子交换层析

蛋白质的离子交换层析
蛋白质的离子交换层析

蛋白质的离子交换层析

发布日期:2009-10-15 来源:生技网信息中心浏览次数:175

离子交换层析技术是以离子交换纤维素或以离子交换葡聚糖凝胶为固定相,以蛋白质等样品为移动相,分离和提纯

离子交换层析技术是以离子交换纤维素或以离子交换葡聚糖凝胶为固定相,以蛋白质等样品为移动相,分离和提纯蛋白质、核酸、酶、激素和多糖等的一项技术。

(一)原理

在纤维素与葡聚糖分子上结合有一定的离子基团,当结合阳离子基团时,可换出阴离子,则称为阴离子交换剂。如二乙氨乙基(Dicthylaminoethyl,DEAE)纤维素。在纤维素上结合了DEAE,含有带正电荷的阳离子纤维素—O—C6 H14N+H,它的反离子为阴离子(如Cl-等),可与带负电荷的蛋白质阴离子进行交换。当结合阴离子基团时,可置换阳离子,称为阳离子交换剂,如羧甲基(Carboxymethy,CM)纤维素。纤维素分子上带有负电荷的阴离子(纤维素-O-CH2-COO一),其反离子为阳离子(如Na+等),可与带正电荷蛋白质阳离子进行交换。

溶液的pH值与蛋白质等电点相同时,静电荷为0,当溶液pH值大于蛋白质等电点时,则羧基游离,蛋白质带负电荷。反之,溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷。溶液的pH值距蛋白质等电点越远,蛋白质的电荷越多。反之则越少。血清蛋白质均带负电荷,但各种蛋白质带负电荷的程度有所差异,以白蛋白为最多,依次为球蛋白,球蛋白和球蛋白。

在适当的盐浓度下,溶液的pH值高于等电点时,蛋白质被阴离子交换剂所吸附;当溶液的pH值低于等电点时,蛋白质被阳离子交换剂所吸附。由于各种蛋白质所带的电荷不同。它们与交换剂的结合程度也不同,只要溶液pH值发生改变,就会直接影响到蛋白质与交换剂的吸附,从而可能把不同的蛋白质逐个分离开来。

交换剂对胶体离子(如蛋白质)和无机盐离子(如NaCl)都具有交换吸附的能力,当两者同时存在于一个层析过程中,则产生竞争性的交换吸附。当Cl 一的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl一浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。因此,在离子交换层析中,一般采用两种方法达到分离蛋白质的目的。一种是增加洗脱液的离子强度,一种是改变洗脱液的pH值。pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱。pH值降低时,抑制蛋白质阴离子化,随之降低了蛋白质对阴离子交换剂的吸附。当使用阴离子交换剂时,增加盐离子,则降低pH值。当使用阳离子交换剂时,增加盐离子浓度,则升高溶液pH值。

(二)常用离子交换剂的种类与特性

1.离子交换纤维素离子交换纤维素的种类很多,其种类与特性如表1-1所示。

在交换纤维素中,最常用的是DEAE—纤维素和CM纤维素。由于剂型不同,其理化性质和作用也有所差异。一般而言,微粒型要优于纤维素型,因为微粒型是在纤维素型的基础上进一步提炼而成。它的交换容量大,粒细、比重大,能装成紧密的层析柱,要求分辨力高的实验可用此型纤维素(见表1-2)。

表1-2 商品DEAE—纤维素和C M纤维素的类型和特性

离子交换纤维素的优点为:①离子交换纤维素为开放性长链,具有较大的表面积,吸附容量最大;②离子基团少,排列稀疏,与蛋白质结合不太牢固,易于洗脱;③具有良好的稳定性,洗脱剂的选择范围广。

2.离子交换交联葡聚糖离子交换交联葡聚糖也是广泛使用的离子交换剂,它与离子交换纤维素不同点是载体不同,常用交联葡聚糖的类型与特性见表1-3。

离子交换交联葡聚糖有如下优点:①不会引起被分离物质的变性或失活;②非特异性吸附少;③交换容量大。

离子交换葡聚糖的选用,一般根据蛋白质的分子量而定。中等分子量(30 000-200 000)一般选A50和C50,而低分子量(<30 000和高分子量>200 000)均宜选用A25和C25。

(三)试验方法

阴离子交换剂与阳离子交换剂的装柱和层析过程基本相同。交联葡聚糖的预处理只需充分溶胀和平衡,不需要除去细粒碎片和酸碱处理。其他步骤也基本同离子交换纤维素。

1.剂型的选择根据蛋白质在所用缓冲液pH值下带电荷的种类选择,如pH高于蛋白质等电点,应选阴离子交换剂,反之应选阳离子交换剂。一般情况下,DEAE-纤维素用于分离酸性蛋白,而CM纤维素用于分离碱性蛋白质。

下面以DEAE-纤维素操作为例,介绍试验方法

2.膨胀活化此步的目的在于除去杂质,暴露DEAE-纤维素上的极性基团。DEAE-纤维素的用量则根据柱容积的大小和所需过柱样品的量来决定。一般是1.0g DEAE-纤维素相当于6ml~8ml柱床体积。

称取所需的量,撒于0.5Mol/L NaOH溶液中(1g DEAE—纤维素干粉约需15倍NaOH液),浸泡1h左右,不时搅拌。抽滤(以布氏漏斗加两层滤纸或尼龙纱布抽滤),以蒸馏水洗涤,再抽滤,直至滤液近中性为止,再将纤维素浸泡于0.5Mol/L HCl中1h,同样抽滤液至近中性。再将纤维素浸于0.5Mol/L NaOH液中,同样处理,洗至中性。

3.平衡将DEAE—纤维素放入0.0lMol/L pH 7. 4 PB液中(即起始缓冲液),静止1h,不时搅拌,待纤维素下沉后,倾去上清液或抽滤除去洗液,如此反复几次至倾出液体的pH值与加入的PB液的pH值相近时为止。

4.装柱层析柱的选择要大小、长度适当。一般而言,柱长和柱直径之比为10︰1~20︰1,柱的内径上下要均匀一致。用前将层析柱在清洁液内浸泡处理24h,然后依次用常水、蒸馏水、起始缓冲液充分洗涤。

装柱时,先剪一块圆形的尼龙纱布(直径与层析柱内径一致),放入层析柱底部。将柱下端连接细塑料管,夹上螺旋夹。把层析柱垂直固定在三角铁架上,倒入起始缓冲液至一半的柱高,除去死区及塑料管内的气泡。再将平衡的DEAE -纤维素糊状物沿管壁倒入柱中。注意不要产生气泡,如有气泡应排除或重装。拧开螺旋夹,使流速至1ml/5min,待缓冲液快接近纤维素面时,继续倒入纤维素糊,同时用玻璃棒搅拌表面层,以免使两次加入的纤维素形成分界层,通过进出缓冲液调节流量,也可通过塑料管的升降来控制,至柱床体积不变为止。剪一圆形滤纸(与柱内径大小一致),从柱的上端轻轻放入,使其沉接于纤维素床表面,以免在加样时打乱纤维素层。装好柱的柱面应该是平整的,无倾斜,整个柱床内无气泡、不分层。继续平衡,使流出液的pH值与流入液的pH值完全一致为止。

5.上样要层析的样品首先必须用起始缓冲液(4℃)平衡过夜,中间可换液数次。将柱的上端打开,用吸管将纤维素柱上面的缓冲液吸出,不要吸净,留一薄层液面,以免空气进入。沿管壁缓缓加入样品,注意不要打乱纤维素表层。拧开下端的螺旋夹,使样品进入交换剂中,快要进完时,加1ml~2ml缓冲液冲洗柱壁,随即用多量的洗脱液洗脱。

样品的加量与DEAE—纤维素有一个最适比的关系,超过这个比值,吸附就不完全,直接影响到分离的纯度。经过粗提的—球蛋白50mg~100mg,用干重约4g DEAE-纤维素装柱分离,可获得理想结果。

6.洗脱对于阴离子交换剂而言,洗脱的办法是使pH逐渐降低,而离子浓度逐渐升高。一般的办法,是稳定一个因素而改变另一个因素洗脱。洗脱可采用分段洗脱和连续洗脱法,前者较实用,后者较准确。

表1-7 各种Ig解脱吸附条件

7.洗脱液的收集利用自动分步收集器收集,并以20%磺基水杨酸测试,当蛋白液下来时,开始分管收集,至无蛋白液为止。

8.交换柱的再生将使用过的DEAE-纤维素移入烧杯中,用2Mol/L NaCl液浸泡,抽滤并洗涤数次。如不立即使用,可加1/10 000的叠氮钠防腐,保存于4℃冰箱中。使用时,再以碱-酸-碱处理。

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

蛋白纯化离子交换层析

蛋白纯化离子交换层析 离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静电荷为0,当溶液pH值大于蛋白质等电点时,羧基电离,蛋白质带负电荷,蛋白质能够被阴离子交换剂所吸附,相反,当溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷,被阳离子交换剂所吸附,溶液的pH值距蛋白质等电点越远,蛋白质带电荷越多,与交换剂的结合程度也越强,反之则越弱。 当溶液的pH值发生改变时,蛋白质与交换剂的吸附作用也发生变化,因此可以通过改变洗脱液的pH值来改变蛋白对交换剂的吸附能力,从而把不同的蛋白质逐个分离,当pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱,当pH值降低时,抑制蛋白质阴离子化,随之降低蛋白质对阴离子交换剂的吸附。 另外,无机盐离子(如NaCl)对交换剂也具有交换吸附的能力,当洗脱液中的离子强度增加时,无机盐离子和蛋白质竞争吸附交换剂。当Cl-的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl-浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。 因此,洗脱阴离子交换剂结合的蛋白时,则降低pH值,增加盐离子浓度;洗脱阳离子交换剂结合蛋白时,则升高溶液pH值,增加盐离子浓度,能够洗脱交换剂上的结合蛋白。

蛋白纯化层析柱

蛋白纯化层析 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell 解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。第一步捕获步骤,也就是从细胞裂解物粗成份中分离蛋白,这需要一个具有高容量和高流量(flow rate)的填料。bead大小比较大,范围比较宽(比较于bead大小平均值)的“fast flow”填料比较理想,

这种填料也有利于防止目标蛋白被水解——因为速度比较快。 第二步则对分辨率要求更高,需要更好的从混合物中分离需要的成份。通常bead的大小与分辨率成反比,因此在这一部中比较小的bead 比较合适。吸附性的技术,比如离子交换IEX和疏水作用HI通常被用在纯化的这前两个步骤,而凝胶过滤则会留到了最后的修饰那一步,用于小体积,高浓度的样品。另外要注意,进行凝胶过滤层析时,样品的体积应该保持在柱床体积的1%到4%。 选择柱料的时候有两个因素要考虑到,针对目的蛋白的选择性和有效性——这些可以由洗脱峰的宽度来说明。其中选择性主要是指填料与目的蛋白相互作用以及结合的能力,IEX和HI层析方法就是指目标分子与筛分介质之间的相互作用,而GF的选择性依赖于填料的分馏范围(fractionation range)。 柱料的有效性则是指层析介质洗脱样品得到显著层析峰的能力,Mitchell表示,“如果你的峰值不集中,比较宽,那么即使是选择性很好,分辨率仍然会被消弱”。bead越大,洗脱峰就越不集中,柱子的有效性就越低。纯化洗脱相近的蛋白需要高效性,高选择性和高效性的结合就会得到高分辨率。 凝胶过滤层析(gel filtration chromatography) 凝胶过滤法(gel filtration)也称为排阻层析(exclusion chromatography)、凝胶层析(gel chromatography)或分子筛层析(molecular sieve chromatofraphy),它是在1960年后发展出来的技术。

离子交换色谱

离子交换色谱 一、实验原理: 离子交换层析 (Ion Exchange Chromatography 简称为 IEC) 是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂 ; 而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。 离子交换层析是用离子交换剂作固定相,利用它与流动相中的离子能进行可逆的交换性质来分离离子型化合物的层析方法。 即溶液中的离子同离子交换剂上功能基团交换反应的过程。 带电荷量少,亲和力小的先被洗脱下来,带电荷量多,亲和力大的后被洗脱下来。 二、实验设计 离子交换剂;缓冲液;洗脱剂 具体操作: 1、离子交换介质的选择: 考虑目的分子的大小,目的分子会影响其接近介质上的带电功能集团;功能集团的强弱,目的分子稳定,选择强交换介质。 对于大多数纯化步骤来说,建议开始的时候使用强离子交换柱,可在摸索方法的过程中有一个宽的pH范围。对于一个已知等电点的蛋白质,可根据其等电点来选择。如果选用阴离子交换剂,使用缓冲液的pH值应高于该蛋白质等电点,因为此时蛋白质在该缓冲液中携带净负电荷,可与阴离子交换剂结合。如果选用阳离子交换剂,缓冲液的pH值应低于该蛋白质的等电点,因为此时蛋白质在该缓冲液中携带净正电荷,可与阳离子交换剂结合。对于一个未知等电点的蛋白质,可以先选择一个阴离子交换剂,再选择一个中性的pH缓冲液,将蛋白质样品透 析至pH7.0,然后过阳离子交换柱,根据过柱后的结果确定下一个使用的缓冲液的pHo 如果目的蛋白再穿过液中,说明目的蛋白在此 pH条件下带正电荷,可将缓冲液升高一个pH,将蛋白质样品透析纸8.0,然后再过阴离子交换柱,根据过柱后的结果确定下一个使用的缓冲液的 pH。以此类推,直至目的蛋白能够结合在阴离子交换柱上为止,也可用阳离子交换剂作类似的选择,不过要注意,pH 的改变应向减小的方向进行。 功能集团的强弱 一般情况下,在分离等电点pH为6-9的目的分子,尤其是当目的分子不稳定时,需要较温和的色谱条件才会选用弱交换介质。 流动相(缓冲液)的选择: 离子交换色谱的流动相必须是有一定离子强度的并且对 pH有一定缓冲作用的溶

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

离子交换层析柱的装填及处理

离子交换层析柱的装填及处理 一、原理: 有些高分子物质含有一些可以分离的基因,例如-SO3H,-COOH等,因此可以和溶液中的离子产生交换反应。如:R-SO3H+M+ R-S3M+H+ 或R-NH3OH+CL-— R-NH3CL+OH -这类高分子物质通称离子交换剂,其中使用最普遍的是离子交换树脂。由于一定的离子交换剂对不同离子的亲和力不同,因此在洗提过程中,不同的离子在离子交换柱上的迁移速度也不同,最后得到分离。 二、目的与要求: 本实验是采用Zerolit225型阳离子交换树脂所装的柱,选以特定的PH缓冲洗脱液来分离含有两个性质不同的氨基酸溶液。通过实验要求掌握装柱、上样、洗脱、收集等离子交换柱层析技术的要点。 三、仪器与装置: 玻璃层析柱:长19cm,内径1、2cm,3# 砂芯。H L-2型恒流泵。H D-4型电脑核酸蛋白检测仪。B S-100A自动部份收集器。 250ml烧杯。 1ml吸管。 水浴锅。 72型(或721型)分光光度计。

四、试剂与药品: 树脂:Zerolit225型阳离子交换树脂。 洗脱液:0、45N,PH5、3柠檬酸缓冲液,取285g柠檬酸 (C6O7H8?H2O);186g97℅NaOH;105ml浓硫酸溶于水中稀释至10升。 样品液:0、005M ASP和LYs的0、02N HCL混合溶液。 显色剂:显色剂列出两种可任选一种。 显色剂(Ⅰ)茚三酮-TiCL3溶液。 10g茚三酮溶于500ml乙二醇甲醚,再加入0、85 ml TiCL3(15%)显色剂(Ⅱ):茚三酮-KCN溶液。 0、1M KCN:0、1628g KCN溶于水中稀释至250ml A、将1、25g茚三酮溶于25ml乙二醇甲醚,配成5%(W/V)浓度的溶液。B 、将2、5ml 0、01M KCN溶液与125ml乙醇甲醚混合。将A和B合并置棕色瓶中过夜即可使用。此溶剂用时, A、B两溶液在前一天合并,配好的溶液仅能在1-2天内使用,过时失效须重配。 五、方法与步骤: 1、树脂的处理: 关于市售新树脂的处理见 7、,本实验采用处理好的树脂。 2、装柱:将层析柱垂直装好,关闭柱底出口,在柱内注入约1cm高的柠檬酸缓冲液。

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

蛋白纯化层析柱

蛋白纯化层析柱 2011-06-15 15:19:14 易生物仪器浏览次数:1164 网友评论 0 条 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是... 关键词:蛋白离子交换分离分子物质树脂从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。

蛋白质的离子交换层析技术模板

离子交换层析技术 层析( chromatography) 也称为色谱, 就是将混合物中各种组分分离的方法, 是分离、纯化及鉴定生物大分子时最常使用的技术之一。一个层析系统都包括两相, 即固定相和移动相。当移动相流过加有样品的定相时, 由于各组分在两相之间的分配比例不同, 它们( 各组分) 就会以不同的速度移动而相互分离开来。定相能够是固体, 也能够是被固体或凝胶所支持的液体。定相能够被装入柱中或涂成薄层、薄膜, 成为层析”床”。动相能够是气体, 也能够是液体, 前者称为气相层析, 或者成为液相层析。 离子交换层析技术是以离子交换纤维素、离子交换树脂或离子交换葡聚糖凝胶为固定相, 以待分离的样品为移动相, 分离和提纯蛋白质、核酸、酶、激素和多糖等的一项技术。 ( 一) 原理 在纤维素与葡聚糖分子上结合有一定的离子基团, 当结合阳离子基团时, 可换出阴离子, 则称为阴离子交换剂。如二乙氨乙基( Dicthylaminoethyl, DEAE) 纤维素。在纤维素上结合了DEAE, 含有带正电荷的阳离子纤维素—O—C6 H14N+H, 它的反离子为阴离子( 如Cl-等) , 可与带负电荷的蛋白质阴离子进行交换。当结合阴离子基团时, 可置换阳离子, 称为阳离子交换剂, 如羧甲基( Carboxymethy, CM) 纤维素。纤维素分子上带有负电荷的阴离子( 纤维素-O-CH2-COO一) , 其反离子为阳离子( 如Na+等) ,可与带正电荷蛋白质阳离子进行交换。 溶液的pH值与蛋白质等电点相同时, 静电荷为0, 当溶液pH值大于蛋白质等电点时, 则羧基游离, 蛋白质带负电荷。反之, 溶液的pH值小于蛋白质等电点时, 则氨基电离, 蛋白质带正电荷。溶液的pH值距蛋白质等电点越远,

酶工程复习材料 简述凝胶层析、亲和层析、离子交换层析.

酶工程复习材料 1.简述凝胶层析、亲和层析、离子交换层析的原理和操作要点? 离子交换层析原理:根据待分离物质带电性质不同的分离纯化方法。 操作:a上样:上样体积不十分严格。b洗脱:增加溶液的离子强度c梯度洗脱法:改变溶液的pH d再生:用0.5mol/LNaOH和0.5mol/L NaCl混合溶液或0.5mol/L HCl 处理。 凝胶层析原理:利用某些凝胶对于不同分子大小的组分阻滞作用的不同。大分子 物质不能进入凝胶孔内,在凝胶颗粒之间的空隙向下移动,并最 先被洗脱出来;小分子物质可自由出入凝胶孔,流程长而后流出 层析柱。 操作:a凝胶的选择和处理,根据相对分子质量范围选择相应型号的凝胶介质。 将干胶悬浮于5-10倍的蒸馏水中,充分溶胀,抽气,装柱。b柱的 选择:采用L/D比值高的柱子,可提高分辨率,但影响流速。c加样: 体积不能过多,不超过凝胶床体积的5%,脱盐时可在10%左右。d 洗脱:洗脱液与平衡时用的buffer一致。洗速不可过快,保持恒速。e 胶的保存:洗脱完毕后,凝胶柱已恢复到上柱前的状态,不必再生处理。亲和层析原理:利用生物大分子间特异的亲和力来纯化生物大分子.体通过适当的化学反 应共价的连接到载体上,待纯化的物质可被配体吸附,杂质则不被吸附,从层析柱流出,变换洗脱条件,即可将分离的物质洗脱下来,实现分离提纯。 2.酶的分类: 根据酶的化学组成可将酶分为:1.单纯蛋白酶类:只含有蛋白质成分;2.结合蛋白酶类(全酶):含有蛋白成分(酶蛋白)和非蛋白成分(辅助因子) 全酶 = 酶蛋白 + 辅助因子 根据酶蛋白结构特点可将酶分为 单体酶:以一个独立的三级结构为完整生物功能分子的最高结构形式的酶。 寡聚酶:以一个独立的四级结构为完整生物功能分子的最高结构形式的酶。 多酶复合体:由多种酶彼此镶嵌成一个功能完整的具有特定结构的复合体, 它们相互配合依次进行,催化连续的一系列相关反应。 3.酶合成调节的类型 诱导: 组成酶:细胞固有的酶类。 诱导酶:是细胞为适应外来底物或其结构类似物而临时合成的一类酶。 阻遏:分解代谢物阻遏和反馈阻遏

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

第七节离子交换色谱

第七节离子交换色谱 离子交换色谱(ion-exchange chromatography,IEC)是发展最早的色谱技术之一。20世纪30年代人工合成离子交换树脂的出现对于离子交换技术的发展具有重要意义,基于苯乙烯-二乙烯苯的离子交换树脂至今仍是最广泛使用的一类离子交换树脂。但它并不十分适合对生物大分子如蛋白质、核酸、多糖等的分离,因为:①树脂交联度太大而颗粒内网孔较小,蛋白质分子无法进颗粒内部,只能吸附在表面,造成有效交换容量很小;②树脂表面电荷密度过大,使蛋白质在其上吸附得过于牢固,必须用较极端的条件才能洗脱,而这样的条件往往易造成蛋白质变性;③树脂的骨架具疏水性,一旦与蛋白质之间发生疏水相互作用,也容易造成蛋白质变性失活。 20世纪50年代中期,Sober和Peterson合成了羧甲基(CM-)纤维素和二乙氨乙基(DEAE-)纤维素,这是两种亲水性和大孔型离子交换剂。其亲水性减少了离子交换剂与蛋白质之间静电作用以外的作用力,而大孔型结构使蛋白质能进人网孔内部从而大大提高了有效交 换容量,而纤维素上较少的离子基团有利于蛋白质的洗脱,因此这两种离子交换剂得到了极为广泛的应用。此后,多种色谱介质特别是颗粒型介质被开发和合成,包括交联葡聚糖凝胶、交联琼脂糖、聚丙烯酞胺以及一些人工合成的亲水性聚合物等,以这些介质为骨架结合上带电基团衍生而成的离子交换剂也层出不穷,极大地推动了离子交换技术在生化分离中的发展和应用。 一、离子交换色谱相关理论 (一)基本原理 离子交换色谱分离生物分子的基础是待分离物质在特定条件下与离子交换

剂带相反电荷因而能够与之竞争结合,而不同的分子在此条件下带电荷的种类、数量及电荷的分布不同,表现出与离子交换剂在结合强度上的差异,在离子交换色谱时按结合力由弱到强的顺序被洗脱下来而得以分离。离子交换色谱的原理和一般步骤如图6.7-1所示。 图6.7-1 离子交换色谱原理 梯度缓冲液中的离子;极限缓冲液中的离子; 待分离的目标分子;▲需除去的杂质 1- 上样阶段,此时离子交换剂与平衡离子结合;2- 吸附阶段,混合样品中的分子与离子交换剂结合;3- 开始解吸阶段,杂质分子与离子交换剂之间结合较弱而先被洗脱,目标分子仍处于吸附状态;4- 完全解吸阶段,目标分子被洗脱;5- 再生阶段,用起始缓冲液重新平 衡色谱柱,以备下次使用 蛋白质、多肽、核酸、聚核苷酸、多糖和其他带电生物分子正是如此通过离子交换剂得到了分离纯化,即带负电荷的溶质可被阴离子交换剂交换,带正电荷的溶质可被阳离子交换剂交换。 (二)基本理论 1 . 离子交换作用 离子交换剂由不溶性高分子基质、荷电功能基团和与功能基团电性相反的反离子组成,在水溶液中,与功能基团带相反电荷的离子(包括缓冲液中的离子、

离子交换层析

离子交换层析 1、定义 2、发展 1848年,Thompson等人在研究土壤碱性物质交换过程中发现离子交换现象。本世纪40年代,出现了具有稳定交换特性的聚苯乙烯离子交换树脂。50年代,离子交换层析进入生物化学领域,应用于氨基酸的分析。目前离子交换层析仍是生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。常用的离子交换剂有:离子交换纤维素、离子交换葡聚糖和离子交换树脂。 3、基本信息 离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阳离子交换树脂;而带有负电荷的称之阴离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。 4、具体操作 预处理和装柱 对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。 洗涤好的纤维素使用前必须平衡至所需的pH和离子强度。已平衡的交换剂在装柱前还要减压除气泡。为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高。

离子交换分离纯化蛋白原理总结

离子交换分离纯化蛋白 原理总结 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

离子交换分离纯化蛋白原理及应用 离子交换剂 基质主要有树脂、纤维素、葡聚糖凝胶、聚丙烯酰胺凝胶和硅胶(HPLC)等 离子交换树脂一般只适合分离小分子物质如氨基酸等,不适合分离蛋白质等大分子物质,一方面是因为大分子不易进入树脂紧密交联结构的内部,另一方面因为交联聚苯乙烯骨架疏水性很强,用于蛋白质分离时,会出现疏水性的不可逆吸附。此外,离子交换树脂的机械强度较差,而且树脂的体积常随着溶剂离子强度的变化发生溶胀和收缩。 根据交换基团的电荷性质进行分类: 阳离子交换树脂:强酸型含磺酸基团(R-SO3H) 中等酸型含磷酸基团(-O-PO2H4) 弱酸型含酚基、羧基 阴离子交换树脂:强碱含季胺基团[-N+(CH3)3] 弱碱含叔胺、伯胺基团[-N(CH3)2 阴离子交换树脂对化学试剂及热都不如阳离子交换树脂稳定。 弱酸型—只能在碱性pH范围内使用弱碱型—只能在酸性pH范围内使用 离子交换纤维素的种类很多,可分为阴离子交换纤维素和阳离子交换纤维素两大类。由于这些材料是纤维状的,大部分活性基团分布在表面,所以,适合于分离蛋白质等生物大分子。阴离子交换纤维素—DEAE-纤维素,具二乙胺乙基,阳离子交换纤维素—CM-纤维素,具有羧甲基,分别是应用得最广泛的阴离子交换纤维素和阳离子交换纤维

素。另外,根据纤维素颗粒的物理结构不同,可分为“纤维型”和“微晶型”两大类。“微晶型”因颗粒细、比重大,能制成紧密的柱,交换容量大,分辨率高。 离子交换凝胶:离子交换葡聚糖凝胶和聚丙烯酰胺凝胶具有许多优点,分离大分子物质,不会引起被分离物质的变性戒失活,非特异性吸附很低;交换容量大(为离子交换纤维素的3-4倍);容易制成微球型,因此装柱和层析时的流速都较易控制。它的缺点是随着洗脱液的离子强度和pH的变化,床体积变化大,明显影响流速;另外,由于它的凝胶性质,有时会把大分子物质排阻在网络结构之外。 如:葡聚糖(Sephadex)、聚丙烯酰胺(PAG)、琼脂糖(Sepharose) 平衡缓冲液:它的离子强度和pH的选择首先要保证各个待分离物质如蛋白质的稳定。其次是要使各个待分离物质与离子交换剂有适当的结合。 增强洗脱液与离子交换剂的结合力,降低分离物与离子交换剂的结合力 洗脱缓冲液:在离子交换层析中一般常用梯度洗脱,通常有改变离子强度和改变pH 两种方式。改变离子强度通常是在洗脱过程中逐步增大离子强度,从而使与离子交换剂结合的各个组分被洗脱下来;而改变pH的洗脱,对于阳离子交换剂一般是pH从低到高洗脱,阴离子交换剂一般是pH从高到低。由于pH可能对蛋白的稳定性有较大的影响,故一般通常采用改变离子强度的梯度洗脱。 强酸性阳离子换剂H+的结合力比对Na+的小;H型SPSepharoseFF Nacl、NaOH、NH4OH、NH4Cl洗脱磷酸缓冲液平衡 弱酸性阳离子交换剂对H+的结合力远比对Na+的大;Na型CM-纤维素 NAOH或HCLH+或Na+洗脱 强碱性阴离子交换剂对OH-的结合力比对C1-的小得多;OH型 弱碱性阴离子交换剂对OH-的结合力比对Cl-的大。Cl型DEAE-纤维素

生化实验报告离子交换柱层析分离纯化蔗糖酶

实验报告 一、实验目的和要求 三、实验材料和主要仪器 五、实验数据记录和处理 七、实验讨论和心得 二、实验内容和原理 四、实验方法和步骤 六、实验结果和分析 一、实验目的和要求 1、学习离子交换层析的基本原理 2、学习离子交换层析分离蛋白质的基本方法和技术 3、学习蔗糖酶活性检测的基本原理和方法 二、实验内容和原理 1、离子交换层析 由于蔗糖酶的偏酸性,所以在7.3 缓冲液的环境中,粗分离纯化样品蔗糖酶带负电荷,因此我们用阴离子交换剂可以先与蔗糖酶样品可逆交换吸附,然后通过用盐离子强度逐渐提高的洗脱液,使蔗糖酶和其他杂蛋白质的电荷被中和,与离子交换剂的亲和力降低,把不同的蛋白质按所带电荷的强弱逐一被洗脱下来,从而达到分离蔗糖酶的目的。 2、酶活力检测 蔗糖酶是一种水解酶,它能蔗糖水解为等量的葡萄糖和果糖(还原糖)。(50℃水解) 3.5-二硝基水杨酸与还原糖共热被还原成棕红色的氨基化合物,在一定范围内还原糖的量和反应液的颜色深度成正比。(100℃显色) 三、实验材料和主要仪器 1、实验材料 蔗糖酶粗分离纯化(溶解即为样品Ⅲ) 2、实验试剂 ⑴ ⑵ 20 7.3 缓冲液 ⑶ 20 (1 )7.3缓冲液 ⑷ 0.2乙酸缓冲液,4.5 ⑸ 5%蔗糖溶液 ⑹ 3,5-二硝基水杨酸试剂 3、实验仪器 (1)高速冷冻离心机 (2)层析柱(φ1.0×20㎝ )(1支/组)

(3)? (1套/组) (4)部分收集器及收集试管(4管)(1台/组) (5)-20℃冰箱(保存样品用) (6)微量移液枪 200、1000 (7)1.5离心管(留样品Ⅲ和样品Ⅳ用) (8)7离心管(留样品Ⅳ用) (9)恒温水浴(50℃、100℃) (10)试管、移液管、试管架等 四、实验方法和步骤 1、仪器连接 (1)接通各仪器电源,将泵头分别放置A,B两个溶液瓶中。注意B为含溶液。 (2)点击电脑桌面上软件图标,打开软件。选择,点击,进入操作界面。点击 (3)在操作界面的工具栏,点击。出现窗口,调节为 1,确定。 2、装柱与平衡 (1)检查层析柱的两端接头,底端有膜的置于下方。 (2)程序暂停。将层析柱放入卡槽,上端接头与混合器()相连,下端接头与样品阀( )相连。 (3)平衡一个柱体积(约2020) 3、加样 停止加入20 7.3 缓冲液。待缓冲液液面与胶体表面相切时,程序暂停。旋开柱上方接头,用胶头滴管缓慢将5蔗糖酶蛋白样品溶液(样品Ⅲ)加入层析柱中,注意顺着柱壁滴加,尽可能保持胶面平整。程序继续,使样品溶液进入胶体,待样品溶液完全进入胶体后,程序暂停,用少量洗脱缓冲液将残余在层析柱壁上端的样品洗下,并完全进入胶体后,再加缓冲液至一定高度。 4、洗脱(梯度洗脱法) (1)加样后,先用进行洗脱,洗去未被凝胶吸附的杂蛋白(20左右); (2)待层析柱流出液在仪器上绘出的基线稳定,在程序主界面的工具栏→ → → ,在两个框内均填入100,点击,最后点击一次,开始梯度洗脱。每2接一管,当上升至8 时,开始测定各管的蔗糖酶活力; (3)将蔗糖酶活力高的若干管酶液(2-3管)合并,测量总体积V4(样品Ⅳ),样品用7离心管-20℃保存。 5、蔗糖酶活力检测

离子交换层析实验原理及步骤

离子交换层析实验原理及步骤 离子交换层析实验方法 阴离子交换剂与阳离子交换剂的装柱和层析过程基本相同。交联葡聚糖的预处理只需充分溶胀和平衡,不需要除去细粒碎片和酸碱处理。其他步骤也基本同离子交换纤维素。 1. 剂型的选择 根据蛋白质在所用缓冲液pH值下带电荷的种类选择,如pH高于蛋白质等电点,应选阴离子交换剂,反之应选阳离子交换剂。一般情况下,DEAE-纤维素用于分离酸性蛋白,而CM纤维素用于分离碱性蛋白质。 下面以DEAE-纤维素操作为例,介绍试验方法 2. 膨胀活化 此步的目的在于除去杂质,暴露DEAE-纤维素上的极性基团。DEAE-纤维素的用量则根据柱容积的大小和所需过柱样品的量来决定。一般是1.0g DEAE-纤维素相当于6ml~8ml柱床体积。 表1-4 分离的血清与所需DEAE—纤维素量及其他条件的大致关系 血清样品量(ml) DEAE需用量(g) 选层析柱规格(cm) 选脱液量(ml) 1~2 2 1×25 100~150 5 5 2×12 200~300 10 10 2×20 300~400 20 20 2×37

400~800 称取所需的量,撒于0.5Mol/L NaOH溶液中(1g DEAE—纤维素干粉约需15倍NaOH液),浸泡1h左右,不时搅拌。抽滤(以布氏漏斗加两层滤纸或尼龙纱布抽滤),以蒸馏水洗涤,再抽滤,直至滤液近中性为止,再将纤维素浸泡于0.5Mol/L HCl中1h,同样抽滤液至近中性。再将纤维素浸于0.5Mol/L NaOH液中,同样处理,洗至中性。 3. 平衡 将DEAE—纤维素放入0.0lMol/L pH 7. 4 PB液中(即起始缓冲液),静止1h,不时搅拌,待纤维素下沉后,倾去上清液或抽滤除去洗液,如此反复几次至倾出液体的pH值与加入的PB液的pH值相近时为止。 4. 装柱 层析柱的选择要大小、长度适当。一般而言,柱长和柱直径之比为10∶1~20∶1,柱的内径上下要均匀一致。用前将层析柱在清洁液内浸泡处理24h,然后依次用常水、蒸馏水、起始缓冲液充分洗涤。 装柱时,先剪一块圆形的尼龙纱布(直径与层析柱内径一致),放入层析柱底部。将柱下端连接细塑料管,夹上螺旋夹。把层析柱垂直固定在三角铁架上,倒入起始缓冲液至一半的柱高,除去死区及塑料管内的气泡。再将平衡的DEAE-纤维素糊状物沿管壁倒入柱中。注意不要产生气泡,如有气泡应排除或重装。拧开螺旋夹,使流速至1ml/5min,待缓冲液快接近纤维素面时,继续倒入纤维素糊,同时用玻璃棒搅拌表面层,以免使两次加入的纤维素形成分界层,通过进出缓冲液调节流量,也可通过塑料管的升降来控制,至柱床体积不变为止。剪一圆形滤纸(与柱内径大小一致),从柱的上端轻轻放入,使其沉接于纤维素床表面,以免在加样时打乱纤维素层。装好柱的柱面应该是平整的,无倾斜,整个柱床内无气泡、不分层。继续平衡,使流出液的pH值与流入液的pH值完全一致为止。 5. 上样 要层析的样品首先必须用起始缓冲液(4℃)平衡过夜,中间可换液数次。将柱的上端打开,用吸管将纤维素柱上面的缓冲液吸出,不要吸净,留一薄层液面,以免空气进入。沿管壁缓缓加入样品,注意不要打乱纤维素表层。拧开下端的螺旋夹,使样品进入交换剂中,快要进完时,加1ml~2ml缓冲液冲洗柱壁,随即用多量的洗脱液洗脱。 样品的加量与DEAE—纤维素有一个最适比的关系,超过这个比值,吸附就不完全,直接影响到分离的纯度。经过粗提的—球蛋白50mg~100mg,用干重约4g DEAE-纤维素装柱分离,可获得理想结果。

(推荐)蛋白纯化-Ni亲和层析柱法

Ni亲和层析柱法纯化带组氨酸标签的重组蛋白 纯化设备: 纯化仪:?KTA purifier(GE Healthcare, Uppsala, Sweden) Ni亲和层析柱:HisTrap TM HP-5 mL (GE Healthcare, , Uppsala, Sweden) 试剂: 所有上柱的试剂均需经0.2 μM孔径过滤器过滤并超声波震荡除气处理方可使用。 Binding Buffer:20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 5 mM 咪唑 Elution Buffer:20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 500 mM 咪唑 Stripping Buffer: 20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 50 mM EDTA 20%乙醇:200 mL无水乙醇,加蒸馏水定容至1L 0.1M NiSO4: 称取2.6284g NiSO4·6H2O,加蒸馏水溶解,定容至100 mL 操作步骤: 1 样品前处理 取诱导后菌液50 mL,4℃、5000 rpmin离心10 min收集菌体,以25 mL Binding Buffer 重悬菌体,冰浴下超声波破碎至澄清,4℃、12000 rpmin离心25 min,取上清,经0.2 μM 孔径过滤器过滤后待用。 2 Ni柱前处理 上样前,使用10倍柱体积的Binding Buffer以5 mL/min的流速平衡镍柱。 3 上样 经离心、过滤处理后的样品以1 mL/min的流速通过衡流泵加载到平衡后的Ni柱上,收集穿透液,可反复上样以提高样品的挂柱效率。 4 平衡上样后的Ni柱 将已结合目的蛋白的Ni柱回接到?KTA pur ifier上,用10倍柱体积的Binding Buffer 以5 mL/min的流速再次平衡镍柱以去除未结合上的蛋白。 5 梯度洗脱 以梯度的Elution Buffer/Binding Buffer混合液洗脱Ni柱(梯度的界定因蛋白而不同,可经预实验确定),流速为5 mL/min,并监测OD280值,收集蛋白吸收峰对应的洗脱液

相关主题
文本预览
相关文档 最新文档