当前位置:文档之家› 模拟集成电路基本单元

模拟集成电路基本单元

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

各种集成电路介绍

第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 第二节语音集成电路 电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。

模拟集成电路复习

1、 研究模拟集成电路的重要性:(1)首先,MOSFET 的特征尺寸越来越小,本征速度越来 越快;(2)SOC 芯片发展的需求。 2、 模拟设计困难的原因:(1)模拟设计涉及到在速度、功耗、增益、精度、电源电压等多 种因素间进行折衷,而数字电路只需在速度和功耗之间折衷;(2)模拟电路对噪声、串扰和其它干扰比数字电路要敏感得多;(3)器件的二级效应对模拟电路的影响比数字电路要严重得多;(4)高性能模拟电路的设计很少能自动完成,而许多数字电路都是自动综合和布局的。 3、 鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。所谓“鲁棒性”, 是指控制系统在一定的参数摄动下,维持某些性能的特性。 4、 版图设计过程:设计规则检查(DRC )、电气规则检查(ERC )、一致性校验(LVS )、RC 分布参数提取 5、 MOS 管正常工作的基本条件是:所有衬源(B 、S )、衬漏(B 、D )pn 结必须反偏 6、 沟道为夹断条件: ?GD GS DS T DS GS TH H V =V -≤V V V -V ≥V 7、 (1)截止区:Id=0;Vgs

课程介绍-清华大学模拟集成电路分析与设计

清华大学微电子学研究所Feb. 25, 2008模拟集成电路分析与设计

课程概况 z微电子学专业核心课程之一 z3学分48学时:每周3学时X16周 z目标:培养学生具有初步的模拟集成电路分析能力和设计能力,了解模拟集成电路基本模块的分析方法和设计过程 z上课时间:每周一上午第二大节(9:50~ 12:15)z上课地点:六教6A301 z习题课:四次习题课 习题课 z答疑时间:周三下午2:00~3:30 z答疑地点:任课教师办公室 答疑地点

教材与参考书 z教材: Behzad Razavi,“Design of Analog CMOS Integrated Circuits”, 西安电子科技大学出版社英版中版 (英文影印版或者中文版),2001年 池保勇,“模拟集成电路分析与设计”,(编写中)z参考书: P R Gray“Analysis and Design of Analog P.R. Gray, Analysis and Design of Analog Integrated Circuits”, Fourth Edition,高等教育出 版社英文影印版或者中文版,2001年 () P.E. Allen, “CMOS Analog Circuit Design”, Second Edition, 电子工业出版社,2002年 ,

课程内容 CMOS电路为主,适当介绍Bipolar电路

考核 z总原则:学到东西、相对公平 总原则学到东西相对公平 z平时表现(5%)+作业(10%)+课程设计(25%)+期中考试(开卷,25%)+期末考试(闭卷,35%) 试(闭卷 z作业:10次作业,每次1分 z课程设计:设计思路和结果、口头报告及文档z期中考试:开卷考试(Lecture 1-7) 期中考试(Lecture17) z期末考试:闭卷考试(期中考试后的内容)

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

《集成电路原理及应用》课后答案

集成电路原理及应用(第3版) 谭博学 苗汇静 主编 课后习题答案 第二章 模拟集成电路的线性应用 2.9 试分析图1所示电路是什么电路,有何特点?图中设 3 4 21R R R R =。 (图1) 解:第一级运放为同相放大器。对A 1:由“虚断”和“虚短”得 i 1=i 2,v -1=v +1=u 1i , 则u 1i = 1211R R R u o +,即11 21)1(i o u R R u +=, 对A 2:由“虚断”和“虚短”得 i 3=i 4,v -2=v +2=u 2i , 则 4 2321R u u R u u o i i o -=-,即1342 34)1(o i o u R R u R R u -+= 代入u 1o 得))(1( 123 4 i i o u u R R u -+=, 因两个输入信号均从同相端输入,所以输入阻抗比较高。该电路为高输入阻抗的差动放大器。 2.11 求图3所示电路的增益A f ,并说明该电路完成什么功能。

解:该电路由两个集成运放构成,A1为主放大器接成反相运算放大器,A2为辅助放大器,A2也接成反相放大器,利用A2对A1构成正反馈,是整个电路向信号源索取的电流极少。 主放大器A 1:由“虚断”和“虚短”得 2 1R u R u o i -= ,则A f =121o o i i u u R u u R ===- 辅助放大器A2的电压放大倍数:221222 2o o VF i o u u R A u u R = ==- 该电路为自举电路,目的是提高电路的输入电阻。 由1i i i i U U R I I I = = - 由 12i o U U R R =-和321 2o U U R R =-得32i U U = 所以 1i i i U U I R R = - 因此1 1 i i i U RR R I R R = = - 当1R R =时,i R →∞,1I I = 2.12 求图4所示电路输出电压与输入电压的表达式,并说明该电路完成什么功能。

学习模拟集成电路的九个阶段

学习模拟集成电路的九个阶段 模拟集成电路大师与大家分享经验: 一段你刚开始进入这行,对PMOS/NMOS/BJT什么的只不过有个大概的了解,各种器件的特性你也不太清楚,具体设计成什么样的电路你也没什么主意,你的电路图主要看国内杂志上的文章,或者按照教科书上现成的电路,你总觉得他们说得都有道理。你做的电路主要是小规模的模块,做点差分运放,或者带隙基准的仿真什么的你就计算着发文章,生怕到时候论文凑不够。总的来说,基本上看见运放还是发怵。你觉得spice是一个非常难以使用而且古怪的东西。 二段你开始知道什么叫电路设计, 天天捧着本教科书在草稿纸上狂算一气。你也经常开始提起一些技术参数,Vdsat、lamda、early voltage、GWB、ft之类的。总觉得有时候电路和手算得差不多,有时候又觉得差别挺大。你也开始关心电压,温度和工艺的变化。例如低电压、低功耗系统什么的。或者是超高速高精度的什么东东,时不时也来上两句。你设计电路时开始计划着要去tape out,虽然tape out看起来还是挺遥远的。这个阶段中,你觉得spice很强大,但经常会因为AC仿真结果不对而大伤脑筋。 三段你已经和PVT斗争了一段时间了,

但总的来说基本上还是没有几次成功的设计经验。你觉得要设计出真正能用的电路真的很难,你急着想建立自己的信心,可你不知道该怎么办。你开始阅读一些JSSC或者博士论文什么的,可你觉得他们说的是一回事,真正的芯片或者又不是那么回事。你觉得Vdsat什么的指标实在不够精确,仿真器的缺省设置也不够满足你的要求,于是你试着仿真器调整参数,或者试着换一换仿真器,但是可它们给出的结果仍然是有时准有时不准。你上论坛,希望得到高手的指导。可他们也是语焉不详,说得东西有时对有时不对。这个阶段中,你觉得spice 虽然很好,但是帮助手册写的太不清楚了。 四段你有过比较重大的流片失败经历了。 你知道要做好一个电路,需要精益求精,需要战战兢兢的仔细检查每一个细节。你发现在设计过程中有很多不曾设想过的问题,想要做好电路需要完整的把握每一个方面。于是你开始系统地重新学习在大学毕业时已经卖掉的课本。你把能能找到的相关资料都仔细的看了一边,希望能从中找到一些更有启发性的想法。你已经清楚地知道了你需要达到的电路指标和性能,你也知道了电路设计本质上是需要做很多合理的折中。可你搞不清这个“合理”是怎么确定的,不同指标之间的折中如何选择才好。你觉得要设计出一个适当的能够正常工作的电路真的太难了,你不相信在这个世界上有人可以做到他们宣称的那么好,因为聪明如你都觉得面对如此纷杂的选择束手无策,他们怎么可能做

模拟集成电路基础知识整理

当GS V 恒定时,g m 与DS V 之间的关系 当DS V 恒定时,g m 、DS I 与GS V 之间的关系 通过对比可以发现,DS V 恒定时的弱反型区、强反型区、速度饱和区分别对应于当GS V 恒定时的亚阈值区、饱和区、线性区(三极管区)。 跨导g m 在线性区(三极管区)与DS V 成正比,饱和区与GS TH V V -成正比 DS g GS TH V V - 饱和区的跨导

NMOS 1、截止区条件:GS TH V V < 2、三极管区(线性区)条件:TH GD V V < 电压电流特性:()21 2DS n GS TH DS DS W I Cox V V V V L μ?????=-?- 3、饱和区条件:TH GD V V > 电压电流特性:()2 1 (1)2DS n GS TH DS W I Cox V V V L μλ= -+ 4、跨导: 就是小信号分析中的电流增益,D GS dI gm dV = () n GS TH W gm Cox V V L μ=- gm =2DS GS TH I gm V V = - 5、输出电阻就是小信号分析中的r0:10DS r I λ≈ PMOS 1、截止区GS THp V V > 2、三极管区(线性区)条件:THP DG V V < 电压电流特性:()21 2DS p GS TH DS DS W I Cox V V V V L μ?????=-? - 3、饱和区条件:THP DG V V > 电压电流特性:()2 1 (1)2DS p GS TH DS W I Cox V V V L μλ= -- 4、跨导和输出电阻与NMOS 管一样

实验室常用模拟集成电路

实验室常用模拟集成电路 序号型号名称 M001 2P4M 可控硅 M002 4N35 通用光电耦合器 M003 6N135 数字逻辑隔离 M004 24C01 1K/2K 5V I2C 总线串行EEPROM M005 24LC08B 8K I2C 总线串行EEPROM M006 93C46 1K 串行EEPROM M007 AD574 12-BIT,DAC 转换器 M008 BM2272 遥控译码器 M009 CA3140E 4.5MHz,BiMOS 运算放大器 M010 TLP521 可编程控制AC/DC 输入固态继电器 M011 7805 正5V 三端稳压集成电路 M012 LM7905 负5V 三端稳压集成电路 M013 LA7806 B/W 电视机同步、偏转电路,16PIN M014 7906C 负6V 三端稳压集成电路 M015 7808A 正8V 3 端稳压器,输入35V,功率20.8W M016 7908AC 正8V 3 端稳压器,输入35V,功率12W M017 LM7809 正9V 三端稳压集成电路 M018 ADS7809 正9V 三端稳压集成电路 M019 TA7810S 0.5A,3 端稳压器 M020 TDA7910N 负10V 3 端稳压器,输入-35V,1A,功率12W M021 IRF7811A N-MOSFET,功率场效应管,28V/11.4A/2.5W M022 7812A 正12V 3 端稳压器,输入35V,功率20.8W M023 LM7912 1A 3 端稳压器 M024 AD7813 2.5V-5.5V,400kSPS,8/10-BIT,采样,ADC 转换器M025 LM7815 正15V 三端稳压集成电路 M026 LM7915 负15V1A 3 端稳压器 M027 AD7819 2.7V-5.5V,200KSPS,8-BIT,采样,ADC 转换器 M028 LA7820 彩色电视机同步/偏转电路 M029 L7920C 负20V1A 3 端稳压器 M030 LC7821 模拟开关 M031 LM7824 正24V 三端稳压集成电路 M032 KA7924 负24V1A 3 端稳压器 M033 AD7825 3Vto5V、2MSPS、1/4/8 通道、8BitAD 转换器 M034 PJ7925CZ 负25V1A 3 端稳压器 M035 ADS7826 10/8/12 位取样模拟数字转换器用2.7V 的电源 M036 IRF840 功率场效应管,大功率、高速, 500V/8A/125W M037 ADC0809 8-BIT up 兼容8 通道多路复用器A/D 转换器 M038 ADC0832 2 路,8-BIT 串行输入/输出A/D 转换多路选择 M039 LM324N 四路运算放大器 M040 LM339 低功耗低失调电压四比较器 M041 LM358 低功率双运算放大器

模拟集成电路设计期末试卷..

《模拟集成电路设计原理》期末考试 一.填空题(每空1分,共14分) 1、与其它类型的晶体管相比,MOS器件的尺寸很容易按____比例____缩小,CMOS电路被证明具有_ 较低__的制造成本。 2、放大应用时,通常使MOS管工作在_ 饱和_区,电流受栅源过驱动电压控制,我们定义_跨导_来 表示电压转换电流的能力。 3、λ为沟长调制效应系数,对于较长的沟道,λ值____较小___(较大、较小)。 4、源跟随器主要应用是起到___电压缓冲器___的作用。 5、共源共栅放大器结构的一个重要特性就是_输出阻抗_很高,因此可以做成___恒定电流源_。 6、由于_尾电流源输出阻抗为有限值_或_电路不完全对称_等因素,共模输入电平的变化会引起差动输 出的改变。 7、理想情况下,_电流镜_结构可以精确地复制电流而不受工艺和温度的影响,实际应用中,为了抑制 沟长调制效应带来的误差,可以进一步将其改进为__共源共栅电流镜__结构。 8、为方便求解,在一定条件下可用___极点—结点关联_法估算系统的极点频率。 9、与差动对结合使用的有源电流镜结构如下图所示,电路的输入电容C in为__ C F(1-A)__。 10、λ为沟长调制效应系数,λ值与沟道长度成___反比__(正比、反比)。 二.名词解释(每题3分,共15分) 1、阱 解:在CMOS工艺中,PMOS管与NMOS管必须做在同一衬底上,其中某一类器件要做在一个“局部衬底”上,这块与衬底掺杂类型相反的“局部衬底”叫做阱。 2、亚阈值导电效应 解:实际上,V GS=V TH时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS

模拟集成电路论文

我国未来集成电路发展模式思考 张媛媛1230440115 (湖南工学院电气与新新工程学院衡阳 421002) 【摘要】目前,正处于集成电路产业的发展、投资规模、产业结构、技术水平都发生巨大变革阶段,我国 集成电路产业的发展面临更加严峻的,挑战。推动这一产业的发展关系到国家信息安全和国家主权。因而需 要关注以下几点:集成电路产业的发展趋势;我国集成电路的发展状况;我国集成电路面临的机遇与展望。【abstract】Nowadays,we are in the development of IC industry ,the scale of investment,industrial structure,technological level of great change,of china’s IC industry face more severe challenge.How to deal with the new pattern of development of the industry .we must pay more attention the following points:the development trend of integrated circuit industry;development of china’s intrgrated circuit;the opportunities and prospect of china’s integrated circuit. 【关键词】集成,挑战,发展 【Keywords】Integrated Circuit;challenge ;development 1、引言目前,以集成电路为核心的电子信息产业产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业、成为改造和拉动传统产业迈向数字时代的将达引擎和雄厚的基石。 2、集成电路产业的发展趋势 集成电路发展的总趋势是革新工艺、提高集成度和速度。集成电路复杂度不断增加,设计与整体系统结合更加紧密。总结为以下几点:高集成度、芯片模块化、应对“软件差异“的同质化 [1]集成电路设计。 目前,世界集成电路技术已经进入纳米时代,未来5-10年面向系统级(SOC)芯片的设计方法将成为技术热点,设计线宽将达到0.045微米,芯片集成度将达到10的8-9次方,电子设计自动化技术得到广泛应用,IP复用技术将得到极大完善。 [2]芯片制造。 目前国际高端集成电路晶片直径是12英寸,近年内16英寸晶片将面世,纳米级光刻工艺将广泛使用,新型器件结构的产生将带动产生新工艺。 [3]封装。 现有占主流的阵列式封装方式将让位给芯片级、晶片级封装,更先进的系统级等封装方式将进入实用化。芯片实现表面贴装,封装与组装界限将消失。 3、我国集成电路产业的发展状况

模拟集成电路学习历程--吐血推荐

我想说的是三本经典教材。没有看完,应该说根本不能入门,现在我想谈谈对三本教材的学习经验论坛上有很多大虾的心得。我还想谈谈! 我是从艾伦的开始,可以说艾伦的书是模拟CMOS IC 设计的最基本的书,它完全是从集成电路的角度,而且和工艺结合的很紧,好像和分立的电路完全分开,我觉得艾伦的书最经典的分析在于大信号的分析,让你了解集成电路的设计要考虑的问题,而不是对实际电路的具体分析,此书更好的是书中的电路直接来自工程实践的,从设计的角度谈的很多,很好。特别是5,6,7。但是如果基础不够,那刚开始时有难度! 那就再看GRAY的,此书是三本中,最基本的,是从分立到集成的桥梁,看艾伦的如果某些地方有难度,特别是级零点,小信号的分析(刚从分立的模拟电路设计转入集成电路设计的朋友,喜欢从小信号来分析电路参数的),强烈推荐GRAY(理论大师,讲解的特别清晰、详细). 以上两本书看完了后,你可能跃跃欲试,想设计个电路看看,然后电路结构想改进,电路的拓扑结构越来越难,小信号的分析有难度的,大信号也不能一目了然了,遇到了瓶颈了,怎么办?看拉扎维的!!!(有网友说拉是用艺术的眼光来设计电路的)此书从大局的角度来分析电路的。 三本书后,基本上你算入门了,可以跟大牛做项目了,然后多看IEEE的资料,(基准源,运放,比较器)是要继续训练的,(有位大侠谈过了,看帖子,模拟电路的四重境界--文章结尾有)。然后再从CMOS 到BICMOS等等!! 我再推荐两本好书(专业性更强)introducation to cmos op-amps and comparators;design of analog y chip 本人刚刚学习,说得不好,不专业,还请各位朋友多多提醒 模拟电路的四重境界 复旦攻读微电子专业模拟芯片设计方向研究生开始到现在五年工作经验,已经整整八年了,其间聆听过很多国内外专家的指点。最近,应朋友之邀,写一点心得体会和大家共享。 我记得本科刚毕业时,由于本人打算研究传感器的,后来阴差阳错进了复旦逸夫楼专用集成电路与系统国家重点实验室做研究生。现在想来这个实验室名字大有深意,只是当时惘然。电路和系统,看上去是两个概念,两个层次。我同学有读电子学与信息系统方向研究生的,那时候知道他们是“系统”的,而我们呢,是做模拟“电路”设计的,自然要偏向电路。而模拟芯片设计初学者对奇思淫巧的电路总是很崇拜,尤其是这个领域的最权威的杂志JSSC (IEEE Journal of solid state circuits),以前非常喜欢看,当时立志看完近二十年的文章,打通奇经八脉,总是憧憬啥时候咱也灌水一篇,那时候国内在此杂志发的文章凤毛麟角,就是在国外读博士,能够在上面发一篇也属优秀了。 读研时,我导师是郑增钰教授,李联老师当时已经退休,逸夫楼邀请李老师每个礼拜过来指导。郑老师治学严谨,女中豪杰。李老师在模拟电路方面属于国内先驱人物,现在在很多公司被聘请为专家或顾问。李老师在87年写的一本(运算放大器设计);即使现在看来也是经典之作。李老师和郑老师是同班同学,所以很要好,我自然相对于我同学能够幸运地得到李老师的指点。李老师和郑老师给我的培养方案是:先从运算放大器学起。所以我记得我刚开始从小电流源开始设计。那时候感觉设计就是靠仿真调整参数。但是我却永远记住了李老师语重心长的话:运放是基础,运放设计弄好了,其他的也就容易了。 当时不大理解,我同学的课题都是AD/DA,锁相环等“高端”的东东,而李老师和郑老师却要我做“原始”的模块,我仅有的在(固体电子学) (国内的垃圾杂志)发过的一篇论文就是轨到轨(rail-to-rail)放大器。做的过程中很郁闷,非常羡慕我同学的项目,但是感觉李

模拟集成电路的规划设计

秋季学期 冬季学期 春季学期 Introduction to Communication Systems 信息系统导论 Modeling & Simulation: Dynamic System 动态系统的建模与仿真Automatic Control 自动化控制 Data Acquisition,Instrument &Control 数据采集、仪表与过程控制Electromagnetics II 电磁学II Analog IC Design 模拟集成电路的规划设计Solid State Electronics 固体电子学 Power Electronics 电力电子学 Semiconductor Device Processing 半导体器件加工Digital Signal Processing 数字信号处理 Introduction to Semiconductor Optoelectronic Devices 光电半导体设备导论Introduction to Robotics 机器人学导论 Power Distribution 配电 Computer Vision 计算机视觉 Introduction to Digital Control 数字控制导论Engineering Optimization 工程优化技术概论 Digital Communication 数字通信 Image Processing 图像处理Senior Design Project 高级设计项目(毕业设计) Introduction to Very Large Scale Integration (VLSI) Design 超大规模集成电路(VLSI )设计导论Electric Drives 电传动 Senior Design 高级设计项目(毕业设计) 秋季学期 冬季学期 春季学期 Applied Quantum Mechanics 量子力学应用 Fudamentals Semiconductors &Nanostrucutres 半导体与纳米结构基础 Solid State Devices 固态元件 Semiclassic Electronic Transport 电子传递 Semiconductor Electron, Phonon, and Optical Properties 半导体电子、声子和光学性质Advanced Electromagnetics 高级电磁学 Stochastic Processes 随机系统 Advanced Ddigital Signal Processing 高级数字信号处理 Nanoscale Chatacterization Techniques 纳米表征技术 大四可选课程 - 电子与计算机工程Electrical and Computer Engineering 计算机和电子工程必不可分。电子与计算机工程所研究的内容广泛,其专业学科也越发包罗万象。加州大学 河滨分校伯恩斯工程学院的电子与计算机工程系也培养掌握现代电子、自动控制、电力工程以及计算机技术的基础理论以及技术,能从事现代电子系统的开发设计、工艺控制、智能设备的软硬件开发以及电力电子系统设计的高级应用型技术人才。 本科课程 研究生课程 加州大学河滨分校 伯恩斯工程学院 3+1+(硕博硕博))项目

模拟集成电路

中国科学院微电子研究所博士研究生入学考试 《模拟集成电路》考试大纲 一、考试形式和试卷结构 考试采取闭卷笔试形式,考试时间180分钟,总分100分。试卷结构为:基础题占60%,共20-30道题;专业题占40%,设置为灵活题型(分析计算题),共4-8道题。 二、考试内容与考试要求 1、掌握基本的MOS和bipolar器件模型及二级效应 模拟集成电路的重要性,CMOS模拟集成电路的特点和设计一般概念,MOS模拟集成电路与双极型模拟集成电路的区别,CMOS模拟集成电路与工艺发展的关系,模拟集成电路设计中器件的物理效应与模型应用问题。MOSFET的结构,MOS器件的I/V特性,阈值电压,导通电阻,器件的工作区域,体效应系数,沟道长度调制系数,亚阈值问题,器件模型与SPICE仿真要求。 2、掌握基本放大器结构及技术指标 各种负载下的共源级放大器,包括带源极负反馈的共源级问题;源跟随器结构,共栅级结构,共源共栅的特点,从跨导的分析,与增益的关系,优化动态范围的情况下,如何提高放大器的增益。单端与差动的工作方式,基本差分对的定量分析(叠加法);共模响应与电路参数对称的关系;简单差分对和Cascade差分对,吉尔伯特单元的结构与特点。 3、掌握模拟集成电路的各种噪声 电阻以及晶体管的各种噪声源机理,包括热噪声、闪烁噪声等,以及电路实际应用中的噪声分析, 4、掌握含运放的模拟电路频率响应及稳定性设计 密勒效应,极点与节点的关联;共源级,源跟随器,共栅级,共源共栅级,差分对等电路的传输函数,极点频率,与处理方式。带有各种反馈网络的模拟集成电路频域和时域分析。 5、掌握参考电压和偏置电路设计以及无源与有源电流镜 电压基准源与各种结构的电流镜知识,设计基本的电压基准源并进行稳定性分析; 设计基本电流镜,共源共栅电流镜的准确性与电压裕度的优化,有源电流镜,采用

中国模拟芯片现状

中国模拟芯片现状 模拟集成电路又称模拟芯片,主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。整体而言,我国的模拟芯片的现状是小、散、低。所谓小,“小”即企业规模很小;“散”即企业竞争分散;“低”即本土模拟芯片厂商技术水平比较低。但经过数年来的奋起直追,本土厂商与国际巨头的差距正在逐渐缩小。 中国模拟芯片市场市场增速高于全球均值 模拟芯片产品类型按照功能主要分为信号链路芯片和电源管理芯片两类。信号链路芯片主要功能有模拟信号的放大、变频、滤波;电源管理芯片主要功能有降压、升压、稳压、电压反向。 全球市场规模持续增长,中国市场占比超50%。模拟芯片是电子产品的必需品,市场规模持续增长,2018年全球模拟芯片占全球半导体市场比例为12.2%。中国模拟芯片市场占全球比例超过50%,且市场增速高于全球平均水平。根据工业和信息化部下属企业——赛迪顾问统计数据显示,2018年中国模拟芯片市场规模2273.4亿元,同比增长6.23%,近五年复合增速为9.16%。 通信为最大应用领域

模拟芯片下游应用市场分布广泛,通信和汽车占比不断提升。模拟芯片广泛应用于无线通信、汽车、工业、消费电子、电脑等领域。其中,通信和汽车占比提升较为明显。2018年,模拟芯片在通信领域的应用占比达36.2%,较2014年提升0.8个百分点;汽车应用占比达24%,较2014年提升4.6个百分点。 电源管理和电源控制类IC占比近六成 按具体功能分,电源管理类和电压控制类模拟芯片占比接近60%,是最重要的市场。电源管理是将电源电压维持在可接受限度内,因为电压的过度变化可能对电子设备有害。电源管理可用于各种应用,从计算机和智能手机到汽车和发电厂。其次,运算放大器和比较器合计占比达16%、ADC/DAC占比达15%。 本土模拟芯片厂商逐渐崛起 过去国内模拟集成电路企业由于起步较晚、工艺落后等因素,在技术和生产规模上都与世界领先企业存在着较大的差距。近年来,掌握世界先进技术的本土模拟集成电路企业的崛起使中国高性能模拟集成电路水平与世界领先水平的差距逐步缩小,不仅填补了国内高端模拟芯片的部分空白,在某些产品领域甚至超越了世界先进水平,呈现出良好的发展势头。国内模拟集成电路企业经过数年发展,技术经验不断积累,产品种类不断丰富,品牌知名度和市场认知度不断提高,管理和服务更加趋于完善,本地支持的优势开始展现,市场前景较为乐观。预计未来几年里,中国模拟芯片市场将呈现本土企业竞争力不

模拟集成电路学习笔记

半导体基础 PN结的原理 N型半导体是本征半导体中掺杂了磷等五价元素的半导体,磷原子有5个价电子,其中4个很容易和周围的硅原子的价电子形成共价键,剩余的一个价电子虽然还受到磷原子的束缚,但是与共价键比起来还是比较弱,只要给这个价电子较小的能量,它就能够挣脱磷原子的束缚而成为自由电子,磷原子释放出多余的价电子后,因失去电子而成为正离子,这种能释放电子的杂质称为施主杂质,常温下,施主杂质原子已被全部电离,一个杂质原子电离后产生一个自由运动的电子和一个正离子,正离子不能运动。此外,由于热激发,会产生少量的电子空穴对,大量自由电子的存在增加了空穴复合的几率,但是,总体而言,还是自由电子的数目远远大于空穴,因此,在N型半导体中,自由电子称为多数载流子,空穴为少数载流子。 P型半导体是本征半导体中掺杂少量3价元素,如硼等,硼杂质原子有3个价电子,都与周围的硅原子形成共价键,因此,缺少一个电子而产生一个空穴,这样就吸引周围的电子过来,而自身变成负离子,这一过程称为受主杂质电离,常温下,受主杂质全部电离,产生成对的负离子和空穴,热激发也会产生成对的电子空穴,但是,空穴的数目远大于自由电子数目,因此,P型半导体中,多子是空穴,少子是自由电子。 PN结原理: P型半导体内空穴的浓度较大,N型半导体内自由电子的浓度较大,在它们的交界面处,就出现空穴的浓度差和自由电子的浓度差,P区的空穴向N区扩散,N 区的自由电子向P区扩散,P区由于失去空穴,而破坏了原有的电中性,剩下负离子,N区剩下正离子,这些不能移动的正负离子在PN区交界面处形成一个空间电荷区,空间电荷形成内建电场,内建电场将阻止多子的扩散,使少子漂移,扩散电流与漂移电流相等时,空间电荷处于电中性,没有可以运动的载流子,因此,空间电荷区称为耗尽层,无外加电场或激发作用下,PN结内没有电流通过。PN结正向偏压: 当外加正向偏压时,削弱了内建电场,使P区的空穴和N区的自由电子都朝空间电荷区运动,与空间电荷区的正负离子中和,使空间电荷区内电荷减少,宽度变窄,势垒高度下降就使得P区和N区能够越过势垒的多数载流子数目增加,形成较大的扩散电流,由于热激发产生的少数载流子的漂移运动较弱,产生的漂移电流可以忽略不计,因为,PN结加正向偏压时,产生一个随外加电压增加而增加的扩散电流。 PN结反向偏压: 当外加反向电压时,增强了内建电场,从而使得靠近P区的空穴朝左运动,靠近N区的自由电子朝右运动,这样,空间电荷区就变宽,势垒高度增加,多数载流子的扩散运动就很难进行,扩散电流趋于零,但是,P、N区的少数载流子更容易产生漂移运动,这时,通过PN结的电流就是漂移电流,即反向电流,当管子制成后,漂移电流大小取决于温度。 PN结的击穿特性: 雪崩击穿:当反向电压足够高时,通过空间电荷区的电子和空穴获得极大的动能,又去碰撞别的原子,产生更多的载流子,这种连锁反应造成载流子突然增加的现象称为雪崩击穿。 齐纳击穿:当空间电荷区的电场强度达到105时,能把共价键中的电子拉出来,

模拟集成电路原理及应用题

模拟集成电路原理与应用试题库 一.填空题▲ 1、增强型MOSFET的工作特征中,当V GS>V T和0<V DS<(V GS-V T)时,工作于区,i D受 和的控制。 2、常用MOS单元电路有:电流源电路.基本放大电路和等。电流源电路是利用i D的微小变化 可引起的特点制成阻值很大的交流电阻,作为差动放大器的进而得到很 大的共模抑制比。 3、MOS模拟集成电路中的基本单元有、和MOS输出级电路。 4.MOS集成运算放大器的基本应用有反相放大电路、电路、电路、和电路等。理想运放工作于线性状态时,为分析方便,输入端近似看成和。 5、CMOS开关电路是由NMOS和组合而成,他克服了NMOS模拟开关电路R ON随vi的增大而的缺点,扩大了输入信号范围。 6、利用集成运放进行信号的放大、、减法、和积分运算的电路称为放大器的 应用,而能完成信号的比较、乘法、和产生各种波形的电路称为放大器的非线性应用。 7、利用MOSFET的开关特性,可有模拟开关的四种基本应用,即单刀单掷、、 和. 8、集成电压比较器用于比较相对大小的电路,是一种模拟输入、的 模拟电路采用高增益的集成运放可用来比较信号。 9、直接采用集成电压比较器,能获得更高的,而且使用更为方便,集成电压比较器 已成为模拟集成电路中的重要。 10、变换电路属于非线性变换电路,其传输函数随输入信号的、频率或改变而变,使输出信号波形不同于波形。 11、利用集成运算放大器或专用模拟集成电路,配以少量的外接元件可以构成各种类型的信号 发生器和具有各种功能的变换电路,信号发生器分为正弦波和非正弦波两大类。 12.模拟集成电路构成的正弦波发生器,工作频率多是在1MH z以下,其电路的组成通常由工作 在线性放大状态的和及三部分构成,选用不同移相选频网 络便构成不同类型的正弦波发生器。 13、非正弦波发生器通常由运放构成的(又称斯密特触发器)和有源或无源积分器电 路构成,不同形式的便构成各种不同类型的非正弦波发生器。 14、三角波发生器通常由运放构成的和有源或无源积分电路等组成。改变 值,可以改变三角波和方波的幅值。 15、用集成运放构成的单稳或双稳触发器,温度稳定性好,脉宽调节范围大,调试简单方便,常用 于脉冲整形,定时及延时电路。 16、运放组成的双稳态触发器实际上是由具有二极管双向限幅的构成当无触发脉 冲时,电路处于某一状态。 17、VFC是变换电路,即它的输出信号频率与输入信号成正比,故又称 为。 18、VFC主要由积分器、自动复位开关电路组成,专用模拟集成VFC转换器,其 性能稳定、灵敏度高、小。各种类型的VFC主要区别在于复位方法和复位时间不同而已。 19、绝对值变换电路又称、其输出电压等于绝对值。采用绝对值电路能把双极 性输入信号变成信号。其组成是在线性检波器的基础上加一级电路。如要 改变输出电压的极性只需将电路中的对调即可。 20、定时电路又称为,它是一种将模拟电路和制作在同一硅片上的新 颖的模拟集成电路。以其独特的优点取代传统的机械式。 21、目前国内外生产的定时电路主要分为定时器和两大类。定时电路以单定

相关主题
文本预览
相关文档 最新文档