当前位置:文档之家› 高中数学数列通项公式的常用求法

高中数学数列通项公式的常用求法

高中数学数列通项公式的常用求法
高中数学数列通项公式的常用求法

数列通项公式的求法

一、定义法

直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目. 例1.等差数列

{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.

点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。 二、公式法

若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21

11n S S n S a n n

n 求解。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n

n n .求数列{}n a 的通项公式。

点评:利用公式???≥???????-=????????????????=-2

1

1n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.

三、由递推式求数列通项法

对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

类型1 递推公式为)(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

已知数列

{}n a 中,12211,(1),k k k a a -==+-且a 2123k k k a a +=+,其中1,2,3,k =……,求数列{}n a 的通项公式。

(高考题) 例3. 已知数列

{}n a 满足211=a ,n

n a a n n ++

=+2

11

,求n a 。 类型2 (1)递推公式为n n a n f a )(1=+ 解法:把原递推公式转化为

)(1

n f a a n

n =+,利用累乘法(逐商相乘法)求解。 已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项(高考题)

1___n a ?=?

? 12

n n =≥ 例4. 已知数列{}n a 满足321=a ,n n a n n

a 1

1+=

+,求n a 。 (2).由n n a n f a )(1

=+和1a 确定的递推数列{}n a 的通项可如下求得:

由已知递推式有1)1(--=n n

a n f a , 21)2(---=n n a n f a ,???,12)1(a f a =依次向前代入,得

1)1()2()1(a f n f n f a n ???--=,简记为11

1

))((a k f a n k n -=∏= )1)(,1(0

1

=∏≥=k f n k ,这就是叠(迭)代法的基本模式。

(3)递推式:()n f pa a n n +=+1 解法:只需构造数列{}n b ,消去()n f 带来的差异.

例5.设数列

{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

说明:(1)若

)

(n f 为

n

的二次式,则可设

C

Bn An a b n n +++=2;(2)本题也可由

1

231-+=-n a a n n ,

1

)1(2321--+=--n a a n n (

3

≥n )两式相减得

2

)(3211+-=----n n n n a a a a 转化为

q pb b n n +=-1求之.

例6.已知31=a ,n n a n n a 2

31

31+-=

+ )1(≥n ,求n a 。

类型3 递推公式为q pa a n n +=+1

(其中p ,q 均为常数,)0)1((≠-p pq )

。 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q

t -=

1,再利用换元法转化为等比数列求解。 在数列

{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a (高考题)

例7. 已知数列

{}n a 中,11=a ,321+=+n n a a ,求n a .

类型4 递推公式为n n n q pa a +=+1(其中

p ,q 均为常数,)0)

1)(1((≠--q p pq )。 (或1n

n n a pa rq +=+,其中

p ,q, r

均为常数) 设数列

{}n a 的前n 项的和1412

2333

n n n

S a +=-?+,1,2,3,n = 求首项1a 与通项n a ;(高考题) 解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以1

+n q

,得:

q q a q p q

a n n n n 1

1

1+?=++ 引入辅助数列

{}n b (其中n

n

n q a b =),得:q b q p b n n 1

1

+=

+再应用类型3的方法解决。 例8. 已知数列

{}n a 中,6

51=a ,11)2

1(3

1+++=n n n a a ,求n a 。

类型5 递推公式为n n n qa pa a +=++12

(其中p ,q 均为常数)

。 解法:先把原递推公式转化为)(112

n n n n sa a t sa a -=-+++ 其中s ,t 满足??

?-==+q

st p

t s ,再应用前面类型3的方法求解。 已知数列

{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式;

(高考题) 例9. 已知数列

{}n a 中,11=a ,22=a ,n n n a a a 3

13

212+=++,求n a 。

类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:利用??

?≥???????-=????????????????=-)2()

1(11n S S n S a n n

n 进行求解。 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n (高考题)

例10. 已知数列

{}n a 前n 项和2

214--

-=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .

类型7 双数列型 解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。 例11. 已知数列

{}n a 中,11=a ;数列{}n b 中,01=b 。当2≥n 时,)2(3

111--+=n n n b a a ,)2(3

111--+=n n n b a b ,求n a ,n b .

四、待定系数法(构造法)

求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法。

1、通过分解常数,可转化为特殊数列{a n +k }的形式求解。一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法

对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=

1

-p q

,从而得等比数列{a n +k }。 例12、数列{a n }满足a 1=1,a n =

2

1a 1-n +1(n ≥2),求数列{a n }的通项公式。

说明:这个题目通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。

例13、数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。

例14.已知数列

{}n a 满足11=a ,且132n n a a +=+,求n a .

点评:求递推式形如q pa a n n +=+1

(p 、q 为常数)的数列通项,可用迭代法或待定系数法构造新数列)1(11p

q

a p p q a n n -+=-+

+来求得,也可用“归纳—猜想—证明”法来求,这也是近年高考考得很多的一种题型. 例15.已知数列

{}n a 满足11=a ,123-+=n n n a a )

2(≥n ,

求n a .

点评:递推式为11

+++=n n n q pa a (p 、q 为常数)时,可同除1+n q ,得

11

1

+?=++n n n n q a

q p q a ,令n

n n

q a b =从而化归为q pa a n n +=+1(p 、q 为常数)型. 2、通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数

p 的分

解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。

已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈

(I )证明:数列

{}1n n a a +-是等比数列;

(II )求数列{}n a 的通项公式;(高考题) 例16、数列

{}n a 满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。

分析:递推式02312

=+-++n n n a a a 中含相邻三项,因而考虑每相邻两项的组合,即把中间一项1+n a 的系数分解成1和2,适当组合,

可发现一个等比数列}{1--n n a a 。

例17、数列

{}n a 中,n n n a a a a a +===++122123,2,1,求数列{}n a 的通项公式。

说明:若本题中取1,31=-=h k

,则有n n n n a a a a 3

1

31112+=++++即得

}3

1{1n n a a ++为常数列,n n a a 311++ 131-+=n n a a 1231a a +== 37

312=+=故可转化为例13。

例18.已知数列{}n a 满足11=a ,22=a ,n n n a a a 3

1

3212+=++求n a .

点评:递推式为n n n qa pa a +=++12(p 、q 为常数)时,可以设)(112n n n n sa a t sa a -=-+++,其待定常数s 、t 由p t s =+,q

st -=求出,从而化归为上述已知题型. 五、特征根法

1、设已知数列}{n a 的项满足d ca a b a n n +==+11

,,其中,1,0≠≠c c 求这个数列的通项公式。作出一个方程,d cx x +=则当

10a x =时,n a 为常数列,

即0101,;x b a a x a a n n n +=≠=时当,其中}{n b 是以c 为公比的等比数列,即0111

1,x a b c b b n n -==-.

例19.已知数列}{n a 满足:,4,N ,23

1

11=∈--=+a n a a n n 求.n a

2、对于由递推公式n n n qa pa a +=++12

,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根,当21

x x ≠时,数列{}n a 的通项为1

2

11--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

2

11--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当

21x x =时,数列{}n a 的通项为

11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、

B 的方程组)。 例20:已知数列

{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。

3、如果数列}{n a 满足下列条件:已知

1a 的值且对于N ∈n ,都有h

ra q

pa a n n n ++=

+1(其中p 、q 、r 、h 均为常数,且

r h a r qr ph -

≠≠≠1,0,),那么,可作特征方程h

rx q px x ++=,当特征方程有且仅有一根0x 时,则01n a x ?

?

?

?-??

是等差数列;当特征方程

有两个相异的根1λ、2λ时,则12n n a x a x ??

-?

?-??

是等比数列。

数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足求数列}{n a 的通项公式.(高考题)

例21、已知数列}{n a 满足性质:对于,3

24

,N 1

++=

∈-n n n a a a n 且,31=a 求}{n a 的通项公式.

例22.已知数列}{n a 满足:对于,N ∈n 都有.3

25

131

+-=

+n n n a a a

(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?

说明:形如:)(11b a k ma a n n n

+=

--递推式,考虑函数倒数关系有)11(11m a k a n n +=-?m

k

a k a n n +?=-111令n n a

b 1=

{}n b 可归为

q pa a n n +=+1型。(取倒数法)

例23:1,1

3111

=+?=

--a a a a n n n

六、构造法: 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,如某种数量关系,某个直观图形,或者某一反例,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.

1、构造等差数列或等比数列:由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. 例24: 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422=+成立,求{}n a 的通项an.

解:n n n S a a 422

=+?112

142---=+n n n S a a ,

∴n n n n n n n a S S a a a a 4)(42211212=-=-+----

0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且

24211121=?=+a a a a . ∴n n a n 2)1(22=-+=

例25: 数列

{}n a 中前n 项的和n n a n S -=2,求数列的通项公式n a .

解:

1

21111=?-==a a S a 当n ≥2时,

[]1212)1(221111+=

?++-=----=-=----n n n n n n n n n a a a a a n a n S S a )2(2

1

21-=-?-n n a a 令2-=n n a b ,则12

1

-=

n n b b ,且1211-=-=b {}n b 是以21为公比的等比数列,11)21()21(1---=?-=n n n b

∴1

)2

1(2--=n n a .

2、构造差式与和式:解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. 例26: 设

{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,

(n ∈N*),求数列的通项公式an. 解:由题设得0))((11=--+--n a a a a n n n n . ∵0>n a ,01>-n a ,∴01>+-n n a a . ∴n a a n n =--1

2

)

1(321)()()(123121+=

++++=-+-+-+=-n n n a a a a a a a a n n n 例27: 数列{}n a 中,3,121==a a ,且n n n a n a n a )2()3(12+-+=++,

(n ∈N*),求通项公式n a . 解: =-++12n n a a =-++))(2(1n n a a n ))(1)(2(1--++n n a a n n )1)(2(++==n n )!2()(3412+=-?n a a

∴!!3!21)()()(123121n a a a a a a a a n n n +++=-++-+-+=-(n ∈N*) 例27: 数列{}n a 中,3,121==a a ,且n n n a n a n a )2()3(12+-+=++,(n ∈N*),求通项公式n a .

3、构造商式与积式:构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法. 例28: 数列

{}n a 中,2

11=a ,前n 项的和n n a n S 2=,求1+n a .

解:1221221)1()1()1(----=-?--=-=n n n n n n n a n a n a n a n S S a

11

1+-=?-n n a a n n ,

∴11

2211a a a a a a a a n n n n n ??=--- )1(1

2131211+=?-?+-=n n n n n n ∴)

2)(1(1

1++=+n n a n

4、构造对数式或倒数式:有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决. 例29: 设正项数列

{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a

a

,)1(log 21log 122+=+-n n a

a

,设1log 2+=n a

n b , 则12-=n n b b

{}n b 是以2为公比的等比数列,11log 121=+=b .

11221--=?=n n n b ,122

1log -=+n a n

,12log 12-=-n a n , ∴1

2

1

2--=n n a

例30: 已知数列

{}n a 中,21=a ,n ≥2时1

33711+-=--n n n a a a ,求通项公式.

解:∵1344111+-=---n n n a a a ,两边取倒数得4

3

11111+-=--n n a a .

可化为等差数列关系式.

4

1

3)1(4311111+=

-+-=-n n a a n ∴1

35

3++=n n a n

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列通项公式的求法集锦

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=??-=??-=???-=-?? 时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N *∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。 解:n=1时, 1a =1212323431122 22.......2n n n n a a a a a a a a --≥-=??-=??-=????-=?时, 以上n-1个等式累加得 21122...2n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。 二、累乘法 形如1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

高一数列通项公式常见求法

数列通项公式的常见求法 一、公式法 高中重点学了等差数列和等比数列,当题中已知数列是等差或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。 1、等差数列公式 例1、已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式。 解:(I )设等差数列{}n a 的公差为d ,由已知条件可得 11 0,21210,a d a d +=??+=-? 解得11,1.a d =??=-? 故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式 例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式。 解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得, 即220q q --=,解得21q q ==-或(舍去),因此 2.q = 所以{}n a 的通项为1*222().n n n a n N -=?=∈ 3、通用公式 若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式 ?? ?≥-==-2 1 1n S S n S a n n n n 求解。一般先求出11S a =,若计算出的n a 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。 例3、已知数列}{n a 的前n 项和12 -=n S n ,求}{n a 的通项公式。 解:011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴?? ?≥-==) 2(12)1(0 n n n a n

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一、观察法 1、根据数列的前4项,写出它的一个通项公式: (1) ,5 4,43,32,21-- (2) ,5 2,21,32,1 (3)9,99,999,9999,… 二、叠加法:对于型如)(1n f a a n n +=+类的通项公式 2、已知数列6,9,14,21,30,…求此数列的一个通项。 3、若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 三、叠乘法:对于型如1+n a =f (n)·n a 类的通项公式 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 5、已知数列{}n a 中,3 11= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 四、S n 法利用1--=n n n S S a (n ≥2) 6、已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 五、辅助数列法 7、已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。 六、倒数法 8、已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式。 1. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .

2.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a 1433n -?-. 3.已知数列{}n a 的11a =,22a =且121()(3)2n n n a a a n --=+≥,则1lim n x n a a →∞+=

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

常见数列通项公式的求法(超好)

常见数列通项公式的求 法(超好) -CAL-FENGHAI.-(YICAI)-Company One1

常见数列通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式.n a n 53= 2.公式法:已知n S (即12()n a a a f n ++ +=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 例2:已知数列}{n a 的前n 项和s n ,12-=n s n 求}{n a 的通项公式。 解:(1)当n=1时,011 ==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴? ??≥-==)2(12)1(0 n n n a n 练习:数列{a n }满足a n =5S n -3,求a n 。 答案:a n =34 (-14 )n-1 3.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3:(1)数列{a n }满足a 1=1且a n =a n -1+3n -2(n ≥2),求a n 。 (2)数列{a n }满足a 1=1且a n =a n -1+1 2n (n ≥2),求a n 。 解:(1)由a n =a n -1+3n -2知a n -a n -1=3n -2,记f (n )=3n -2= a n -a n -1 则a n = (a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =(3n -2)+[3(n -1)-2]+ [3(n -2)-2]+ …+(3×2-2)+1 =3[n+(n -1)+(n -2)+…+2]-2(n -1)+1 =3×(n+2)(n -1)2 -2n+3=3n 2-n 2 (2)由a n =a n -1+12n 知a n -a n -1=12n ,记f (n )=1 2n = a n -a n -1 则a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =12n +12n -1 +12 n -2 +…+122 +1=12 -12n 练习:已知数列{}n a 满足211=a ,n n a a n n ++=+211 ,求n a 。答案:n a n 1-23= 4.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121 n n n n n a a a a a a a a ---=????(2)n ≥。 例4:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 解:由(n+1)·1+n a =n ·n a 得 1 1+=+n n a a n n ,

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

高中数学求数列通项的常用方法

求数列通项公式的方法 本文章总结了求数列通项公式的几种常见的方法,分别有: 公式法,累加法,累乘法,待定系数法,对数变换法,迭代法,数学归纳法,换元法。 希望对大家有所帮助~~~ 关键字:数列,通项公式,方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 3 4 1=+n n a a ()2≥n 又1123131a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11n n n a a n -= - ∴11 n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N * =∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+

相关主题
文本预览
相关文档 最新文档