当前位置:文档之家› 微机保护流程技巧及计算原则

微机保护流程技巧及计算原则

微机保护流程技巧及计算原则
微机保护流程技巧及计算原则

矿区微机综保计算和整定

流程方法及计算原则

煤矿供电系统中,保护装置的正确整定关系煤矿供电安全,保护整定计算是一项复杂繁琐的工作,要求按照一定的整定原则,以短路电流计算为基础,结合实际情况,对整定值进行计算、比较、筛选,最终选择合适的定值进行整定,尽量满足保护四性。

矿区主变电所已经基本为微机保护,主要厂家有南瑞继保、国电南自、许继电气、鲁能积成等。虽然保护硬件档次提高,但微机装置管理及整定计算还有所欠缺。目前矿区保护整定存在以下主要问题:

1、短路电流计算:有些没有计算,这样保护整定就没有依据,有些计算原则有误,系统大小方式不清。

2、电源进线及6kv出线保护的投退没有统一的原则,三段式保护没有发挥作用,上下级保护定值及时限不合理。

3、主变保护没有计算说明,主变微机综保的主流产品基本是三折线差动保护,参数整定有公式套用,各单位往往在整定时以经验数据设置,没有经计算验证灵敏度。高低后备保护整定不合理。

4、保护定值单:没有按照实际保护整定填写保护定值单,技术人员往往不知道那些保护投入,那些保护不使用;控制字及保护压板投退没有说明,严格来说,不使用的保护应将定值设最大且将控制字设为0,有硬件压板的要断开。

5、缺乏现场运行规程,应结合本单位实际和设备特点,编制现

场运行规程,着重说明运行维护注意事项,正常及异常的反映(如音响、灯光信号、信号指示等等)以及装置出现故障时的各种现象,如气味、冒烟和音响、灯光信号、信号指示等等的异常表现,装置出现故障时的注意事项和处理办法,保护装置的管理、投停,压板的位置与投停方法等。

一、整定的原则性规定

DL/ T584-2007 《3~110kV电网继电保护装置运行整定规程》DL /T684-1999《大型发电机变压器继电保护整定计算导则》

DL 400-91 继电保护和安全自动装置技术规程

同型号保护说明书

继电保护整定计算应以常见运行方式为依据。所谓常见运行方式,是指正常运行方式和被保护设备相邻近的一回线或一个元件检修的正常检修方式。就多数矿井来说,一条回路运行,一条回路充电备用,35kv母联合,6kv以下分列运行。对暂时运行方式可不考虑。对特殊运行方式,可以按专用的运行规程或依据当时实际情况临时处理。

由于目前电网稳定对保护动作快速性的要求越来越高,电力系统对集团公司所属的供电系统继电保护装置时间的限额压得很紧,原则上必须满足电力系统的保护限额要求。因此,时间级差应尽量的压低,必要时在某些地方(如6KV馈线)就要放弃选择性。为提高速动性,降低动作时限,对运行条件可能允许的方式,可减少时间级差。

上一级保护与下一级保护所有的相邻保护均需配合,当与几条相

邻线路配合整定,而各配合整定不相同时,则应取其整定结果中灵敏度最低、时间最长的组合。当灵敏度、时间两者可能不是同一线路的结果时,即取与某一条线路配合的动作值,又取与另一条线路配合的时间值,作为选用的定值。

由各个电气量组成的一套保护,其中各元件的作用不同,灵敏度要求也不同。其中作为主要元件的要求保证选择性和灵敏性,而作为辅助元件的则只要求有足够的灵敏性,并不要求选择性,在整定配合上,要求辅助元件的灵敏度要高于主要元件的灵敏度.

二、整定流程及方法:

第一步:收集资料

第二步:计算阻抗并画出系统阻抗图

第三步:计算短路电流

第四步:计算继电保护定值

第五步:检查校核

第六步:编制整定方案说明和运行规程

第一步:收集资料

1、变电站电气接线图及设备参数

电气主接线图::包括各电压等级的变电所的一次接线图

接入系统方式:包括高、低压进线

主变压器的额定容量(Mva)、额定电压(kV)、额定电流(A)、短路阻抗(短路电压%)

所有高低压线路的长度(km)、线型、几何均距(m)

所有电抗器、补偿电容器的型号,额定电压(kV)、额定电流(A)电

感值(亨)、电容值(法)

高压电动机的型号、容量(kW)额定电压(kV)、额定电流(A)及最大起动电流(A)和启动时间(秒)

2、各出线负荷

包括各出线的最大、最小、正常电流(A),有功(kW)、无功负荷(Kvar)、功率因数

3、系统运行方式

包括正常与特殊运行方式,变压器并联与否,馈线有无并联,110、35kV进线是否可能出现并联,35kV各变电站之间有无联系等等

4、保护及自动装置配置

包括各元件的保护装置的型号、制造厂家、装置说明书

5、接入系统阻抗、继电保护配置及对下级保护要求的定值限额

包括电源侧母线的最大、最小和特殊运行方式下的三相、两相综合阻抗(Ω)与短路电流(kA)。进线电源侧保护的配置型号、整定值。

第二步:计算阻抗并画出系统阻抗图

计算原则:由于集团公司的变电所一次电压大多为35kV,一般可以计算出阻抗的有名值,在电压等级变动时再进行折算,如必要可再用标幺值计算。

1、双绕组主变压器阻抗XT=UK%*Ue2/Se

阻抗值折算为其它侧(低压侧)阻抗值:XT(低压)=XT(高压*U12/U22

2、35kv以上进线阻抗:Z=√X2+R2

有色金属导线(钢芯铝绞线为多)

x0=0.1445lgD/r+0.0157 欧/千米X=x0 *L

必须要计及电阻值时:r0=ρ/S 欧/千米

3、6-10kV出线阻抗

原则上6-10kV出线阻抗与35kV进线阻抗没有什么不同,但是,6kV的配电线路,可能有很多电缆线路,由于电缆芯间的距离较小,相对而言,电缆线路的电抗值比架空线路要小得多,因而电缆线路必须要考虑电阻,

4、6-10kV配电变压器阻抗:原则上完全可以按主变压器阻抗进行计算,只是配电变压器的UK%一般较主变压器略小而已。同时由于配电变压器高压侧电压低于主变压器,要注意折算至高压侧阻抗时,将会很大。在计算低压侧短路电流时,配电变压器的电抗将起决定性的作用,不能因为是低压变压器而不精确计算。

5、画出配电系统阻抗图:可以从主系统枢纽变电所的出线母线开始,系统综合阻抗(最大及最小运行方式下)经过出线阻抗至矿变电所母线,经过矿变电所的主变压器阻抗至低压母线再经过6-10KV 配电出线的阻抗至配电变压器的阻抗或高压电动机的阻抗。

第三步:计算短路电流

1、选择短路点:一般选择各段母线作为计算短路电流的短路点,然后将系统阻抗简化综合归算到所选择的短路点(最大和最小运行方式下的综合阻抗).

2、运行方式的选择:矿变运行方式应按正常运行方式(一条线路带2台主变运行),加上系统的最大最小方式进行计算。矿变最小

运行方式可以选择单台主变运行的情况。

第四步:计算继电保护定值

1、35KV进线保护:

设三段式保护,计算短路点参数在变压器低压侧

第一段:电流速断,按照躲过变压器低压侧故障时最大短路电流整定,如果计算中发现与上级区变出线差距较小,可以按照与上级配合的配合系数考虑,但灵敏度要满足要求;

第二段:时限电流速断,按照最大短路电流整定可能与上级冲突,可以按对变压器低压侧母线故障时有不小于1.5的灵敏度整定,并与相邻元件的电流速断保护配合,时限:t+Δt。

第三段:定时限过电流保护:按最大负荷电流整定同时躲过最大电机启动,正常按两台变压器70--80%负荷时的最大电流。

对于6-10kv线路出线可以参照上述考虑

2、主变整定

(1)系统定值

主要整定变压器的参数:容量、接线组别、变比等,要与实际一致。

(2)差动保护定值

多数采用三折线差动原理,对特性曲线中的各个拐点值进行计算,根据装置说明及文件二进行整定,整定内容包括控制字多达30余项,定值单应详细填写。

需要整定的主要内容:

I cdqd差动电流起动值;

I sdzd差动速断定值;

K bl比率差动制动系数;

Kxb 二次谐波制动系数

Ibj CT报警门槛值

(3)后备保护定值

(a)复压闭锁负序相电压U2zd;躲过变压器产生的不平衡电压,规程规定为0.06—0.08Un

(b)复压闭锁相间电压低电压U1zd:正常应设为低压侧闭锁,相应控制字投入

(c)高压侧复压过流Ⅰ段定值:躲过主变6kV母线出口最大短路电流

(d)高压侧复压过流Ⅱ段定值:与低压侧I段配合

(e)高压侧复压过流Ⅲ段定值:按躲主变高压侧额定负荷电流整定

(f)低压侧复压过流Ⅰ段定值:6kV母线出口两相短路有 1.5倍以上灵敏度

(g)低压侧复压过流Ⅱ段定值:

(h)低压侧复压过流Ⅲ段定值:按躲主变低压侧额定负荷电流整定

(i)过负荷定值:按躲过变压器35kV侧额定负荷电流整定,发信号

(j)跳闸出口控制字:整定时应跳主变两侧开关

3、6-10KV馈线保护

6-10KV馈线可参考35KV馈线保护

①架空线路:三段式

②电缆线路:II、III两段式(限时速断及过流)

与上级供电的主变后备保护配合I

Ⅰzd < I'

Ⅰzd

/Kph配合系数Kph≤1.2

4、配电变压器保护:

第一段:电流速切:

第二段:定时限过电流:过负荷保护:发信号

非电量保护:

5、并联补偿电容器保护

①延时电流速断保护。

a.速断保护电流定值按电容器端部引线故障时有足够的灵敏系数整定,一般整定为3~5倍额定电流。

b.考虑电容器投入过渡过程的影响,速断保护动作时间一般整定为0.1~0.2s。

②过电流保护。

a.过电流保护应为三相式。

b.过电流保护电流定值应可靠躲电容器组额定电流,一般整定为

1.5~2倍额定电流。

c.保护动作时间一般整定为0.3~1s。

③过电压保护。

a.过电压保护定值应按电容器端电压不长时间超过1.1倍电容器额定电压的原则整定。

b.过电压保护动作时间应在1min以内。

c.过电压保护可根据实际情况选择跳闸或发信号。

④低电压保护。

低电压定值应能在电容器所接母线失压后可靠动作,而在母线电压恢复正常后可靠返回,一般整定为0.3~0.6倍额定电压。保护的动作时间应与本侧出线后备保护时间配合。

⑤不平衡电压保护。

可靠躲过电容器组正常运行时的不平衡电压。动作时间一般整定为0.1~0.2s。电容器组正常运行时的不平衡电压应满足厂家要求和安装规程的规定。

⑥不平衡电流保护。

可靠躲过电容器组正常运行时中性点间流过的不平衡电流。动作时间一般整定为0.1~0.2s。电容器组正常运行时中性点间流过的不平衡电流应满足厂家要求和安装规程的规定。

第五步:检查校核:

整定计算工作完毕之后,应进行全面的检查校核一次,重点是检查所设定的定值的保护范围和灵敏度。

第六步:编制整定方案说明和运行规程:

1、整定方案着重说明整定计算的原则:任何继电保护装置的配合能力都是有限的。原则上必须满足电力系统的保护限额要求。因此,时间级差应尽量的压低,必要时在某些地方(如6KV馈线)就要放弃选择性。为提高速动性,降低动作时限,对运行条件可能允许的方

式,可减少时间级差。结合本单位实际,编制切实可行的制定方案。

2、继电保护装置运行规程:针对某种类型的继电保护装置而言,应根据厂家的说明书和有关专业规程编写,主要是该种装置的运行环境(周围温度、湿度、运行电压、运行电流等等),运行维护注意事项,正常及异常的反映(如音响、灯光信号、信号指示等等)以及装置出现故障时的各种现象,如气味、冒烟和音响、灯光信号、信号指示等等的异常表现,装置出现故障时的注意事项和处理办法,保护装置的管理、投停,压板的位置与投停方法,电源开关与保险配置和操作等等。

3、继电保护现场运行规程:针对本配电系统和变电所的继电保护配置与整定计算方案以及有关电网运行整定规程编写,主要是根据电力系统和本变电所的运行方式变化而对继电保护装置相应作出的调整规定,也根据本变电所继电保护的配置与整定情况对运行方式作出的限制,也根据本变电所的交流一、二次电压、电流互感器配置,直流操作、保护、信号和跳合闸回路结线具体情况而对继电保护装置运行维护所作的规定和事故处理规定等等。

朔里矿母线阻抗及短路电流计算

一、母线短路阻抗计算

1.220kV 纵楼变35kV 母线阻抗(电抗)

正序大方式:2.084Ω,正序小方式:4.122Ω

2.朔里矿35kV 母线阻抗计算

(1)517线路阻抗

型号:LGJ-120,长度L=6.3kM ,几何均距:djj =2.5m 。 阻抗:Ω+=?+?+=39.2654.13.6)0157.02

.155.02500log 1445.01205.31(Z j j j (2)512线路阻抗

第一段:型号:LGJ-70,长度L=7.0kM ,几何均距:djj =1.89m 。 第一段阻抗:Ω+=?+?+=66.215.30.7)0157.04

.115.01890log 1445.0705.31(Z j j j 第二段:型号:LGJ-95,长度L=2.3kM ,几何均距:djj =1.5m 。 第二段阻抗:Ω+=?+?+=814.07626.03.2)0157.07

.135.01500log 1445.0955.31(Z j j j 两段线路阻抗合计:Ω+=+=474.3913.3814.066.27626.015.3Z j j )+()+( 说明:几何均距计算公式:m d ca

d bc d ab 7475.23746.203d ===

(3)朔里矿35kV 母线阻抗:

正序大方式:ΩΩ+=+=77.4474.4654.1084.239.2654.1Z =)+(大方式j j 说明:正序大方式阻抗为纵楼变最小35kV 阻抗加上两条线路中阻抗较小的一个。 正序小方式:ΩΩ+=+=545.86.7913.3122.4474.3913.3Z =)+(小方式j j

说明:正序小方式阻抗为纵楼变最大35kV 阻抗加上两条线路中阻抗较大的一个。

3.朔里矿变6kV 母线阻抗

(1)变压器阻抗计算:

主变压器型号:SF 9-8000/35,电压比:35/6.3kV;容量:8000KVA ;阻抗电压:7.49%。 ① 变压器计算到35kV 侧阻抗:Ω=??=82.12352372

835210049.7x ,

(35kV 母线电压一般高于主变高压侧额定电压,要将额定电压下阻抗折算到母线电压的阻抗,一般35kV 母线电压取37kV )。

说明:将电压为U1时的阻抗折算到U2时的阻抗的计算,按传递功率相等的原则有:1U 22U 222U 211U 2e S 12?==Z Z Z Z =得:

② 变压器计算到6kV 侧阻抗:Ω=?=3716.08

3.6210049

.7x (2)朔里矿系统阻抗由35kV 折线到6kV 侧的值 正序大方式:ΩΩ?

=1383.02

372

3.677.4Z =大方式 正序小方式:ΩΩ=2477.02372

3.6545

.8Z =小方式

(3)朔里矿变6kV 母线阻抗:

正序大方式:Ω=+=51.03716.01383.0Z 大方式

正序小方式:Ω+=62.03716.02477.0Z =小方式

二、母线短路电流计算

1.朔里矿短路电流计算阻抗图:

2、母线短路电流计算说明:

① 计算短路电流,当阻抗中电阻R ≥31X 时,计算时考虑电阻;当阻抗中电阻R ≤3

1X 时,计算的短路电流相差很小,计算时不考虑电阻。

② 计算短路电流时使用平均电压,35kV 为37kV ,10kV 为10.5kV ,6kV 为6.3kV 。

③ 将电压为U1时的短路电流折算到U2时的短路电流的计算,按传递功率相等的原则有:2

112211U I U 2I I U I U e S =得:==。 3、朔里矿35kV 母线短路电流计算: kA j I kA j V I

164.26.7913.3233/37)2(d ,478.4474.4654.1k 3/37)

3(d =Ω+?==Ω+=)(小方式大方式 4、朔里矿6kV 母线短路电流:

① 6kV 母线短路通过主变35kV 侧电流:

kA j j I kA j j V I 917.082.126.7913.3233/37)2(d ,23.182.12474.4654.1k 3/37)3(d =Ω++?==Ω++=)(小方式大方式

② 6kV 母线短路通过主变6kV 侧电流:

kA I kA I 4.53.637917.0)2(d ,22.73.63723.1)3(d =?==?=小方式大

朔里矿变压器差动及后备保护整定计算

一.主变保护整定计算需要的参数计算

1、变压器参数

变压器参数:型号:SF 9-8000/35,电压比:35±2×2.5%/6.3kV,额定电流比:132A/733.2A 。 变压器短路阻抗:7.49%。变压器接线组别:Y /Δ-11。

2、变压器两侧短路电流:(在短路电流计算中已经计算)

(1)、35kV 母线短路电流:三相最大4478A,两相最小2164A 。

(2)、6kV 母线短路通过主变35kV 侧:三相最大1230A,两相最小917A 。

(3)、6kV 母线短路通过主变6kV 侧:三相最大7220kA,两相最小5400kA 。

3、保护型号:南瑞RCS-9679CS ,差动与后备一体。

4、保护使用CT 变比:

(1)、主变高压侧:400/5

(2)、主变低压侧:800/5

5、纵楼变35kV 线路保护定值

(1)、纵楼517线路保护定值:

过流Ⅰ:1724A0S ;

过流Ⅱ:1448A0.3S ;

过流Ⅲ:300A1.5S ;

(2)、纵楼512线路保护定值:

过流Ⅰ:1765A0S ;

过流Ⅱ:1126A0.3S ;

过流Ⅲ:288A1.5S ;

二、主变保护整定

(一)系统参数

1、系统参数整定

(1) 保护定值区号:1(范围0~7)

(2) 变压器容量S =8MVA (单位:MVA )

(3) 高压侧额定电压U1N =35KV (单位:KV )

(4) 低压侧额定电压U3N =6.3KV (单位:KV )

(5) 二次额定电压Un =100V (单位:V )

说明:指PT 二次线电压

(6) 变压器接线方式KMODE =01

说明:变压器接线方式为差动保护校正变压器两侧由于角度而造成的不平衡电流使用。

其中十位数0表示CT 接成全星形,由程序进行Y /Δ转换;十位数1表示CT 在装置外部进行Y /Δ转换。个位0~5表示变压器一次接线方式。

朔里矿变压器接线组别:Y /Δ-11,现在微机保护CT 二次接线均使用全星形,因此,这里“变压器接线方式”整定为01。

(二)差动保护定值整定

1、差动保护定值

(1)、高压侧CT 额定一次值CT11=400A

(2)、高压侧CT 额定二次值CT12=5A

(3)、低压侧CT 额定一次值CT31=800A

(4)、低压侧CT 额定二次值CT32=5A

(5)、差动电流启动值Icdqd =0.32Ie (说明:该定值为标么值,单位为Ie 。)

Ie Ie Ie I m U K K I e er rel cdqd 32.0315.0)05.01.006.0(5.1)(==++=?+?+=

式中:Krel ——可靠系数,取1.3~1.5;取1.5.

Ker —电流互感器的比误差,10P 型取0.03*2,5P 型和TP 型取0.0l *2;取0.03*2=0.06。 △U ——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值);这里没有提供,普通35kV 变压器的高压侧电压为:35±2×2.5%,取2×2.5%=0.1

△m ——由于电流互感器变比未完全匹配产生的误差,取0.05。

Ie ——变压器额定电流(说明:Ie 可以为高压侧、也可以为低压侧的二次额定电流,

这里不考虑它是高压侧还是低压侧,在计算中用到时使用时在考虑)

(6)、差动速断定值Isdqd =6Ie (说明:该定值为标么值,单位为Ie 。)

6300kVA 及以下容量变压器取7~12Ie ,

6300kVA ~31500kVA 变压器取4.5~7.0Ie ,

40000kVA ~120000kVA 变压器取3.0~6.0Ie ,

120000kVA 及以上容量变压器取2.0~5.0Ie 。

朔里矿变压器容量为8000kVA ,取6.0Ie

灵敏度计算:朔里矿变压器为降压变压器,检验差动速断保护的灵敏度,用主变高压侧出口最小两相短路电流检验。

① 计算主变高压侧额定电流 A kV MVA

e I 132335811=?=

② 在主变高压侧出口最小两相短路电流为2164A ,是主变高压侧额定电流132A 的倍数: Ie Ie 4.16132

2164= ③ 灵敏度:

2.173

3.20

.64.16>==Ksen 满足要求 (7)、比率差动制动系数Kb1=0.36

一般工程取0.2~0.5,如果着得计算麻烦,直接取0.5就可以了。

如果计算方面,使用计算值最好。计算过程如下:

这里经计算躲过最大外部不平衡电流,比率差动制动系数计算Kb1=0.36。

① 求最大不平衡电流(折算到高压侧):

由于变压器为两侧变,最大不平衡电流出现在朔里矿6kV 母线短路(对差动保护属于区外故障,这种故障产生的不平衡电流不能造成差动保护误动)。

公式:

A A I m u K K K I k er cc ap unb 3321230)05.01.006.012()(max

.max .=?++??=?+?+=

式中:Kap ——非周期分量系数,两侧同为TP 级电流互感器取1.0;两侧同为P 级电流

互感器取1.5~2.0。取2.0。

Kcc ——电流互感器的同型系数,Kcc =1.0;

Ker 一一电流互感器的比误差,10P 型取0.03*2,5P 型和TP 型取0.0l *2;取0.06。

△U ——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值);为0.1。 △m ——由于电流互感器变比未完全匹配产生的误差,取0.05。

Ik.max ——低压侧外部短路时,流过靠近故障侧电流互感器的最大短路电流周期分量。

应为7220A ,这里为了方便计算,减少流入差动保护高、低侧二次电流反复折

算到统一的基准下。1230A 为朔里矿6kV 母线短路时通过变压器高压侧一次

最大三相短路电流。

② 最大差动动作电流(折算到高压侧):

A A I K Iop unb re 4983325.1m ax .max .=?==

式中:Krel ——可靠系数,取1.3~1.5;取1.5

max .Iunb ——最大不平衡电流,前面计算出为4.15A 。

最大差动动作电流498A 为变压器高压侧额定电流的倍数:

e 773.3132

e 498e e 498498I I I I ===

③ 最大制动电流(折算到高压侧): 差动继电器制动电流为三侧电流绝对值之和的一半

A I I I Ir Ir 1230)12301230(5.0)321(5.0m ax .es =+?=++?==

最大制动动作电流1230A 为变压器高压侧额定电流的倍数:

e 32.9132

e 1230e e 12301230I I I I === 由于最大制动动作电流大于第二拐点,必须求最大制动系数和斜率为1的曲线与所求最大斜率的曲线交点Icd2。

④ 最大制动系数

4049.01230

498m ax .m ax .m ax .===Ires Iop Kres (说明:制动系数没有单位。) 式中:max .Ires 为进入差动中最大制动电流,在6kV 母线短路时 A A A Ij Ires m i 1230)12301230(21

21m ax .1=+==∑=

说明:最大制动系数指假设差动继电器没有3Ie 以后的制动曲线,只有两段,

求出斜率为1的曲线与最大斜率为0.405的曲线交点Icd2,这个交点Icd2带入需要求的Kbl 公式中,就可求出Kbl 。

求交点Icd2:

,=

Ie

I I I Ie I K 3e 32.92cd e 773.3312302cd 498405.0m ax .bl --=--= 求出Icd2=1.2134Ie

⑤ 最后计算制动系数

说明:RCS-9679C 装置中稳态比率差动两个拐点,分别为0.5Ie 和3Ie ,如下图所示:

如果max .Ires >3Ie 最大制动电流计算时用3Ie ,否则使用计算值。

计算最大整定电流与主变高压侧额定电流比值: e e e e e e 3332.9132

123012301230I I I I I I A ,用=>?=?= 36.035736.05.0332.02134.10.3m in .2cd bl ≈=--=--=

Ie Ie Ie Ie Ires Ie Iop I K

厂家说明书上比率制动曲线

综合保护整定原则介绍

一、电动机综合保护整定原则 1、差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取: I dz=KI e/n 式中:I dz:差电流速断的动作电流 I e:电动机的额定电流 K:一般取8~10 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流 I dz.min=K KΔmI e/n 式中: I e:电动机的额定电流 n:电流互感器的变比 K K:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取I dz.min=(0.3~0.6)I e/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数 K =K K K fzq K tx K c 式中: K tx:电流互感器的同型系数,K tx=0.5 K K:可靠系数,取2~3 K c:电流互感器的比误差,取0.1 K fzq:非周期分量系数,取1.5~2.0 计算值K max=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.3~0.6 3、电流速断保护 整定原则:躲过电动机启动时的产生的最大电流,但在正常运行中又要有足够的灵敏度; 1)Izd = K K.Istart K为可靠系数,一般地Kk=1.3 Istart为电动机启动的最大电流,该电流值可以通过启动电机时记录保护中记录的最大电流取得;或根据动机标称启动电流得到;

2)若Istart不好确定时,可根据下面推荐进行计算Istart; 单鼠笼: Istart=(6~7)Ie 双鼠笼: Istart=(4~5)Ie 绕线式: Istart=(3~4)Ie Idz=K*Izd 电动机启动过程中K=1,启动结束后K=0.5; 即当电动机启动完成后速断定值自动降低为原定值的50%。可有效地防止启动过程中因启动电流过大引起的误动,同时还能保证正常运行中保护有较高的灵敏性。 3)速断动作时间tsd 根据现场运行经验,一般取取tsd =0.05s 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。(10-15S) 5、负序过流保护 负序动作电流I2dz,按躲过正常运行时允许的负序电流整定 一般地: 保护断相和反相等严重不平衡时,可取I2dz =(0.6~0.8)Ie 作为灵敏的不平衡保护时,可取I2dz =(0.2~0.4)Ie 6、接地保护 保护装置的一次动作电流,按躲过被保护分支外部单相接地故障时,从被保护元件流出的电容电流及按最小灵敏系数1.25整定 Idz ≥Kk Icx Idz ≤(Ic∑-Icx)/1.25 式中: Icx:被保护线路外部发生单相接地故障时,从被保护元件流出的电容电流 Ic∑:电网的总单相接地电容电流 Kk:可靠系数,可取Kk=4~5 7、过热保护 动作判据: (1) 电动机发热时间常数 I1 电动机实际运行电流的正序分量 I2 电动机实际运行电流的负序分量 Ie 电动机实际额定电流 Ieq 电动机实际运行电流的等效电流,计算方法动作见(2); t 电动机过热实际时间,计算方法见动作判据(1);

电力微机保护定值计算公式

定值整定原则及公式 一.定值整定原则 1.以下整定原则与公式均取系统容量Sj=1000MV A,参考书籍为《工业与民用配电设计手册》第三版,相应参考页码标注均取与此。 二.系统阻抗以及各元件阻抗 (1)电缆P133 表4-12 ZR-YJV型系统阻抗Sj=1000MV A时,每千米阻抗标幺值X: 150mm2 0.080 185mm2 0.077 电缆阻抗X=X*L L-电缆长度 (2)变压器P128 表4-2 X=(Uk%/100)*(Sj/Sr) Uk%-变压器短路阻抗基准容量Sj=1000MV A Sr-变压器额定容量(3)系统阻抗(由天津滨海供电分公司提供) 110kV入口处系统阻抗最大运行方式下0.5357 最小运行方式下0.9880 下一电压等级的系统阻抗均为入口处的阻抗加上相应的线路以及变压器的阻抗。 三.基准电压基准电流P127 表4-1 基准容量Sj=1000MV A 基准电压Uj 系统标准电压Un 系统基准电流Ij Un(kV) 0.38 6 35 110 Uj(kV) 400 6.3 37 115 Ij(kV) 1443 91.6 15.6 5 四.短路电流计算P134 4-13 短路点三相短路电流Ik=Ij/X Ij为所在电压级别额基准电流 X为短路点的系统阻抗 短路点两相短路电流为此短路点三相短路电流的0.866倍 一般三相短路电流用来计算速断值,两相短路电流用来核算灵敏度. 五.定值计算公式 定值计算中用到的各个系数的取值及符号定义 可靠系数Krel P336 用于过负荷计算时作用与发信号取1.05 作用与跳闸取1.2 用于过流计算时取 1.1

微机的保护整定计算原则

微机保护装置定值整定原则 一、线路保护测控装置 装置适用于10/35kV的线路保护,对馈电线,一般设置三段式电流保护、低周减载、三相一次重合闸和后加速保护以及过负荷保护,每个保护通过控制字可投入和退出。为了增大电流速断保护区,可引入电压元件,构成电流电压连锁速断保护。在双电源线路上,为提高保护性能,电流保护中引入方向元件控制,构成方向电流保护。其中各段电流保护的电压元件和方向元件通过控制字可投入和退出。 (一)电流速断保护(Ⅰ段) 作为电流速断保护,电流整定值I dzⅠ按躲过线路末端短路故障时流过保护的最大短路电流整定,时限一般取0~0.1秒,写成表达式为: I dzⅠ=KI max I max =E P/(Z P min+Z1L) 式中:K为可靠系数,一般取1.2~1.3; I max为线路末端故障时的最大短路电流; E P 为系统电压; Z P min为最大运行方式下的系统等效阻抗; Z1为线路单位长度的正序阻抗; L为线路长度 (二)带时限电流速断保护(Ⅱ段)

带时限电流速断保护的电流定值I dzⅡ应对本线路末端故障时有不小于1.3~1.5的灵敏度整定,并与相邻线路的电流速断保护配合,时限一般取0.5秒,写成表达式为: I dz.Ⅱ=KI dzⅠ.2 式中:K为可靠系数,一般取1.1~1.2; I dzⅠ.2为相邻线路速断保护的电流定值 (三)过电流保护(Ⅲ段) 过电流保护定值应与相邻线路的延时段保护或过电流保护配合整定,其电流定值还应躲过最大负荷电流,动作时限按阶梯形时限特性整定,写成表达式为: I dz.Ⅲ=K max{I dzⅡ.2 ,I L} 式中:K为可靠系数,一般取1.1~1.2; I dzⅡ.2为相邻线路延时段保护的电流定值; I L 为最大负荷电流 (四)反时限过流保护 由于定时限过流保护(Ⅲ段)愈靠近电源,保护动作时限愈长,对切除故障是不利的。为能使Ⅲ段电流保护缩短动作时限,第Ⅲ段可采用反时限特性。 反时限过电流保护的电流定值按躲过线路最大负荷电流条件整定,本线末端短路时有不小于1.5的灵敏系数,相邻线路末端短路时,灵敏系数不小于1.2,同时还要校核与相邻上下一级保护的配合情况。

变压器综合整定原则

变压器综合保护整定原则 1、差动电流速断保护 按躲过变压器空载投入时励磁涌流和外部短路时流入保护的最大不平衡电流整定一般取:dz e I KI n = 式中:dz I :差动电流速断的动作电流 e I :变压器的额定电流 K :倍数 6300KVA 及以下 712: 630031500KVA : 4.57.0: 40000120000KVA : 3.0 6.0: 120000KVA 2.0 5.0: 2、纵差保护 1)纵差保护最小动作电流的整定 最小动作电流应大于变压器额定负载时的不平衡电流.min ()dz K c e I K K U m I n =+?+? 式中:e I :变压器的额定电流 n :电流互感器的变比 K K :可靠系数,取1.3 1.5: c K :电流互感器的比误差,10P 型取0.032?,5P 型和TP 型取0.012? U ?:变压器调压引起的误差,取调压范围中偏离额定值的最大值 m ?:由于电流互感器变比未完全匹配产生的误差,一般取0.05 在工程实用整定计算中可选取().min 0.30.5dz e I I n =:

2)比率制动系数K 的整定 纵差保护的动作电流应大于外部短路时流过差动回路的不平衡电流。 .max ()bph fzq tx c K I K K K U m I n =+?+? 式中:tx K :电流互感器的同型系数, 1.0tx K = .max K I :外部短路时,最大穿越短路电流周期分量 fzq K :非周期分量系数,两侧同为TP 级电流互感器取1.0,两侧同为 P 级电流互感器取1.5 2.0:。 U ?:变压器调压引起的误差,取调压范围中偏离额定值的最大值 m ?:由于电流互感器变比未完全匹配产生的误差,一般取0.05 K K :可靠系数,取1.3 1.5: 差动保护的动作电流 .max .max dz K bph I K I = 最大制动系数 max .max .max dz zd K I I = 当.max .max zd K I I =时,max .max .max K bph K K K I I = 式中:.max K I :最大短路电流 在工程实用整定计算中可60o 选取0.3 1.0K =: 3)二次谐波制动比的整定 一般取:15%20%: 4)涌流间断角的整定 闭锁角可取:6070o o :

距离保护整定计算例题

距离保护整定计算例题 题目:系统参数如图,保护1配置相间距离保护,试对其距离I 段、II 段、III 段进行整定,并校验距离II 段、III 段的灵敏度。取z1=0.4/km ,线路阻 抗角为75 ,Kss=1.5,返回系数Kre=1.2,III 段的可靠系数Krel=1.2。要 求II 段灵敏度 1.3~1.5,III 段近后备 1.5,远后备 1.2。 解: 1、计算各元件参数,并作等值电路 Z MN =z 1l MN =0.430=12.00 Z NP =z 1l NP =0.460=24.00 Z T = 100% K U T T S U 2=1005 .105 .311152 =44.08 2、整定距离I 段 Z I set1=K I rel Z MN =0.8512=10.20 t I 1=0s Z I set3=K I rel Z NP =0.85 24=20.40 t I 3=0s 3、整定距离II 段并校验灵敏度 1)整定阻抗计算 (1)与相邻线路I 段配合

Z II set1=K II rel (Z MN +Kbmin Z I set3 )=0.8(12+2.0720.40)=43.38 (2)与变压器速断保护配合 Z II set1=K II rel (Z MN +Kbmin Z T )=0.7(12+2.0744.08)=72.27 取Z II set1=Min( (1),(2))=43.38 2)灵敏度校验 K II sen =MN set II Z Z 1 =43.38/12=3.62 ( 1.5),满足规程要求 3)时限 t II 1=0.5s 4、整定距离III 段并校验灵敏度 1)最小负荷阻抗 Z Lmin Z Lmin =Lman L I U min =Lman N I U 9.0=35.03 /1109.0?=163.31 Cos L =0.866, L= 30 2)负荷阻抗角方向的动作阻抗Z act (30) Z act (30 )= re ss rel L K K K Z min =2 .15.12.131.163??=75.61 3)整定阻抗Z III set1, set =75 (1)采用全阻抗继电器 Z III set1= Z act (30 ) =75.61, set =75 (2)采用方向阻抗继电器 Z III set1 = )cos() 30(L set act Z ??-?=) 3075(61.75?-?COS =106.94

整定计算运行方式的选择原则

整定计算运行方式的选择原则 继电保护整定计算用的运行方式,是在电力系统确定好运行方式的基础上,在不影响继电保护的保护效果的前提下,为提高继电保护对运行方式变化的适应能力而进一步选择的,特别是有些问题主要是由继电保护方面考虑决定的。例如,确定变压器中性点是否接地运行,当变压器绝缘性能没有特殊规定时,则应以考虑改善零序电流保护性能来决定。整定计算用的运行方式选择合理与否,不仅影响继电保护的保护效果,也会影响继电保护配置和选型的正确性。 确定运行方式变化的限度,就是确定最大和最小运行方式,它应以满足常见运行方式为基础,在不影响保护效果的前提下,适当加大变化范围。其一般原则如下: (1)必须考虑检修与故障两种状态的重迭出现,但不考虑多种重迭。 (2)不考虑极少见的特殊方式。因为出现特殊方式的几率较小,不能因此恶化了绝大部分时间的保护效果。必要时,可采取临时的特殊措施加以解决。 1发电机、变压器运行变化限度的选择原则 发电机、变压器运行变化限度有如下选择原则: 1)一个发电厂有两台机组时,一般应考虑全停方式,即一台机组在检修中,另一台机组又出现故障;当有三台以上机组时,则应选择其中两台容量较大机组同时停用的方式。对水力发电厂的机组,还应结合水库运行特性选择,如调峰、蓄能、用水调节发电等。2)一个厂、站的母线上无论接有几台变压器,一般应考虑其中容量最大的一台停用。因变压器运行可靠性较高,检修与故障重迭出现的几率很小。但对于发电机变压器组来说,则应服从于发电机的投停变化。 2中性点直接接地系统中变压器中性点接地的选择原则 中性点直接接地系统中变压器中性点接地的选择原则是: 1)发电厂及变电站低压侧有电源的变压器,中性点均应接地运行,以防止出现不接地系统的工频过电压状态。如事前不能接地运行,则应采取其他防止工频过电压措施。 2)自耦型和有绝缘要求的其他型变压器,其中性点必须接地运行。 3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止工频过电压的措施。 4)为防止操作高过电压,在操作时应临时将变压器中性点接地,操作完毕后再断开,装置情况不按接地运行考虑。 3线路运行变化限度的选择

110KV主变压器综合保护整定原则

110KV 主变压器综合保护整定原则 主变差动保护里主要包括有差动速断、比例制动差动、二次谐波系数、平衡系数等定值。主要计算过程: 1、收集主变容量、额定电压、额定电流及TA 变比等参数; 2、了解保护装置原理,确认保护是发展变化 高压还是低压侧为基准侧; 3、看图确认电流互感器的二次接线方式; 4、注意主变投运后带负荷检查电流相量。 举例说明: 变压器铭牌额定容量31.5MV A ,TA 二次额定电流5A ,高压侧额定电压110KV ,高压侧TA 变比400/5,低压侧额定电压6.3KV ,低压侧TA 变比3000/5,变压器一次接线方式Y/△-11, TA 二次接线高低压均采用星形接线。 1、变压器额定电流计算: 1) 计算变压器各侧额定电流 e e e U S I 3= 式中Se -变压器最大额定容量,Ue -计算侧额 定电压 2) 计算各侧二次额定电流及平衡系数 H LH H e He n I I ..= =165.4/80=2.067A M LH M e Me n I I ..==??? L LH L e Le n I I ..= =2886/600=4.81A 式中:H e I .——高压一次额定电流, He I ——高压二次额定电流

H LH n .—高压侧CT 变比, 保护定值的确定 1、差动电流速断保护 按躲过变压器空载投入时励磁涌流和外部短路时流入保护的最大不平衡电流整定 一般取: I dz =KI e /n 式中:I dz :差电流速断的动作电流 I e :为保护基准侧额定电流;德威特公司的差动保护是以低压侧为基准侧) K :倍数 6300KV A 及以下 7~12 6300~31500KV A 4.5~7.0 40000~120000KV A 3.0~6.0 120000KV A 2.0~5.0 2、纵差保护 1) 纵差保护最小动作电流的整定 最小动作电流应大于变压器额定负载时的不平衡电流 I dz.min =K K (K c +ΔU+Δm)I e /n 式中: I e :变压器的额定电流 n :电流互感器的变比 K K :可靠系数,取1.3~1.5 K c :电流互感器的比误差,10P 型取0.03×2,5P 型和TP 型取0.01×2

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

20距离保护的整定计算实例

例3-1 在图3—48所示网络中,各线路均装有距离保护,试对其中保护1的相间短路保护Ⅰ、Ⅱ、Ⅲ段进行整定计算。已知线路AB 的最大负荷电流350max L =?I A,功率因数9.0cos =?,各线路每公里阻抗Ω=4.01Z /km ,阻抗角 70k =?,电动机的自起动系数1ss =K ,正常时母线最低工作电压min MA ?U 取等于110(9.0N N =U U kV )。 图3—48 网络接线图 解: 1.有关各元件阻抗值的计算 AB 线路的正序阻抗 Ω=?==12304.0L 1AB AB Z Z BC 线路的正序阻抗 Ω=?==24604.0L 1BC BC Z Z 变压器的等值阻抗 Ω=?=?= 1.445 .311151005.10100%2 T 2 T k T S U U Z 2.距离Ⅰ段的整定 (1)动作阻抗: Ω=?==2.101285.0rel 1.AB op Z K Z Ⅰ Ⅰ (2)动作时间:01=Ⅰ t s 3.距离Ⅱ段 (1)动作阻抗:按下列两个条件选择。 1)与相邻线路BC 的保护3(或保护5)的Ⅰ段配合 )(min b rel rel 1.op BC AB Z K K Z K Z ?+=Ⅰ ⅡⅡ 式中,取8.0,85.0rel rel ==Ⅱ ⅠK K , min b ?K 为保护3的Ⅰ段末端发生短路时对保护

1而言的 图3-49 整定距离Ⅱ段时求min .jz K 的等值电路 最小分支系数,如图3-49所示,当保护3的Ⅰ段末端1d 点短路时, 分支系数计算式为 215.112)15.01(B A B B A 12b ???? ? ??++=+?++== X Z X Z Z X X Z X I I K AB BC BC AB 为了得出最小的分支系数min b ?K ,上式中A X 应取可能最小值,即A X 最小,而B X 应取最大可能值,而相邻双回线路应投入,因而 19.1215 .11301220min .b =??? ? ??++=K 于是 Ω=??+=''02.29)2485.019.112(8.01.dz Z 2)按躲开相邻变压器低压侧出口2d 点短路整定(在此认为变压器装有可保护变压器全部的差动保护,此原则为与该快速差动保护相配合), )(T min .b rel 1.op Z K Z K Z AB ?+=Ⅱ Ⅱ 此处分支系数min b ?K 为在相邻变压器出口2k 点短路时对保护1的最小分支系数,由图3-53可见 Ω =?+==++=++== ?3.72)1.4407.212(7.007.2130122011.op max .B min .A 13min b ⅡZ X Z X I I K AB

整定计算的基本原则(讲义)分解

第1章整定计算的基本原则 1.1 概述 继电保护要达到消灭事故,保证电力系统安全稳定运行的目的,需要做多方面的工作。其中包括设计、安装、整定、调试,以及运行维护等一系列环节;整定计算是其中的一部分工作,而且是极重要的一部分工作。 整定计算是对具体的电力系统,进行分析计算,整定,以确定保护配置方式,保证选型,整定值和运行使用的要求。 它的重要性在于: ①在设计保护时,必须经过整定计算的检验来确定保护方式及选定。 ②在电力系统运行中,整定计算要确定各种保护的定值和使用方式,并及时协调保护与电力系统运行方式的配合,以达到正确发挥保护作用的目的。 ③无论是设计还是运行,保护方式都与一次系统接线和运行方式有密切关系。在多数情况下是涉及全局性的问题,要综合平衡,做出决断。 1.电力系统运行整定计算的基本任务 ①编制系统保护整定方案,包括给出保护的定值与使用方式,对不满足系统要求的(如灵敏性,速动性等)保护方式,提出改进方案; ②根据整定方案,编制系统保护运行规程;处理日常的保护问题; ③进行系统保护的动作统计与分析,做出专题分析报告; ④协调继电保护定值分级管理; ⑤参加系统发展保护设计的审核; ⑥对短路计算有关系统参数的管理。 2.电力系统运行整定计算的特点和要求: ①整定计算要决定保护的配置与使用,它直接关系到保证系统安全和对重要用户连续供电的问题,同时又和电网的经济指标,运行调度,调试维护等多方面工作有密切关系,因此要求有全面的观点。 ②对于继电保护的技术要求,选择性、速动性、灵敏性、可靠性,要全面考虑,在某些情况下,“四性”的要求会有矛盾,不能兼顾,应有所侧重;如片面强调某一项要求时,都会使保护复杂化,影响经济指标及不利于运行维护等弊病。 ③整定保护定值时,要注意相邻上下级各保护间的配合关系,不但在正常方式下考虑,而且方式改变时也要考虑,特别是采取临时性的改变措施更要慎重,要安全可靠。 ④系统保护的运行管理,有连续性的特点。每一个保护定值和使用方式,都是针对某种运行要求而决定的。处理问题有针对性和时间性,要考虑到原有情况作为处理的基础。 1.2 对继电保护的基本要求 1.选择性 电力系统中某一部分发生故障时,继电保护的作用只断开有故障的部分,保留没有故障的部分继续运行,这就是选择性。选择性说明如图1-1所示。

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

高压电动机综合保护整定原则

电动机综合保护整定原则 1、差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取:I dz=KI e/n 式中:I dz:差电流速断的动作电流 I e:电动机的额定电流 K:一般取8~10 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流 I dz.min=K KΔmI e/n 式中:I e:电动机的额定电流 n:电流互感器的变比 K K:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取I dz.min=(0.3~0.6)I e/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数 K =K K K fzq K tx K c 式中:K tx:电流互感器的同型系数,K tx=0.5

K K:可靠系数,取2~3 K c:电流互感器的比误差,取0.1 K fzq:非周期分量系数,取1.5~2.0 计算值K max=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.3~0.6 3、电流速断保护 整定原则:躲过电动机启动时的产生的最大电流,但在正常运行中又要有足够的灵敏度; 1)Izd = K K.Istart K为可靠系数,一般地Kk=1.3 Istart为电动机启动的最大电流,该电流值可以通过启动电机时记录保护中记录的最大电流取得;或根据动机标称启动电流得到;2)若Istart不好确定时,可根据下面推荐进行计算Istart; 单鼠笼: Istart=(6~7)Ie 双鼠笼: Istart=(4~5)Ie 绕线式: Istart=(3~4)Ie Idz=K*Izd 电动机启动过程中K=1,启动结束后K=0.5; 即当电动机启动完成后速断定值自动降低为原定值的50%。可有效地防止启动过程中因启动电流过大引起的误动,同时还能保证正常运行中保护有较高的灵敏性。 3)速断动作时间tsd 根据现场运行经验,一般取取tsd =0.05s

110kV线路继电保护整定原则

3~110kV线路继电保护整定计算原则 1一般要求 1.1整定计算使用的正常检修方式是在正常运行方式的基础上,考虑N-1的检修方式,一般不考虑在同一厂(站)的母线上同时断开所联接的两个及以上运行设备(线路、变压器等)。 1.2保护装置之间的整定配合一般按相同动作原理的保护装置之间进行配合,相邻元件各项保护定值在灵敏度和动作时间上一般遵循逐级配合的原则,特殊情况设置解列点。 1.3保护动作整定配合时间级差一般取0.3秒。 1.4线路重合闸一般均投入三相重合闸,系统联系紧密的线路投非同 期重合,发电厂出线联络线路少于4回时电源侧重合闸投检同期合闸、对端投检无压合闸,重合时间一般整定为对端有全线灵敏度段最长时间加两个时间级差。 2.快速保护整定原则 2.1高频启信元件灵敏度按本线路末端故障不小于2.0整定,高频停信元件灵敏度按本线路末端故障不小于1.5~2.0整定。 2.2高频保护线路两侧的启信元件定值(一次值)必须相同。 2.3分相电流差动保护的差动电流起动值按躲过被保护线路合闸时的最大充电电流整定,并可靠躲过区外故障时的最大不平衡电流,同时保证线路发生内部故障时有足够灵敏度,灵敏系数大于2,线路两侧一次值动作值必须相同。 2.4分相电流差动保护的其它起动元件起动值应按保线路发生内部故

障时有足够灵敏度,灵敏系数大于2整定,同时还应可靠躲过区外故障时的最大不平衡电流。 3后备保护的具体整定原则: 以下各整定原则中未对其时间元件进行具体描述,各时间元件的定值整定应根据相应的动作配合值选取。 1 相间距离 Ⅰ段: 原则1:“按躲本线路末端故障整定”。 所需参数:可靠系数K K =0.8~0.85 计算公式:L K DZ Z K Z ≤Ⅰ 变量注解:ⅠDZ Z ――定值 L Z ――线路正序阻抗 原则2:“单回线终端变运行方式时,按伸入终端变压器内整定”。 所需参数:线路可靠系数K K =0.8~0.85 变压器可靠系数KT K ≤ 0.7 计算公式:' T KT L K D Z Z K Z K Z +≤Ⅰ 变量注解:'T Z ――终端变压器并联等值正序阻抗。 原则3:“躲分支线路末端故障”。 所需参数:线路可靠系数K K =0.8~0.85 计算公式: )(21L L K DZ Z Z K Z +≤Ⅰ 变量注解:1L Z ――应该是截止到T 接点的线路正序阻抗。 2L Z ――应该是分支线路的正序阻抗。

段式电流保护的整定及计算

段式电流保护的整定及 计算 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM;

Xsmax —— 系统 最大 短路 阻 抗。 要求 最小 保护 范围 不得 低于 15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则:不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取;灵敏度校验: 规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备以及相邻线路或元件的远后备。动作电流按躲过最大负荷电流整定。 式中: KⅢrel——可靠系数,一般取~; Krel——电流继电器返回系数,一般取~;

Kss——电动机自起动系 数,一般取~;动作时间 按阶梯原则递推。 灵敏度分别按近后备和远 后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短 路电流。即:最小运行方式下,两相相间短路电 流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并校验其灵敏度。 解:(1)短路电流计算注意:短路电流计算值要注意归算至保护安装处电压等级,否则会出现错误;双侧甚至多侧电源网络中,应取流经保护的短路电流值;在有限系统中,短路电流数值会随时间衰减,整定计算及灵敏度校验时,精确计算应取相应时间处的短路电流数值。 B母线短路三相、两相最大和最小短路电流为: =1590(A)

kV变压器整定计算原则

110kV 变压器整定计算方案 差动保护 整定原则: 1. 差动速断电流:应按躲过变压器初始励磁涌流整定,推荐值如下: 6300kVA 及以下变压器: 7-12 Ie 6300-31500kVA 变压器: Ie 40000-120000 kVA 变压器: 3-6 Ie 120000 kVA 及以上变压器: 2-5 Ie 2. 差动动作电流:~ 3. 比率制动系数: 适用于制动电流为∑== m i Ii Ir 121、{}l I h I Ir &&&,m I ,=和复式比例制动(ISA 系列)。 若制动电流{} l I h I Ir &&&,m I ,=可选择,制动电流不能只取负荷侧电流(区外短路故障时差动保护可靠性降低)。 若制动电流计算方法有别于常规,制动系数取值需结合实际,并参考厂家建议整定。 4. 二次谐波制动系数: 建议取 5. TA 断线闭锁差动保护:建议 TA 断线或短路且差流小于时闭锁差动保护,大于时不闭锁 差动保护。若无上述区域选择,CT 断线建议不闭锁差动保护。 6. 差流越限告警(TA 断线报警):取。 7. 差动保护TA 断线若采用负序电流判据,建议取。 8. 若110kV 站变压器为双变低,且其中一分支暂不接入时,该分支差动保护CT 变比调整 系数仍按实际整定,不取装置最小值。 整定方案: 1. 不带时限动作于跳主变各侧。 2. 保护动作不闭锁备自投。(不要) 后备保护 整定原则: 1. 110kV 过电流保护 可选择经复压闭锁或不经复压闭锁 a 经复压闭锁: 按躲负荷电流整定 IL=k K × IHe /f K ×Nct k K = zqd K = f K 电磁型取,微机型取 b 不经复压闭锁: 考虑躲备自投动作后变压器可能的最大负荷电流: IL=k K ×zqd K × IHe /f K ×Nct k K = f K 电磁型取,微机型取

10KV继电保护整定计算

继电保护整定计算 一、10KV 母线短路电抗 已知10母线短路参数:最大运行方式时,短路容量为MVA S d 157 )3((max)1.=,短路电流为KA U S I e d d 0647.91031573)3((max)1.)3((max)1.=?=?=,最小运行方式时,短路容量为 MVA S d 134) 3((min)1.=,短路电流为KA U S I e d d 7367.71031343)3((min)1.) 3((min)1.=?=?=,则 KA I I d d 77367.7866.0866.0)3((min)1.)2((min)1.=?==。 取全系统的基准功率为MVA S j 100=,10KV 基准电压KV U j 5.101.=,基准电流为KA U S I j j j 4986.55.10310031 .1.=?=?=;380V 的基准电压KV U j 4.02.=,基准电流是KA U S I j j j 3418.1444.0310032.2.=?=?= 二、1600KV A 动力变压器的整定计算(1#变压器, 2#变压器) 已知动力变压器量MVA S e 6.1=,KV 4.010,高压侧额定电流 A U S I H e e H e 38.9210316003..=?=?=,低压侧额定电流 A U S I L e e L e 47.23094.0316003..=?=?=,变压器短路电压百分比%5.4%=s V , 电流CT 变比305 150==l n ,低压零序电流CT 变比0n 。变压器高压侧首端最小运行方式下两相断路电流为KA I d 38.6)2((min)2.= 1、最小运行方式下低压侧两相短路时流过高压的短路电流 折算到高压侧A I d 1300 )`2((min)3.= 2、最大运行方式下低压侧三相短路时流过高压的短路电流 折算到高压侧A I d 1500 )`3((max)3.= 3、高压侧电流速断保护

继电保护整定计算例题

如下图所示网络中采用三段式相间距离保护为相间短路保护。已知线路每公里阻抗Z 1=km /Ω,线路阻抗角?=651?,线路AB 及线路BC 的最大负荷 电流I m ax .L =400A ,功率因数cos ?=。K I rel =K ∏rel =,K I ∏ rel =,K ss =2,K res =,电源 电动势E=115kV ,系统阻抗为X max .sA =10Ω,X min .sA =8Ω,X max .sB =30Ω,X min .sB =15Ω;变压器采用能保护整个变压器的无时限纵差保护;t ?=。归算至115kV 的变压器阻抗为Ω,其余参数如图所示。当各距离保护测量元件均采用方向阻抗继电器时,求距离保护1的I ∏∏I 、、段的一次动作阻抗及整定时限,并校 验I ∏∏、段灵敏度。(要求∏sen ≥;作为本线路的近后备保护时,I ∏sen ≥;作为相邻下一线路远后备时,I ∏sen ≥) 解:(1)距离保护1第I 段的整定。 1) 整定阻抗。 11.Z L K Z B A rel set -I I ==Ω=??6.94.0308.0 2)动作时间:s t 01=I 。 (2)距离保护1第∏段的整定。 1)整定阻抗:保护1 的相邻元件为BC 线和并联运行的两台变压器,所以 ∏段整定阻抗按下列两个条件选择。

a )与保护3的第I 段配合。 I -∏∏+=3.min .11.(set b B A rel set Z K Z L K Z ) 其中, Ω=??==-I I 16.124.0388.013.Z L K Z C B rel set ; min .b K 为保护3 的I 段末端发生短路时对保护1而言的最小分支系数(见图 4-15)。 当保护3的I 段末端K 1点短路时,分支系数为sB AB sB sA b X X X X I I K ++==12 (4-3) 分析式(4-3)可看出,为了得出最小分支系数,式中SA X 应取最小值min .SA X ;而SB X 应取最大值max .SB X 。因而 max .min .min .1sB AB sA b X Z X K ++ ==1+30 30 4.08?+= 则 Ω=?+??=∏ 817.25)16.12667.14.030(8.01.set Z b )与母线B 上所连接的降压变压器的无时限纵差保护相配合,变压器保护范围直至低压母线E 上。由于两台变压器并列运行,所以将两台变压器作为一个整体考虑,分支系数的计算方法和结果同a )。 ?? ? ??+=-∏∏2min .1t b B A rel set Z K Z L K Z =Ω=? +??078.66)27.84667.14.030(8.0 为了保证选择性,选a )和b )的较小值。所以保护1第 ∏段动作阻抗为

电动机综合保护整定原则

电动机综合保护整定原则 一、过热保护 过热保护涉及发热时间常数Tfr和散热时间Tsr二个定值。 1)发热时间常数Tfr 发热时间常数Tfr应由电动机制造厂提供,若制造厂没有提供该值,则可按下列方法之一进行估算。 A 由制造厂提供的电动机过负荷能力数据进行估算 如在X倍过负荷时允许运行t秒,则可得, Tfr =(X2-1.052)t 若有若干组过负荷能力数据,则取算出得Tfr值中最小者。 B 若已知电动机的温升值和电流密度,可用下式估算Tfr值: Tfr =(150×θe)×(θM /θe -1)/(1.05×Je2) 式中,θe:电动机定子绕组额定温升 θM:电动机所采用绝缘材料的极限温升 Je :定子绕组额定电流密度 例如:电动机采用B级绝缘,其极限温升θM =80℃,电动机定子绕组额定温升θe =45℃,定子绕组额定电流密度Je =3.5A/mm2,则: Tfr ={(150×45)/(1.05×3.52)}×(80/45-1)=408(s) C 由电动机启动电流下的定子温升决定发热时间常数 Tfr =(θ×Ist2×Ist)/θ1st 式中,θ:电动机额定连续运行时的稳定温升 Ist :电动机启动电流倍数 tst :电动机启动时间 θ1st:电动机启动时间的定子绕组温升 D 根据电动机运行规程估算Tfr值 例如:某电动机规定从冷态启动到满转速的连续启动次数不超过两次,又已知该电动机的启动电流倍数Ist和启动时间tst,则:

Tfr ≤2(Ist2-1.052)tst 2) 散热时间Tsr 按电动机过热后冷却至常态所需时间整定。 二、电动机过热禁止再启动保护 过热闭锁值θb按电动机再正常启动成功为原则整定,一般可取θb=0.5。 三、长启动保护 长启动保护涉及电动机额定启动电流Iqde 和电动机允许堵转时间tyd 二个定值。 1)电动机额定启动电流Iqde 取电动机再额定工况下启动时的启动电流(A)。 2)电动机允许堵转时间tyd 取电动机最长安全堵转时间(S)。 四、正序过流保护 正序过流保护涉及正序过流动作电流I1g1 和正序过流动作时间t1g1二个定值。 1)正序过流动作电流I1gl 一般可取I1gl=(1.5~2.0)Ie 2)正序过流动作时间t1gl 一般可取t1gl=(1.5~2.0)tyd 五、低电压保护 1)按切除不重要电动机的条件整定 低电压动作值: 对中温中压电厂Udz=60~65% Ue 对高温高压电厂Udz=65~70% 为了保护重要电动机的自起动,采用最小时限t=0.5S 2) 按躲过保证电动机自起动时供电母线的最小允许电压,并计入可靠系数及电压继电器的返回系数

距离保护整定计算

本科毕业设计(论 文) 继电保护整定计算的分析与研究 —距离保护整定计算 指导老师 学号 二O一二年六月 中国南京

摘要 继电保护是电力系统安全运行的防护线,继电保护的整定计算是继电保护装置正确动作的关键。随着电力系统的快速发展,电力系统的网络构成日趋复杂,继电保护的整定也越来越复杂,而且更费时费力,也更容易出错。规范继电保护整定计算,提高继电保护整定计算水平对于减少设备事故或杜绝事故的发生具有深刻的意义。如果能成功编制一款软件,该软件能够在各种各样的系统运行方式下,根据整定原则计算出继电保护装置的整定值,使装置正确动作,那么将很大程度上减少工作人员的工作量,使工作效率大大提高。 本文以三段式距离保护为例,介绍了如何利用软件开发工具Matlab编制三段式距离保护软件。主要使用了Matlab的GUI(图形用户界面)功能将距离保护整定计算划分成五个模块。用户通过这些模块的提示,能准确快速地计算出整个网络的继电保护装置的整定值,并且用户还可以根据系统运行方式的变化修改整定计算算法,使整定值能够适用于多种不同的运行方式,实现了整定计算过程的自动化和智能化。 【关键词】继电保护距离保护整定计算 Matlab

Abstract Relay protection is the line of defenceof safetyoperation of the power system.Settingcalculation of relayprotection is the key to the right action of relay protection devices. With the development of power system, powersystem network isbecoming moreand more complex, the rel ay protection is becomingmore and more complex, and more time-consuming and laborious, but alsomore prone to e rror.Specification for and raise the level of setting calculation of relay protectionhas profound significance on the reduction of equipment accident and avoiding the happeningof accidents.If we can successfully develop a piece ofsoftware,the software can calculatethe setting values in various operating mode of the system accordi ng to the principles of setting calculation of relay protection device setting value, so that the relay protec tion deviceswill act correctly.Itwill greatly r educe the workload of staff, greatly improvethe work efficiency. The paper takesthree sections distance protection f or an example andintroduceshow to programe the thr ee sections distance protectionwith the software developing tool--Matlab. The setting calculation of distance protection is divided into five modules by thhe main function of Matlab--GUI (graphical user interface ). Through these modules tips, users can accurately and quicklycalculate the relay protection device setting values of t he entire network, and the users can alsochangethe

相关主题
文本预览
相关文档 最新文档