当前位置:文档之家› 电视节目中录音电平的标准与调控

电视节目中录音电平的标准与调控

电视节目中录音电平的标准与调控
电视节目中录音电平的标准与调控

电视节目中录音电平的标准与调控

2011-6-7 21:12|发布者: 浪涛|查看: 3799|评论: 1|原作者: 视觉印象

福建省广播影视集团东南卫视詹桂花

摘要:为了获得电视节目声音的最佳信噪比,充分保持原信号的动态范围,确保尽可能小的失真,在节目录制过程中掌握录音电平的标准、调整好录音电平是很重要的。本文就摄像机录音、演播室及配音间录音时如何调控电平作了阐述。

作为一名电视录音师,其目标是追求尽可能高的信噪比、尽可能低的失真度,让录制的节目能原汁原味地还原原始的声源。要实现这一目标,一方面要尽可能提高录音的电平以远离底噪声,另一方面又要精确地控制峰值以避免失真。过载失真表现为声音低音部分发紧、发闷,高音部分刺耳,并伴随“沙沙”的噪声。而录音电平过小也会影响录音质量,如在制作过程中对过小的声音作普遍提升,则背景噪声也会随之加大。因此,正确调控声音的录入电平具有重要的意义。

一、基本概念

在数字音频技术当中,有一个很重要的概念——数字满度电平(full scale digi tallevel),即数字音频设备中A/D(模拟/数字)或D/A(数字/模拟)转换器所能转换的最大不削波模拟信号电平。国家广电总局关于数字音频设备满度电平的规定为:0 dBFS对应模拟信号的+24dBu,因模拟信号采用+4dBu作为

0VU,故0vu对应-20dBFS。

1、满度相对电平(dBFS)

数字音频信号电平相对于满度电平的单位,简称为满度相对电平,单位为dBFS(dBFullScale)。单位中的FS(FullScale)表示此信号的数字编码相对于数字满度电平编码的分贝关系。数字音频信号的电平单位规定系统中A/D转换器能转换的最大不削波模拟信号电平为0 dBFS,因此,所有其他不削波正常的数字信号电平都小于0 dBFS,前面均应有负号,数字峰值表0 dBFS设置在仪表的最高位,即0 dBFS等于“满刻度”的数字音频参考电平,实际数字音频信号的满度相对电平均为负值。

2、电压电平(dBu)

以0.775V(有效值)为基准电压时的电压电平单位,表示为:dBu=20lg(v /0.775)。dBu的计算只考虑电压电平本身,而不考虑与相应的电功率电平之间的关系,不考虑阻抗是否为600Ω。dBu通常用来描述专业音频设备的输入输出电平。

3、音量单位表(Vu表)

Volume Unit Meter(音量单位表)用于测量声音信号强度(与人耳听感相关),其内部采用平均值检波器,是准平均值特性的表示,用稳态正弦波信号的有效值来确定刻度,刻度用对数和百分数表示,单位为vu,0vu对应于100%。其上升和下降时间都为300ms,对信号中的峰值信号不灵敏。

4、节目峰值表(PPM表)

Program Peak Meter(节目峰值表,又译为峰值节目表),用于测量节目信号中出现的复杂信号的准峰值,采用全波整流器(峰值检波器),按稳态正弦波信号的有效值确定刻度,积分响应时间分为I型和II型,I型为5ms,II型为10ms,返回时间较长,以便于操作者观察指示值。

大多专业的摄录设备都配有音量单位表,是对声音电平的指示,也是录音师处理声音时最重

要的参考基准,通常使用的是VU表及PPM表。

要避免将数字机上的峰值音量表与普通的VU表相混淆,两者除了仪表刻度不同外,VU 表具有远慢于数字峰值表的响应时间性能。当一个信号加上去时,VU表的指针不会马上达到OdB,大约要花360ms时间,上升时间为300ms左右。而要把信号取消掉大约也要花近300ms才能回到原先静止的位置。如信号的持续时间较短,VU表是没有能力把这一信号指示出来的。而峰值表则几乎能指示真正的峰值信号,这一点峰值表要比VU表好。但人的耳朵对声音的响应更多地接近VU的响应特点而不是峰值表的响应。如果把峰值表和VU表摆在一起,就要考虑峰值表的动作快、VU表的动作慢。当峰值表的读数为0dB时,VU表的读数应为-6dB。同理,如将VU表指示到odB时,一定会超过峰值表的+6dB或更高一点,这一点在录音过程中是必须注意的。

二、电平标准

中国电视行业规定,制作播出带时每声道(包括CH1、CH2)的电平标准为:

1、节目声音的平均电平(即V u表指示),语言类节目在-7至-3vu间,瞬间最大值不超过0vu,音乐类节目在-7至0vu间,瞬间最大不超过+3vu。

2、节目声音的峰值电平(即PPM表指示),语言类节目≤0PPU、音乐类节目≤+5PPU。

3、数字音频节目电平(数字峰值表),语言类节目≤-10dBfs、音乐类节目≤-5dBfs。

三、声音录入过程中的电平控制

通常的声音采录方式有外出时的摄像机录音、室内演播室、配音间的录音等。以下就声音录入过程中电平控制需注意的问题作简要介绍。

1、演播室、配音间录音

演播室、配音间的录音都要经过调音台,而调音台作为信号输入的初始设备,要使其做到在电平不过载的前提下电平尽量地大。要做到这一点,首先要调整调音台上信号输入轨的增益电平,挑选所输入信号强度最大的一段作为测试,要使输入电平的峰值接近但不突破0db。然后就是输出电平的调整,由于输入电平作了调整,输出电平衰减器(也就是信号输入那一轨的推子)保持在刻度0的位置即可。

调音台的电平指示比较明显:一般情况是声音幅度在临界点以下电平指示灯是绿色灯,在临界点以上是黄色灯,告警则是红色灯。在传声器试音量时,声音一般不要超过临界点,更不能到达红色区域,否则会造成因录入电平过大而产生过载失真。调试时禁止用吹气或拍打传声器头的方式来测试,传声器内都有振动膜,对声音在空气中的轻微振动能产生感应,而拍打传声器头的剧烈振动,会造成传声器机械性的损坏。

需注意的是,如在调音台上声音已失真,那么在以后的录制和编辑过程中不管如何调节都不可能消除失真现象。调音台电平调整好后即可调节录像机或录制工作站的录音电平。

东南卫视现有的录像机是SONYDVW-m2000、DVW-2000等,其音频表最大刻度为0db,最小刻度为负无穷。根据行业标准,节目电平最大值不超过-5db(通常节目电平在-9db以下),语言电平不超过-10db。为安全起见,声音电平最好控制在-10db至-18db之间。

2、摄像机录音

摄像机录音音量控制有以下两种方式:

(1)手动电平控制方式

录音前在摄像机上将电平控制选择开关打到手动(MANU)挡,根据摄像机音量表的指示,通过调节录入电平控制旋钮,对声音的强弱进行控制。摄像机型号不同,电平表刻度也不一样。SONY MSW-930P、DNW-9WSP等型号的广播级专业摄像机VU表的最小刻度为-20V u,最高刻度值为+3VU。0VU是过载临界点,录音时信号电平一般不能超过0VU,超过0VU甚至达到+3VU以上,就可能损害音质。而DVCAM类摄像机电平表的最小刻度为负无穷、最大刻度为0dB,-20dB是过载临界点,录音时信号电平一般不能超过-20dB,超

过了-20dB甚至达到0dB就会造成声音失真。

声音调试时对着传声器,以适当的距离讲几句话进行电平调整。把大音量时的录入信号控制在临界点左右,完成采录前的录音电平调试和传声器测试。一旦确定了电平控制旋钮的位置,在录音过程中就不要再做大的调整。

(2)自动电平控制方式

自动控制是利用电路以非常快的反应速度来控制电平,当声音音量过大时会被自动压小,而音量过小时又被自动放大。采用自动控制的好处是不会因外界声音音量的大幅度变化而影响录音质量。但其缺陷是破坏了声音音量起伏的原貌、破坏了声音的空间感。而且,用这种方式录语言声,每当说话停顿时,录音设备就会把环境噪声当作录音信号自动加以放大,造成句子与句子之间的“沙沙”声,就像一种喘息的效果。这些都违反了录音技术要求,因此,一般情况下不宜采用自动控制方式录制同期声。

在摄像机录制节目的过程中应尽量带上耳机全程同步监听,条件不允许时也要做到定时监听,并注意音频表指示是否异常。

四、语言录音与音乐录音

在录音时还要注意到语言与音乐录音在电平表上表现的不同。在语言录音时,VU表针平均值可达40%~60%,偶尔可到Ovu位置,而录音乐时表针常集中在Ovu附近。从语言的波形来看,语言的波形平均音量要小些,音乐的波形平均音量要大些。因为语言与音乐的响度不同,而音量表不是响度表,有好多声音只能通过耳朵去鉴别。只有通过实际的试验,找到音乐录音和语言录音的音量平衡。语言播音的话筒距离普遍要比音乐的距离近得多,而如果声音集中在声频频带中部的范围内,这也是人耳最敏感的区域。所以,在VU表针指示在同等的位置上时,语言的声音响度听起来就要比音乐大得多。

五、结语

在节目制作过程中,为确保声音有较高的信噪比而又不过载失真,应认真监看音频电平表的指示,使音量既不过低又不过高,掌握好录音音量,使其符合行业标准,不允许有听得出的失真。

常用电平及接口电平

常用电平及接口电平

目录 一.常用逻辑电平标准 (3) 1.1 COMS电平 (4) 1.2 LVCOMS电平 (5) 2.1 TTL电平 (5) 2.2 LVTTL电平 (5) 3.1 LVDS电平 (6) 4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平 (7) 5.1 CML电平 (7) 6.1 VML电平 (7) 7.1 HSTL电平 (8) 7.2 SSTL电平 (8) 二.常用接口电平标准 (9) 1. RS232、RS485、 RS422 (9) 2 DDR1 ,DDR2,DDR3 (10) 3 PCIE2. 0、PCIE3.0 (11) 4 USB2.0, USB3.0 (13) 5 SATA2.0, SATA3.0 (14) 6 GTX高速接口 (14)

一.常用逻辑电平标准 附图1: 附图2:

附图3: 附图4: 1.1 COMS电平 电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V 输入高压(VIH) 3.5 V 输入低压(VIL) 1.5 V 输出高压(VOH) 4.44 V 输出低压(VOL)0.5 V 共模电压(VT) 2.5 V

传输延迟时间(25-50ns) 最高速率 耦合方式 1.2 LVCOMS电平 LVCOMS电平参数条件最大值典型值最小值单位备注电源电压(VCC) 3.6 3.3 2.7 V 输入高压(VIH)0.7VCC V 输入低压(VIL) 0.2VCC V 输出高压(VOH) VCC-0.1 V 输出低压(VOL)0.1 V 共模电压(VT)0.5VCC V 最高速率 耦合方式 2.1 TTL电平 电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V 输入高压(VIH) 2 V 输入低压(VIL) 0.8 V 输出高压(VOH) 2.4 V 输出低压(VOL)0.5 V 共模电压(VT) 1.5 V 传输延迟时间(5-10ns), 最高速率 耦合方式 2.2 LVTTL电平 电平参数条件最大值典型值最小值单位备注

电平标准

一些电平标准 下面总结一下各电平标准,和新手以及有需要的人共享一下^_^. 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。 3.3V LVCMOS: Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。 2.5V LVCMOS: Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。 CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。 ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构) Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。 速度快,驱动能力强,噪声小,很容易达到几百M的应用。但是功耗大,需要负电源。为简化电源,出现了PECL(ECL结构,改用正电压供电)和LVPECL。 PECL:Pseudo/Positive ECL Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V LVPELC:Low Voltage PECL

CMOS TTL电平标准

TTL电平和CMOS电平总结 1,TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。2,CMOS电平: 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。 3,电平转换电路: 因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换 4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。 5,TTL和COMS电路比较: 1)TTL电路是电流控制器件,而coms电路是电压控制器件。 2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。 3)COMS电路的锁定效应: COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。 防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过规定电压。 2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。 3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。 4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS 电路的电源。 6,COMS电路的使用注意事项 1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。 2)输入端接低内阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。 3)当接长信号传输线时,在COMS电路端接匹配电阻。 4)当输入端接大电容时,应该在输入端和电容间接保护电阻。电阻值为R=V0/1mA.V0是外界电容上的电压。 5)COMS的输入电流超过1mA,就有可能烧坏COMS。 7,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理): 1)悬空时相当于输入端接高电平。因为这时可以看作是输入端接一个无穷大的电阻。 2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。这个一定要注意。COMS门电路就不用考虑这些了。 8,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出

RS232、RS485、RS422电平-及常见逻辑电平标准

RS232、RS485、RS422电平,及常见逻辑电平标准 RS232电平或者说串口电平,有的甚至说计算机电平,所有的这些说法,指得都是计算机9针串口(RS232)的电平,采用负逻辑, -15v ~ -3v 代表1 +3v ~ +15v 代表0 RS485电平和RS422电平由于两者均采用差分传输(平衡传输)的方式,所以他们的电平方式,一般有两个引脚 A,B 发送端 AB间的电压差 +2 ~+6v 1 -2 ~-6v 0 接收端 AB间的电压差 大于+200mv 1 小于-200mv 0 定义逻辑1为B>A的状态 定义逻辑0为A>B的状态 AB之间的电压差不小于200mv 一对一的接头的情况下 RS232 可做到双向传输,全双工通讯最高传输速率 20kbps 422 只能做到单向传输,半双工通讯,最高传输速率10Mbps 485 双向传输,半双工通讯, 最高传输速率10Mbps

常见逻辑电平标准 下面总结一下各电平标准。和新手以及有需要的人共享一下^_^. 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的 LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。 3.3V LVCMOS: Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。 2.5V LVCMOS: Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。 CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。

华为逻辑电平接口设计规范

Q/DKBA 深圳市华为技术有限公司技术规范 错误!未定义书签。Q/DKBA0.200.035-2000 逻辑电平接口设计规范

2000-06-20发布 2000-06-20实施深圳市华为技术有限公司发布

本规范起草单位:各业务部、研究技术管理处硬件工程室。 本规范主要起草人如下:赵光耀、钱民、蔡常天、容庆安、朱志明,方光祥、王云飞。 在规范的起草过程中,李东原、陈卫中、梅泽良、邢小昱、李德、梁军、何其慧、甘云慧等提出了很好的建议。在此,表示感谢! 本规范批准人:周代琪 本规范解释权属于华为技术有限公司研究技术管理处硬件工程室。 本规范修改记录:

目录 1、目的 5 2、范围 5 3、名词定义 5 4、引用标准和参考资料 6 5、TTL器件和CMOS器件的逻辑电平8 5.1:逻辑电平的一些概念8 5.2:常用的逻辑电平9 5.3:TTL和CMOS器件的原理和输入输出特 性9 5.4:TTL和CMOS的逻辑电平关系10 6、TTL和CMOS逻辑器件12 6.1:TTL和CMOS器件的功能分类12 6.2:TTL和MOS逻辑器件的工艺分类特点13 6.3:TTL和CMOS逻辑器件的电平分类特点13 6.4:包含特殊功能的逻辑器件14 6.5:TTL和CMOS逻辑器件的选择15 6.6:逻辑器件的使用指南15 7、TTL、CMOS器件的互连17 7.1:器件的互连总则17 7.2:5V TTL门作驱动源20 7.3:3.3V TTL/CMOS门作驱动源20 7.4:5V CMOS门作驱动源20 7.5:2.5V CMOS逻辑电平的互连20 8、EPLD和FPGA器件的逻辑电平21 8.1:概述21 8.2:各类可编程器件接口电平要求21 8.3:各类可编程器件接口电平要求21 8.3.1:EPLD/CPLD的接口电平21 8.3.2:FPGA接口电平25 9、ECL器件的原理和特点35 9.1:ECL器件的原理35 9.2:ECL电路的特性36 9.3:PECL/LVPECL器件的原理和特点37 9.4:ECL器件的互连38 9.4.1:ECL器件和TTL器件的互连38 9.4.2:ECL器件和其他器件的互连39 9.5:ECL器件的匹配方式39 9.6:ECL器件的使用举例41 9.6.1:SYS100E111的设计41 9.6.2:SY100E57的设计42 9.1:ECL电路的器件选择43 9.2:ECL器件的使用原则43

几种常用逻辑电平电路的特点及应用

几种常用逻辑电平电路的特点及应用 2007-08-13 来源: 作者: LVDS(Low Voltage Differential Signal)低电压差分信号、ECL(EmitterCoupled Logic)即射极耦合逻辑、CML电平等各种逻辑电平的特点以及接口应用。 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 1 几种常用高速逻辑电平 1.1LVDS电平 LVDS(Low V oltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。 LVDS的典型工作原理如图1所示。最基本的LVDS器件就是LVDS驱动器和接收器。LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。LVDS 接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。 图1LVDS驱动器与接收器互连示意 LVDS技术在两个标准中被定义:ANSI/TIA/EIA644 (1995年11月通过)和IEEE P1596.3 (1996年3月通过)。这两个标准中都着重定义了LVDS的电特性,包括:①低摆幅(约为350 mV)。低电流驱动模式意味着可实现高速传输。ANSI/TIA/EIA644建议了655 Mb/s的最大速率和1.923 Gb/s的无失真通道上的理论极限速率。 ②低压摆幅。恒流源电流驱动,把输出电流限制到约为3.5 mA左右,使跳变期间的尖峰干扰最小,因而产生的功耗非常小。这允许集成电路密度的进一步提高,即提高了PCB板的效能,减少了成本。 ③具有相对较慢的边缘速率(dV/dt约为0.300 V/0.3 ns,即为1 V/ns),同时采用差

各种逻辑电平标准

各种逻辑电平标准 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 5V TTL和5V CMOS逻辑电平是通用的逻辑电平。·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。·低电压的逻辑电平还有2.5V和1.8V两种。·ECL/PECL和LVDS是差分输入输出。·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入 常用电平标准 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL 等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

常用逻辑电平标准总结归纳

常见逻辑电平标准 下面总结一下各电平标准。和新手以及有需要的人共享一下^_^. 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的 LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。 3.3V LVCMOS: Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。 2.5V LVCMOS: Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。 CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。 ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构) Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。

常用逻辑电平简介讲解学习

常用逻辑电平简介(转载) 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,

文艺汇演的评分标准

初中部元旦文艺汇演节目评分标准

说明:1.每个节目满分100分。内容取材20分;舞台风度20分;表演艺术水平50分;综合评价10分。 2.各评委根据评分标准,公正、客观地评出各参赛者得分。 元旦文艺汇演节目评分标准 评委签名:年月日

元旦文艺汇演节目评分细则 一、内容取材 (20分) 1.内容健康、主题鲜明,积极向上,具有一定的教育意义。(10分) 2.创意新颖,能展现新时代小学生的精神风貌。(10分) 二、舞台风度 (20分) 1.演出服装统一整洁大方,姿态优美,流露出艺术气质,营造出良好的舞台效果。(10分) 2.精神饱满,朝气蓬勃,出、退场从容大方,干净利索,体现文明礼仪,(10分) 三、表演艺术水平(50分) (一)声乐类(50分) 1.音色明亮、纯净,吐字清晰,音准与音高无误,节奏恰当,气息自然、流畅。(20分) 2.歌曲演唱完整流畅,表现力丰富,能表现歌曲内涵,有感染力,能给人以美的感受。(20分) 3.歌伴舞表演自然,声情并茂,把握对乐曲旋律及歌词的理解,演绎歌曲的内涵。(10分) (二)舞蹈类(50分) 1.对舞曲音乐的理解准确,舞蹈动作吻合音乐旋律,富有节奏感。(20分) 2.动作流畅协调,整齐优美、展示出稳定性、柔韧性、灵活性,表现力和技巧性强。(20分) 3.舞蹈表演具有时代感、抒发健康情怀,内涵表现的饱满、流畅,展示小学生风采。(10分)

(三)诗歌朗诵类(50分) 1.吐字清晰,普通话标准,正确把握诗歌节奏。朗诵熟练,声音洪亮,能够脱稿。(20分) 2.感情饱满真挚,表达自然,声情并茂,朗诵富有韵味和表现力,能与观众产生共鸣(20分) 3.能通过表情的变化反映诗歌的内涵,形式富有创意,伴歌或伴舞与诗歌朗诵协调。(10分) (四)曲艺小品类(50分) 1. 表演投入,语言诙谐幽默,通俗易懂,多人配合默契,能调动观众观看热情。(20分) 2.神情并貌,道具逼真,人物语言富有个性,形象饱满生动,能表现题材的内涵。(20分) 3.表情自然,动作配合恰到好处,口齿清晰。台风好,能面对观众,情节衔接得当。(10分) (五)器乐演奏类(50分) 1.演奏技法熟练,演奏连贯流畅,艺术表现力强。(20分) 2.乐曲风格把握准确,音乐表现生动、形象。(20分) 3.对作品有较强的理解力,对作品的诠释得当到位,使人产生共鸣。(10分) (六)跆拳道(50分) 1.表演过程中各品势动作正确、流畅协调,表现力和技巧性强。(20分) 2.身体协调能力强;能很好地与人合作,表演力要求刚柔、缓急、节奏和气势正确。(20分) 3.动作吻合音乐旋律,符有节奏感,营造出一个良好的舞台效果。(10分) 四、综合评价(10分) 1.以上各项整体结构合理,整体布局较佳者(5分) 2.节目内容具有一定深度和内涵,现场气氛驾驭能力,能积极与观众进行情感交流。(5分) 说明:1.各评委根据评分标准,公正、客观地评出各参赛者得分。 2.去掉一个最高分,去掉一个最低分,取平均分为最后得分。 元旦文艺汇演节目评分表

RSRSRS电平及常见逻辑电平标准

R S232、R S485、R S422电平,及常见逻辑电平标准 RS232电平或者说串口电平,有的甚至说计算机电平,所有的这些说法,指得都是计算机9针串口(RS232)的电平,采用负逻辑, -15v ~ -3v 代表1 +3v ~ +15v 代表0 RS485电平和RS422电平由于两者均采用差分传输(平衡传输)的方式,所以他们的电平方式,一般有两个引脚 A,B 发送端 AB间的电压差 +2 ~+6v 1 -2 ~-6v 0 接收端 AB间的电压差 大于+200mv 1 小于-200mv 0 定义逻辑1为B>A的状态 定义逻辑0为A>B的状态 AB之间的电压差不小于200mv 一对一的接头的情况下 RS232 可做到双向传输,全双工通讯最高传输速率 20kbps 422 只能做到单向传输,半双工通讯,最高传输速率10Mbps 485 双向传输,半双工通讯, 最高传输速率10Mbps

常见逻辑电平标准 下面总结一下各电平标准。和新手以及有需要的人共享一下^_^. 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的 LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电 阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。

常用电平标准的讨论(TTL,ECL,PECL,LVDS,CMOS,CML,GTL,HSTL,SSTL)

常用电平标准的讨论 (TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL) 部分资料上说它们的逻辑标准,门限都是一样的,就是供电大小不同,这两种电平 的区别就是这些么? 是否LVTTL电平无法直接驱动TTL电路呢? 另外,"因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。" 中,关于改善噪声容限和系统功耗部分大家还有更深入的解释么? 简单列个表把 Voh Vol Vih Vil Vcc TTL 2.4 0.4 2.0 0.8 5 CMOS 4.44 0.5 3.5 1.5 5 LVTTL 2.4 0.4 2.0 0.8 3.3 LVCMOS 2.4 0.5 2.0 0.8 3.3 SSTL_2 1.82 0.68 1.43 1.07 2.5 根据上表所示,LVTTL可以驱动TTL,至于噪声,功耗问题小弟就不理解了,希望高手赐教! TTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成 为LVTTL. LVTTL TTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成 为LVTTL. ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。 ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为 2.0V ),当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是 ECL电路具有高开关速度的重要原因。但逻辑摆幅小,对抗干扰能力不利。

现场表演评分细则

现场表演评分细则 现场表演是现在学校、公司都十分流行的活动。下文是现场表演评分细则,欢迎阅读! 1、班歌比赛评分标准 a.参赛曲目内容健康,曲风积极向上;(2分) b.吐字清晰,歌词准确,音色优美,能准确把握住歌曲节奏;(2分) c.演唱完整,富有感情,观众反响好;(2分) d.视歌曲难度,酌情给分;(2分) e.着装得体,举止大方;(2分) 2、文艺节目比赛评分标准 (1)主题内容:1分主题鲜明,内容健康。爱党爱国,爱校爱家,反映当代中学生蓬勃向上的精神风貌。 (2)表演形式:2分节目的选择与确定体现与众不同,具有新颖性,富有创新和个性。 (3)表演艺术4分表演娴熟自如,吐字清晰,动作规范。 (4)服装、化妆:1分服饰整齐大方,化妆得体。 (5)表情演绎:1分表情自然,不矫揉造作,活泼愉快。 (6)总体印象:1分包括参与面大小,上台、退台速度及秩序节 目衔接适当,道具选择及使用恰当等, 3、注意事项 a.评委根据“评分标准”综合评分。

b.评分采用十分计分制,去掉一个最高分,去掉一个最低分,取剩余得分的平均成绩为该选手最终得分。 c.计算分数时精确到小数点后一位。 d.参赛选手需要伴奏的到付老师处上交音乐伴奏文件,独唱、合唱伴奏必须消除原唱,未消除者视为作弊。 一、评分形式 1、打分。比赛以100.00分制打分,精确到小数点后两位,选手得分取平均分。统分时去掉一个最高分,去掉一个最低分,在排名时,若得分相同,则并列排名。 2、开始评分。前两个节目先不评分,待第三个节目完毕后,一 起评分。从第四个节目开始,每个节目都是在节目完毕后及时评分。 二、具体评分标准 内容形式(15分)节目内容健康、积极向上,形式与主题相符。 形象包装(10分)服装美观大方,造型符合表演主题,舞台效果好。 舞台形象(15分)舞台形象自然大方,精神面貌好,无扭捏感,无偏 台现象。 节目效果(60分)(分舞蹈和小品) 舞蹈类: 1、舞蹈整体编排具有合理性、连贯性、完整性,动作流畅。(30分) 2、舞蹈动作吻合音乐旋律,符有节奏感,整体表演动作处理得当,富于变化,队形变化多样,整体效果好,给人以美感,现场反 映良好。(30分)小品类: 1、表演流畅,表演者能准确、熟练的把握表演的内容,合理的 运用道具,合理的演绎主题。(30分) 2、表演的整体感强,与音乐背景或其他人物配合默契,完整、 准确的演绎出其内涵,舞台表现力好,现场反应强烈。(30分)

电平标准分类

电平标准分类 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(V oh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此V oh。 4:输出低电平(V ol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此V ol。 5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平 Vih > Vt > Vil > V ol。 6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。 7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。 8:Iih:逻辑门输入为高电平时的电流(为灌电流)。 9:Iil:逻辑门输入为低电平时的电流(为拉电流)。 门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件: (1):RL < (VCC-V oh)/(n*Ioh+m*Iih) (2):RL > (VCC-V ol)/(Iol+m*Iil) 其中n:线与的开路门数;m:被驱动的输入端数。 :常用的逻辑电平 ·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。 ·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。 ·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。 ·低电压的逻辑电平还有2.5V和1.8V两种。 ·ECL/PECL和LVDS是差分输入输出。 ·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。 一个有关于电压的标准 相对于内存而言 DDR内存采用的是支持2.5V电压的SSTL2标准

各种逻辑电平介绍

1X9非对称: 应用领域: 视频光端机,各类光纤监控系统。 视频信号(高速)采用PECL电平,控制信号84M以下(低速)采用TTL电平,155M以上采用PECL 电平 ECL电路是射极耦合逻辑,ECL电路的最大 优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数 量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。 各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML.......)已有 601 次阅读2008-9-24 14:30|个人分类:网摘-技术活儿 ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路 不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL 电路的最大 优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数 量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。 ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为 2.0V ),当 电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是 ECL电路具有高开关速度的重要原因。但逻辑摆幅小,对抗干扰能力不利。 由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所

以单元电路的功耗较大。 从电路的逻辑功能来看, ECL 集成电路具有互补的输出,这意味着同时可以获 得两种逻辑电平输出,这将大大简化逻辑系统的设计。 ECL集成电路的开关管对的发射极具有很大的反馈电阻,又是射极跟随器输出, 故这种电路具有很高的输入阻抗和低的输出阻抗。射极跟随器输出同时还具有对逻 辑信号的缓冲作用。 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 1 几种常用高速逻辑电平 1.1LVDS电平 LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS 接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。 LVDS的典型工作原理如图1所示。最基本的LVDS器件就是LVDS驱动器和接收器。LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。

FPGA常用电平标准

1.0 常用的电平标准有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还 有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。各自的供电电源、电平标准以及使用注意事项: 1.1 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会 影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 1.2 LVTTL又分3.3V、 2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意: A.> TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; B.> TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。 C.> TTL输出不能驱动CMOS输入。 1.3 CMOS:Complementary Metal Oxide Semiconductor PMOS NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS ,可以与3.3V的LVTTL直接相互驱动。 3.3V LVCMOS:Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。 2.5V LVCMOS:Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。 CMOS使用注意: A. CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是 0.7V )时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。 1.4 ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构) Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。 速度快,驱动能力强,噪声小,很容易达到几百M的应用。但是功耗大,需要负电源。为简化电源 ,出现了PECL(ECL结构,改用正电压供电)和LVPECL。 PECL:Pseudo/Positive ECL ,Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V LVPELC:Low Voltage PECL,Vcc=3.3V;VOH=2.42V;VOL=1.58V;VIH=2.06V;VIL=1.94V ECL、PECL、LVPECL使用注意:不同电平不能直接驱动。中间可用交流耦合、电阻网络或专用芯片 进行转换。以上三种均为射随输出结构,必须有电阻拉到一个直流偏置电压。(如多用于时钟的LVPECL: 直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉。但两种 方式工作后直流电平都在1.95V左右。) 1.5 前面的电平标准摆幅都比较大,为降低电磁辐射,同时提高开关速度又推出LVDS电平标准。 LVDS:Low Voltage Differential Signaling 差分对输入输出,内部有一个恒流源3.5-4mA,在差分线上改变方向来表示0和1。通过外部的100欧 匹配电阻(并在差分线上靠近接收端)转换为±350mV的差分电平。 LVDS使用注意:可以达到600M以上,PCB要求较高,差分线要求严格等长,差最好不超过 10mil(0.25mm )。100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。 1.6 下面的电平用的可能不是很多,篇幅关系,只简单做一下介绍。

相关主题
文本预览
相关文档 最新文档