当前位置:文档之家› 常用GPS测量模式

常用GPS测量模式

常用GPS测量模式
常用GPS测量模式

常用GPS测量模式

随着GPS技术的进步和接收机的迅速发展,GPS在测量定位领域已得到了较为广泛的应用。但是,针对不同的领域和用户的不同要求,需要采用的具体测量方法是不一样的。一般来说,GPS测量模式可分为静态测量和动态测量两种模式,而静态测量模式又分常规静态测量模式和快速静态测量模式,动态测量模式分准动态测量模式(后处理动态,走走停停)和实时动态测量模式,实时动态测量模式分DGPS和RTK方式。下面分别介绍如下:

1、常规静态测量

这种模式采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。这种模式一般可以达到5mm十1ppm的相对定位精度。常规静态测量常用于建立全球性或国家级大地控制网,建立地壳运动监测网、建立长距离检校基线、进行岛屿与大陆联测、钻井定位及精密工程控制网建立等。

2、快速静态测量

这种模式是在一个已知测站上安置一台GPS接收机作为基

准站,连续跟踪所有可见卫星。移动站接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、工程测量、地籍测量等。需要注意的是这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。

3、准动态测量

这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个历元数据。这种方法不同于快速静态,除了观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF功能的软件处理时例外)。

这种模式可用于开阔地区的加密控制测量、工程定位及碎部测量、剖面测量及线路测量等。需要注意的是这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。

另外,有一种连续动态测量,也属于这种模式。这种测量是在一个基准点安置接收机连续跟踪所有可见卫星。流动接收机在初始化后开始连续运动,并按指定的时间间隔自动记录数据。这种方法常用于精密测定运动目标的轨迹、测定道路的中心线、剖

面测量、航道测量等。

4、实时动态测量:DGPS和RTK

前面讲述的测量方法都是在采集完数据后用特定的后处理软件进行处理,然后才能得到精度较高的测量结果。而实时动态测量则是实时得到高精度的测量结果。这种模式具体方法是:在一个已知测站上架设GPS基准站接收机和数据链,连续跟踪所有可见卫星,并通过数据链向移动站发送数据。移动站接收机通过移动站数据链接收基准站发射来的数据,并在机进行处理,从而实时得到移动站的高精度位置。

DGPS通常叫做实时差分测量,精度为亚米级到米级,这种方式是基准站将基准站上测量得到的RTCM数据通过数据链传输到移动站,移动站接收到RTCM数据后,自动进行解算,得到经差分改正以后的坐标。

RTK则是以载波相位观测量为根据的实时差分GPS测量,它是GPS测量技术发展中的一个新突破。它的工作思路与DGPS相似,只不过是基准站将观测数据发送到移动站(而不是发射RTCM数据),移动站接收机再采用更先进的在机处理方法进行处理,从而得到精度比DGPS高得多的实时测量结果。这种方法的精度一般为2厘米左右。

全球定位系统(GPS)在高速公路

测量中的应用

陈楚江

【交通部第二公路勘察设计院武汉430052】

摘要:本文简述了GPS测量技术的发展状态,并列出了GPS用于测量所具有特点,重点介绍了GPS测量用于公路测设中的国家大地点加密、隧道控制测量、特大桥控制测量、导线测量、航测像控点测量、密林密灌地区的路线控制测量、路线中桩实时放样测量、GPS测量与水准测量资料相结合进行高程控制测量的实际应用成果,最后对GPS测量作出了展望。

关键词:全球定位系统高速公漫测量应用

1 概述

1.1 GPS测量简介

全球定位系统(GPS)是美国国防部主要为满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而建立的。该系统从本世纪70年代初开始设计、研制。根据最初设计思想,利用接收卫星发射的伪随机噪声码(P码)为美军及北大西洋组织的盟军提供米级导航定位,同时将定位精度为数十米的C/A码伪距提供民用导航定位。

GPS作为新一代卫星导航与定位系统,不仅具有全球性、全天候、连续的精密三维导航与定位能力,而且具有良好的抗干扰性和保密性。全球定位系统的迅速发展,引起了各国军事部门和广大民用部门普遍关注。GPS定位技术的高度自动化及其所达到的高精度和具有的潜力,也引起了广大测量工作者的极大兴趣。

70年代未至80年代初,许多学者的研究表明GPS卫星的载波信号也可以用于定位,并提供比伪距定位高得多的精度。特别是载波相位差分定位技术的出现,推动了早期测量型商品的接收机的研制。当时GPS定位基本上只有一个作业模式——静态相对定位,两台或若干台GPS接收机安置在待定点上,连续同步观测同一组卫星1~2h,或更长一些时间,通过观测数据的后处理,给出各待定点间的基线向量,在采用广播星历的条件下,静态定位不难取得5mm+1PPm(双频)或10mm+2PPm(单频)基线解精度。

80年代未,建立在FARA(整周未知数快速逼近技术)基础上的快速静态定位为短基线测量作业闯出了一条新路,大大提高了GPS测量的劳动生产率。一对GPS测量系统(双频)在10km以内的短边上,正常接收4~5颗卫星5min左右,即可获取5~10mm+1ppm的基线精度,与1~2h甚至更长时间静态定位的结果不相上下。 近几年,特别是1993年Leica公司开发了AROF (Ambiguity Resulation on the Fly)定位技术,首先实现了动态环境下整周未知数初始化这个实时GPS测量关键技术的商品

化。各个GPS测量厂商看好这个大趋势,纷纷推出各自的GPS测量新产品。有的把这种新型产品称之为GPS全站仪,有的称之为RTK(实时动态测量),有的称之为RTGPS。

总之,GPS测量理论与设备的不断发展,使得GPS测量技术日趋成熟,GPS测量功能更加完善,GPS测量应用面更广,并且GPS测量设备价格变得低廉,操作更加简便,使GPS测量更加实用化和自动化。

1.2 GPS测量的特点

相对于经典测量学来说,GPS测量主要有以下特点:

(1)测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。

(2)定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50km的基线上,其相对定位精度可达12×10-6,而在100~500km的基线上可达10-6~10-7。

(3)观测时间短。在小于20km的短基线上,快速相对定位一般只需5min观测时间即可。

(4)提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。

(5)操作简便。GPS测量的自动化程度很高。在观测中测量员的主要任务是安装并开关仪器、量取仪器高和监视仪器的工作状态,而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。

(6)全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。

2 GPS测量在公路测量中的应用实例

公路路线一般处在一条带状走廊内。其平面控制测量往往采用导线形式,这包括附合导线、闭合导线、结点导线等导线网形式。对于重要构造物如大桥、特大桥、长大隧道等,也有布设成三角网、线形锁等形式。

2.1 常规测量方法的缺陷

(1)规范对附合导线长、闭合导线长及结点导线间长度等有严格规

定,一般对于高等级公路均要求达到一级导线要求。这样,导线附合或闭

合长度最长不得超过10km,结点导线结点间距不能超过附合导

线长度的

0.7倍。这种要求一般在实际作业中难以达到,往往出现超规范作业。

(2)搜集到的用于路线测量控制的起算点间一般很难保证为同一测量

系统,往往国测、军测、城市控制点混杂一起,这就存在系统间的兼容性

问题,如果用不兼容的起算点,势必影响测量质量。

(3)国家大地点破坏严重影响测量作业。由于国家基础控制点,大多

为50、60年代完成,经过30多年,有些点由于经济建设的需要被破坏,有

些点则由于人们缺乏知识遭人为破坏。在这些地区进行路线测量作业,往

往在50km以上均找不到导线的联测点。这样路线控制测量的质量得不到保

证。

(4)地面通视困难往往影响常规测量的实施。一般路线的控制点要求

布设在距路线的300m范围内。由于通视的原因,这一条件难以

满足,甚至

在大范围密林、密灌及青纱帐地区,根本无法实施常规控制测量。

对于长大隧道,特大桥用常规测量有下列局限:

(5)长大隧道、特大桥等构造物一般要求测量等级在4等以上。用常规

测量方法,往往采用增加测回数,延长观测时间等费时、费工的方法来设

法提高精度。

(6)长大隧道、特大桥多为地形复杂困难地带,进行常规控制测量,

为通视和网形,往往砍伐工作量相当大,这样测设费用很大,作业艰苦。

(7)长大隧道及特大桥的控制网高精度及与路线网的低精度衔接,虽

说用平差方法可以得到克服,但由于地形条件困难,其联结的测量工作量

很大,且不太方便。实际工作中,构造物的控制测量与路线的控制测量经

常出现脱节现象。

利用GPS测量能克服上述列举的缺陷,并提高作业的效率,减轻劳动

强度,保证了高等级公路测设质量。

下面就在实际生产中应用GPS的情况举出一些应用实例。

2.2 GPS测量用于加密国家控制点

京珠国道主干线粤境高速公路汤塘至广州北二环段路线长约60km,所

处地形为重丘区,路线设计为6车道。

该段有11个各种系统的平面控制点,经过实地寻找,找出了7个,有4

个被破坏,破坏中有2个国家Ⅱ等点。在已找出的的7个控制点中,国家测

绘局系统Ⅰ等点1个,Ⅲ等点1个;城市测量系统点2个;总参军控点3个。

这些平面控制点分属不同测量系统,且等级不同。

为提高京珠国道粤境高速公路汤塘至广州北二环段测设质量,决定在

国家测绘系统基础进行控制点的加密。加密的控制点布设方案是:沿公路

路线每10km布设一对点,该对点相距约1km,且应通视良好。

这样,该段

共设了6对GPS加密点,加密点的精度要达到四等控制网的要求。GPS四等

网由18个点组成,其网形略图如图1。

图1 汤塘至广州北二环GPS四等国家大地点加密

该四等网采用4台Trimble SE400单频接收机作业。该机的标称精度为

10mm+2PPm。四等网的观测时间为90min。数据采样间隔为15s。

基线预处理采用厂家提供的TrimvecPlus软件,平差计算采用武汉测

绘科技大学编制的GPSADJ Ver2.0软件包。

通过平差处理,该四等网最弱点位中误差为 4.11cm,平均点位中误差

3.18cm,最弱边相对中误差1/27669,平均边长相对中误差1/453578。

整个四等网作业仅花4d时间。其效率较常规测量手段至少提高3倍。

在此基础上,我院同湖北省测绘局、湖南省第二测绘院合作,在京珠

国道主干线湖南耒阳广州花都段进行了近600km的GPS加密国家控制点的测

量。该地区路线跨越南岭山脉,沿线山高深、植被茂盛、地形地貌复杂、

通视条件极差。国家一、二等三角点破坏严重,测设内可供利用的三角点

稀少,在路线走廊范围内仅找到7个保存完好的国家三角点。

经过平差处理,网中最弱点点位中误差为 4.13cm,最弱边相对中误差

为1/12.5万。控制网的各项指标达到甚至超过国家四等网的技术要求。

近600km的GPS控制网,仅用两个外业组,10个作业员,7台GPS接收

机,约20d的作业时间。若采用常规测量方法在相同人手的情况下,至少

需要三个月的时间才能完成。

2.3 GPS测量用于隧道控制测量

在京珠国道主干线粤境高速公路翁城县境内有座靠椅山双洞直线型平

行隧道,初测的左、右洞起讫桩号分别为ZK144+710~ZK147+730,YK144+

730~YK147+740。其洞长分别为3020m和3010m。根据《公路隧道勘测规

程》中对隧道类别划分标准,属公路特长隧道,洞外测量在贯通面上对

贯通误差影响值限值为±55mm。

靠椅山隧道地处亚热带地区,雨量充沛、荆剌丛生,沟深林密,野外

作业条件十分艰苦,采用常规方法不仅费时费力,而且选点困难,砍伐工

作量大。结合靠椅山地形特征,采用GPS测量,布设了如图2所示的GPS控

制网。

靠椅山隧道控制网由14个点组成,网中最短边长为100.842m,最大边

长为3597.4m,平均边长为1104.848m。

采用Wild 200 GPS接收机进行静态观测,观测时间为20~50min,采

样率为10s,共观测了29条基线向量。

经过平差处理,网中最弱边相对精度为1/60106,最高相对精度达1/

137万;最弱点位中误差为±0.83cm。在贯通面上贯通误差左、右线分别为

±0.707cm和±0.693cm。

通过实施GPS测量可看出:

(1)GPS测量用于隧道控制测量灵活、方便,能大大节省人力、物力、

减少野外砍伐工作量,减少一些不必要的过渡点。

(2)GPS测量具有极高的精度,它完全能达到《公路勘察规程》对隧道

测量的要求。

(3)GPS测量较红外仪导线测量,可提高效率4~5倍。

2.4 GPS用于特大桥控制测量

鄂黄长江公路大桥是连结长江两岸黄冈市和鄂州市的公路特大桥。为

便于大桥设计和施工,采用GPS对首选方案Ⅲ、Ⅳ桥位进行Ⅲ等平面控制

测量。布网设计方案为双大地四边形(如图3)。垂直于江面的长边约为

1200m,平行于江面的短边约为500m。双大地四边形与两个国家Ⅱ等以上

大地点联测。

经过平差处理,控制网精度为:最弱点位中误差 1.93cm,最弱边长相

对中误差1/113000,满足了Ⅲ等平面控制测量的精度要求。2.5 GPS测量用于导线控制测量

京深高速公路河北境高邑至邢台段地处华北平原,地势平坦,最大相

对高差约20m,平均海拔约50m,境内村庄较多。植被多为小麦及田间行

树。公路及机耕道密集。

采用三台Wild 200 GPS接收机进行导线测量,作业方式采用点连接方

式,三台接收机同时作业。作业完后,向前滚动(如图4)。

Ⅰ、Ⅱ、Ⅲ分别表示观测的同步环。

在GPS观测之前,已作高精度红外导线测量(EDM)和水准测量。

下面列出同时施测GPS和常规测量的10.88km的比较结果。GPS测量观

测时段7.5min,30历元。边长比较结果如表1。

边长比较表(m) 表1

将GPS测量结果与红外仪导线平差结果比较,得到较差中误差mx=±

0.057m,my=±0.049m,点位中误差为±0.075m。

将GPS测量结果与精密水准测量结果比较,得到高程中误差为±

0.049m。

通过实际测量可看出:

(1)GPS观测时间为7.5min,与常规红外仪测量相比,时间缩短了约

20min,效率为4倍;与全站仪测量相比,时间缩短约8min,效率为2倍。

(2)GPS导线测量可靠性好,平面精度和高程精度均能满足高速公路测

设的要求。

2.6 GPS测量用于摄影测量外业控制点测量

摄影测量一般沿飞行航摄的航线,每隔一定间隔就要在野外实地测量

一定数量的平面和高程控制点(如图5)。野外平高控制点的间隔n按地形类

别及所测地形图的比例尺而定。如1∶2000地形图,摄影比例尺为1∶

10000,间隔n一般为4~6个摄影基线。

常规的野外平高控制点的测量方法是先沿航摄方向布设导线,然后在

此基础上采用支导线方法测定航测象控点。这种方法主要是导线方式测

量。由于航摄面积较广,对23cm×23cm象幅,1∶10000摄影比例尺,覆盖

范围为2.3km宽,双航线覆盖范围更宽,在这广阔范围内进行导线测量,

往往由于实地条件的限制,其作业是相当艰苦的,且工作量大,作业周期

长。

在京珠国道主干线粤境高速公路汤塘至广州北二环段这60km路线的航

测外业中,利用4台TrimbleSE4000接收机,将一台或两台GPS 接收机固定

于已知点上,其余GPS接收机游动于像控点进行像控点三维坐标测量。全

线航测像控点测量仅用5d作业时间。

经过平差处理,像控点平面点位精度达到了优于0.10m的精度,最弱

边相对中误差为1/43734。

像控点的高程GPS测量详见2.7中介绍。

由此可见,GPS测量作航测控制,不仅具有高精度,而且具有极大的

灵活性。它改变了逐步控制的测量模式,其效率较常规方法提高5倍以

上。

2.7 GPS测量用于密林、密灌地区路线控制测量

随着经济的发展,高等级公路开始向山区、重丘区岭区拓展。这些地

区人烟稀少,植被茂盛。成片的密林、密灌地区,水平方向通视困难,有

时实施常规测量方法几乎不可能。

在海南中线新建公路海口至屯昌段测设中,自石山至永发镇约20km,

植被覆盖厚,多为有剌密灌、荔枝、龙眼、杂草地,人迹罕见,有多个火

山口。这种地区红外仪导线测量几乎没有可能。为提高高等级公

实验报告GPS静态测量

实验四GPS静态测量 一、实验目的 实验的目的是使学生了解采用GPS定位技术建立工程控制网的过程,使所学理论知识与实践相结合,巩固和加深对新知识的理解,增强学生的动手能力,培养学生解决问题、分析问题的能力。通过学习,应达到如下要求: 1、熟练掌握GPS接收机的使用方法,外业观测的记录要求。选点、埋石的要求。 2、合理分配时段、掌握星历预报对时段的要求。PDOP值的大小对观测精度的影响,图形结构的设计及外业工作。外业观测时手机或对讲机的合理应用。 3、掌握GPS控制测量数据处理处理的流程,能独立完成基线解算及网平差 二、实验地点: 城市学院校区内,实验学时:4小时 三、实验前的准备工作 1、实验内容介绍:对实验的任务和意义作好充分了解。 2、使用的仪器及物品:GPS接收机(含电池)、基座、脚架若干台,作业调度表,外业观测手簿,小钢尺,铅笔,安装有传输软件和数据处理软件的计算机,数据传输线若干根,便携式存储器。 3、搜集资料 ①广泛收集测区及其附近已有的控制测量成果和地形图资料 a.控制测量资料包括成果表、点之记、展点图、路线图、计算说明和技术总结等。收集资料时要查明施测年代、作业单位、依据规范、坐标系统和高程基准、施测等级和成果的精度评定。 b.收集的地形图资料包括测区范围内及周边地区各种比例尺地形图和专业用图,主要查明地图的比例尺、施测年代、作业单位、依据规范、坐标系统、高程系统和成图质量等。 c.如果收集到的控制资料的坐标系统、高程系统不一致,则应收集、整理这些不同系统间的换算关系。 (注:本实验采用地科系2013年5月建立的校园控制网资料) ②收集有关GPS测量定位的技术要求 通过参考测量规范,收集有关的测量技术要求。GPS测量规范包括: a.《全球定位系统GPS测量规范》GB/T 18314-2009 b.《工程测量规范》 GB 50026-2007

gps测量的作业模式

GPS测量的作业模式 1.经典静态定位模式 (1)作业方式: 采用两台(或两台以上)接收设备,分别安置在一条或数条基线的两个端点,同步观测4颗以上卫星,每时段长45分钟至2个小时或更多。作业布置如图8-10所示。 (2)精度: 基线的相对定位精度可达5mm+1ppm·D,D为基线长度(KM)。 (3)适用范围: 建立全球性或国家级大地控制网,建立地壳运动监测网、建立长距离检校基线、进行岛屿与大陆联测、钻井定位及精密工程控制网建立等。 (4)注意事项: 所有已观测基线应组成一系列封闭图形(如图8-10),以利于外业检核,提高成果可靠度。并且可以通过平差,有助于进一步提高定位精度。 2.快速静态定位 (1)作业方法: 在测区中部选择一个基准站,并安置一台接收设备连续跟踪所有可见卫星;另一台接收机依次到各点流动设站,每点观测数分钟。作业布置如图8-11所示。 (2)精度: 流动站相对于基准站的基线中误差为5mm±1ppm·D。 (3)应用范围: 控制网的建立及其加密、工程测量、地籍测量、大批相距百米左右的点位定位。 (4)注意事项: 在测量时段内应确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km;流动站上的接收机在转移时,不必保持对所测卫星连续跟踪,可关闭电源以降低能耗。 (5)优缺点: 优点:作业速度快、精度高、能耗低;缺点:二台接收机工作时,构不成闭合图形(如图 8-11),可靠性差。 3.准动态定位 (1)作业方法: 在测区选择一个基准点,安置接收机工连续跟踪所有可见卫星;将另一台流动接收机先置于1号站(如图8-12)观测;在保持对所测卫星连续跟踪而不失锁的情况下,将流动接收机分别在2,3,4……各点观测数秒钟。 (2)精度:基线的中误差约为1~2cm。 (3)应用范围: 开阔地区的加密控制测量、工程测量及碎部测量及线路测量等。 (4)注意事项: 应确保在观测时断上有5颗以上卫星可供观测;流动点与基准点距离不超过20 km;观测过程中流动接收机不能失锁,否则应在失锁的流动点上延长观测时间1~2min。 4.往返式重复设站 (1)作业方法: 建立一个基准点安置接收机连续跟踪所有可见卫星;流动接收机依次到每点观测1~2min;1h后逆序返测各流动点1~2min。设站布置如图8-13所示。 (2)精度: 相对于基准点的基线中误差为5mm+1ppm.D。 (3)应用范围:控制测量及控制网加密、取代导线测量及三角测量、工程测量机地籍测量。 (4)注意事项: 流动点与基准点距离不超过15km;基准点上空开阔,能正常跟踪3颗及以上卫星。 5.动态定位 (1)作业方法: 建立一个基准点安置接收机连续跟踪所有可见卫星;流动接收机先在出发点上静态观测数分钟;然后流动接收机从出发点开始连续运动;按指定的时间间隔自动运动载体的实时位置。作业布置如图8-14所示

GPS静态控制测量方案

兰州市水源地建设工程项目(第11-1标段) GPS静态测量方案 编制: 审核: 审批: 中国建筑第六工程局有限公司 兰州市水源地建设工程项目(第11-1标段)项目部 2015年12月

目录 3 1.工程概况............................................................................................................. 4 2.编制依据............................................................................................................. 3.适用范围............................................................................................................. 4 4.测量人员的组成及仪器设备 (5) 5 5.平面控制测量..................................................................................................... 7 6.高程控制测量..................................................................................................... 7 7.测量资料管理及上报......................................................................................... 7 8.质量保证措施..................................................................................................... 9.总结..................................................................................................................... 8 8 10.附录...................................................................................................................

GPS静态控制测量外业操作的指南

GPS控制测量外业作业要求及技术指南 一:外业观测作业人员操作内容 安置接收机天线(严格对中整平、定向、量取仪器高)、设置接收机中的参数(如观测模式、截止高度角、和采样间隔等;如不设参数,接收机一般就采用缺省值),以及开机、关机等工作,其他工作由接收机自动完成。 二:操作流程:【选点与埋石——GPS接收机的检查——观测方案设计——观测作业——外业观测成果质量检核】 1.选点准备: 根据收集的测区内及周边现有平面和高程控制点以及测区地形图等,依据项目任务书或合同书以及相关规范的要求在图上进行设计,标绘处计划设站的区域。 1.1选点的基本要求 基本要符合规范(全球定位系统GPS测量规范GB/T18314-2009)的相关要求: A)测站四周视野开阔,高度角15°以上不允许存在成片的障碍物 B)远离大功率无线电发射源,以免损坏接收机天线,高压

电线50米至少,大功率无线发射源至少200米。 C)测站远离房屋、围墙、广告牌、山坡及大面积平静水面(湖泊、池塘)等信号反射物,以免出现严重的多路径 效应。 D)点位应位于地质条件良好、点位稳定、易于保护的地方,并尽可能顾及交通条件。 1.2选点作业 A)测量人员应按照在图上选择的初步位置以及对点位的基本要求,在实地最终选定点位,并做好相应的标记。 B)利用旧点时,应对旧点的稳定性、可靠性和完好性进行检查,符合要求时方可利用。 C)点名以该点位所在地命名,无法区分时,可在点名后加注(一)、(二)。 D)新旧点重合时,应沿用旧点名,一般不应更改。 E)选点工作完成后,应按规范要求的形式绘制GPS网选点图,可以用相机或手机拍照片。 提交的资料:①点之记②GPS网选点图 1.3 埋石 C、D、E及GPS点在满足标石稳定、易于长期保存的前提下, 均可根据具体情况选用。 提交的资料:标石建造的照片

静态GPS控制测量使用技术方法

静态GPS控制测量使用技术方法 1控制点的布设 为了达到GPS测量高精度、高效益的目的,减少不必要的耗费,在测量中遵循这样的原则:在保证质量的前提下,尽可能地提高效率、降低成本。所以对GPS测量各阶段的工作,都要精心设计,精心组织和实施。建议用户在测量实施前,对整个GPS测量工作进行合理的总体设计。 总体设计,是指对GPS网进行优化设计,主要是:确定精度指标,网的图形设计,网中基线边长度的确定及网的基准设计。在设计中用户可以参照有关规范灵活地处理,下面将结合国内现有的一些资料对GPS测量的总体设计简单地介绍一下。 1、确定精度标准 在GPS网总体设计中,精度指标是比较重要的参数,它的数值将直接影响GPS网的布设方案、观测数据的处理以及作业的时间和经费。在实际设计工作中,用户可根据所作控制的实际需要和可能,合理地制定。既不能制定过低而影响网的精度,也不必要盲目追求过高的精度造成不必要的支出。 2、选点 选点即观测站位置的选择。在GPS测量中并不要求观测站之间相互通视,网的图形选择也比较灵活,因此选点比经典控制测量简便得多。但为了保证观测工作的顺利进行和可靠地保持测量结果,用户注意使观测站位置具有以下的条件: ①确保GPS接收机上方的天空开阔GPS测量主要利用接收机所接收到的卫星信号,而且接收机上空越开阔,则观测到的卫星数目越多。一般应该保证接收机所在平面15°以上的范围内没有建筑物或者大树的遮挡。 图5-1 高度截止角 ②周围没有反射面,如大面积的水域,或对电磁波反射(或吸收)强烈的物体(如玻璃墙,树木等),不致引起多路径效应。 ③远离强电磁场的干扰。 GPS接收机接收卫星广播的微波信号,微波信号都会受到电磁场的影响而产生噪声,降低信噪比,影响观测成果。所以GPS控制点最好离开高压线、微波站或者产生强电磁干扰的场所。邻近不应有强电磁辐射源,如无线电台、电视发射天线、高压输电线等,以免干扰GPS 卫星信号。通常,在测站周围约 200m 的范围内不能有大功率无线电发射源(如电视台、电台、微波站等);在 50m 内不能有高压输电线和微波无线电信号传递通道。 ④观测站最好选在交通便利的地方以利于其它测量手段联测和扩展; ⑤地面基础稳固,易于点的保存。

GPS控制测量复测方案

西咸新区秦汉新城立体城市项目GPS控制测量复测方案 编制: 审核: 审批: 中国建筑第七工程局有限公司 二零一四年三月二十日 目录

一、概况 (1) 二、技术依据 (1) 三、技术方案 (2) (一)工作流程 (2) (二)测量方案 (2) 1、平面控制网复测实施方案 (3) 1.1 复测方法 (3) 1.2 GPS测量作业的基本技术要求 (3) 1.3 保证GPS测量精度的操作要点 (4) 2、高程控制网复测实施方案 (5) 2.1 复测方法 (5) 2.2 质量保障措施 (5) 2.3 复测成果处理 (6) 2.4数据处理与平差 (6) 四、进度安排 (6) 五、任务划分与组织安排 (7) 六、仪器设备 (8) 七、测量成果 (8)

一、概况 规划一路:城市支路,行车速度30Km/h。起点里程K0+000,终点里程K0+827.131,全长827.131m。兰池大道~兰池二路段道路红线宽度15m,兰池二路~东西十一路段道路红线宽度20m,机动车道,采用沥青混凝土路面,人行道采用透水工程砖铺设,全线完成雨污水管道的铺设。 规划四路:城市支路,行车速度30Km/h。起点里程K0+000,终点里程K0+889.821,全长889.821m。全长分两段,兰池大道~兰池二路段道路红线宽度15m,兰池二路~东西十一路段道路红线宽度20m,机动车道,采用沥青混凝土路面,人行道采用透水工程砖铺设,全线完成雨污水管道的铺设。 为完成本段工程施工,西安市政设计研究院有限公司共提供了3个E 级GPS点,3个四等水准点。 本次复测任务主要内容是: 1、控制网复测及贯通测量; 2、全线三等水准点复测及贯通测量。 二、技术依据 1、《城镇道路工程施工与质量验收规范》CJJ1-2008; 2、《全球定位系统(GPS)测量规程》GB/T18314_2009; 3、《国家三、四等水准测量规范》GB12898-1991;

GPS静态控制测量网平差报告

FJ -3 工程测量技术交流群18874248 省道S 229南坑至源头段 二级公路改建工程 GPS 静态控制测量 网平差报告 萍 乡 公 路 勘 察 设 计 院 二○一一年九月 目 录 一、 GPS 控制点成果表…………………………………………1 二、 GPS 控制点网示意图………………………………………1 三、 GPS 控制网平差报告……………………………………1~4

一、G PS控制点成果表 二、GPS控制点网示意图 三、GPS控制网平差报告 1 坐标系统 1.1 坐标系统名称 Beijing54 1.2 基准参数

1.3 投影参数 M0 =1.00000000 投影比率 H = 0.0000 投影高 Bm =0投影面的平均纬度 B0 =0:00:00.00N 原点纬度 L0 =113:50:00.00E 中央子午线 N0 =0.0000 北向加常数 E0 =500000.0000 东向加常数 回到顶部 2 三维无约束平差2.1 平差参数 2.2 基线向量及改正数 2.3 τ(Tau)检验表 2.4 τ(Tau)检验直方图

2.5 自由网平差坐标 回到顶部 3 二维约束平差 3.1 平差参数 3.2 平面距离平差值 3.3 平面坐标 ***** 回到顶部

4 高程拟合 4.1 平差参数 4.2 高程拟合坐标 240.7246 回到顶部 5 基线闭合差 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G2->G3.242A 99.9 0.0062 -2063.4456 -1777.5444 1294.6074 3015.5398 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.76ppm EX = 0.0043 EY = -0.0043 EZ = -0.0026 8706.0493 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->G4.242B 99.9 0.0072 -4060.9524 -3093.9755 2049.7944 5501.4248 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.48ppm EX = -0.0041 EY = 0.0051 EZ = 0.0010 13683.0814 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->GD1.242X 99.9 0.0065 1554.7134 -896.8104 2732.5118 3269.2543 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.80ppm EX = -0.0048 EY = 0.0042 EZ = 0.0017 8261.4927 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->G4.242B 99.9 0.0063 -1997.5067 -1316.4322 755.1870 2508.6519 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.12ppm EX = -0.0003 EY = 0.0004 EZ = 0.0015 13695.9047 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->GD1.242X 99.9 0.0071 3618.1569 880.7382 1437.9069 3991.7835 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.42ppm EX = 0.0026 EY = -0.0040 EZ = -0.0015 11989.6182 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G4->GD1.242X 99.9 0.0073 5615.6650 2197.1667 682.7190 6068.7182 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.16ppm EX = 0.0015 EY = -0.0007 EZ = -0.0022 16557.6999

GPS测量原理及应用

《GPS测量原理及应用》学习指导 一、控制网执行的技术标准 1、全球定位系统(GPS)测量规范(GB/T 18314—2001),中华人民共和国国家标准; 2、《国家三、四等水准测量规范》(GB12898-1991),中华人民共和国国家标准; 3、技术设计书。 二、使用仪器 测量采用的GPS接收机型号及其标称精度。 三、布网方案 1、布网要求 GPS网相邻点间基线中误差按下式计算: 式中(mm)为固定误差;(ppm)为比例误差系数;(km)为相邻点间的距离。GPS-E级网的主要技术要求应符合表1规定。相邻点最小距离应为平均距离的1/2~1/3;最大距离应为平均距离的2~3倍。 (mm) (1×10-6)

注:当边长小于200m时,边长中误差应小于20mm。 2、布网原则与网形设计 (1)GPS网应根据测区实际需要和交通状况进行设计。GPS网的点与点间不要求每点 (4)为求定GPS点在54北京坐标系中的坐标,应与当地54北京坐标系中的原有控制点联测,联测总点数不得少于3个。 (5)为了求得GPS网点正常高,应进行水准测量的高程联测,高程联测采用等级水准测量方法进行,联测的GPS-E级控制点且应均匀分布于网中。

四、选点与标石埋设 1、选点 在了解任务、目的、要求和测区自然地理条件的基础上,进行现场踏勘,最后进行选点。选点应符合下列要求: (1)点位的选择应符合技术设计要求,并有利于其它测量手段进行扩展与联测; (2)点位的基础应坚实稳定,易于长期保存,并应有利于安全作业; (3)点位应便于安置接收设备和操作,视野应开阔,视场内周围障碍物的高度角一般应小于15°; (4)点位应远离大功率无线电发射源(如电视台、微波站等),其距离不得小于200m,并应远离高压输电线其距离不得小于50m,以避免周围磁场对卫星信号的干扰; (5)点位附近不应有对电磁波反射(或吸收)强烈的物体,以减少多路径效应的影响; (6)交通应便于作业,以提高作业效率; (7)应充分利用符合上述要求原有的控制点及其标石,但利用旧点时应检查旧点的稳定性、完好性,符合要求方可利用; (8)选好点后应按合理的方法给GPS点编号。 此外,有时还需考虑测区内的通讯设施、电力供应等情况,以便于各点之间的联络和设备用电或充电。 综上所述,结合测区的实际情况, GPS控制点宜布设在较高的永久性建筑物、山顶及其它符合要求的地方,或已成型的较宽的城市主干道、路口或其它较开阔而又稳固的建(构)筑物上。

gps静态测量技术总结

gps静态测量技术总结 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 《gps静态测量技术总结》是一篇好的范文,好的范文应该跟大家分享,这里给大家转摘到XX。篇一:GPS静态测量与数字化测图技术总结 GPS静态测量与数字化测图技术总结 班级:测绘12-2班学号:31218082**姓名:* * 2015年7月8日 GPS静态数据处理技术总结 一、测区概述 雁山区位于桂林市南部,全境多石山和丘陵。本次实习测区主要范围为桂林理工大学雁山校区与广西师范大学雁山校区周边,整个测区大致位于东经110°16’06”- 110°18’58”,北纬25°03’05”- 25°07’35”之间。测区范围内山区

较多,道路复杂,房屋众多,植被虽然较茂密,但是平坦空地也不少,布点位置相对地域开阔,便于进行GPS观测。 二、技术依据 1、《GPS与数字化测图实习指导书》; 2、《技术设计书》; 3、《全球定位系统城市测量技术规程》(CJJ 73-1997); 4、《全球定位系统(GPS)测量规范》(GB/T 18314-2001)。 三、坐标系的选择 GPS网的无约束平差平面坐标系统选用WGS-84坐标系,3°带高斯克吕格投影,中央子午线精度为111°,测区投影分带为6°带的第19带,3°带的第38带。四、起算数据如下表 五、仪器设备和软件 GPS控制测量采用南方GPS接收机和中海达GPS接收机,其静态相对定位精度为:静态基线±(5mm +1ppmD);高程±(10mm+2ppmD)。 这些GPS测量系统配备有星历预报软件、后处理解算软件,完全能满足GPS

控制测量数据处理的要求。 XX南方数据转换软件为南方GPS 后处理程序,基线结算及平差软件为中海达HGO数据处理软件,能够基线向量处理、GPS网平差软件、多种GPS数据格式转换等功能,完全能满足GPS控制测量数据处理的要求。 六、GPS静态测量方案GPS流程图: 开始 选点布网 数据采集 工具:数据传输软件(功能模块)结果:记录在接收机中的原始数据数据传输 工具:数据传输软件(功能传输模块) 结果:记录在计算机中 的原始数据 格式转换工具:格式转换软件(功能模块) 结果:标准格式数据

GPS RTK测量技术作业手册(新)解析

Trimble GPS RTK线路定线测量 技术作业指导书 编著:张志刚张冠军 铁道第三勘察设计院勘测设计分院 2004年6月天津

目录 前言RTK技术简介 (1) 1什么是GPS RTK技术 (1) 2 GPS RTK技术应用范围 (2) 3 GPS RTK的组成 (3) 4 GPS RTK的工作流程 (4) 5作业测区的确定 (5) 6 坐标系统转换参数的求解 (5) 一TSC1简介 (8) 二BASE(基准站) (11) 1 BASE硬件 (11) 2 TSC1设置基准站 (12) 三ROVER(流动站) (16) 1 ROVER硬件 (16) 2 TSC1设置流动站 (16) 3 流动站点校正 (18) 四RTK测量 (18) 1 测量点 (18) 2 放样点 (18) 3 放样道路 (22) 4 其他测量功能 (23) 5 结束测量 (23) 五GPS RTK线路定线测量 (24) 1 线路设计 (24) 1.1 TSC1线路设计 (24) 1.2 TGO Roadlink线路设计 (26) 2利用TSC进行中线测量 (32)

1.1 交点、中线控制桩测量 (32) 1.2 加中桩测量 (33) 3 数据处理 (33) 附录TSC1菜单 (36)

前言GPS RTK技术简介 1 什么是GPS RTK技术 GPS RTK技术(Real-time kinematic)是建立在实时处理两个测站的载波相位基础上的。它能实时提供观测点的三维坐标,并达到厘米级(±1cm+1ppm)的高精度。常规的GPS测量方法,如Static(静态)、FastStatic (快速静态)、Postprocessed kinematic(动态)测量都需要事后进行解算才能获得毫米或厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图、各种控制测量带来了新曙光,极大地提高了外业作业效率。 高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时只需1epoch。流动站可以处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持五颗以上卫星相位观测值的跟踪和必要的几何图形,流动站就可随时给出厘米级定位结果。 RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要

GPS静态测量概念

《GPS定位原理及应用》授课教案 第八章GPS测量的设计与实施 8.1 GPS测量的技术设计 教学内容:本节主要介绍GPS测量技术设计的一般要求和设计指标。 教学重点: 1.介绍GPS测量技术设计的依据; 2.介绍GPS测量的标准; 3.介绍GPS测量的图形设计。 教学难点:GPS的图形设计。 教学方法:课堂教学为主,充分利用多媒体教学方法。 教学要求: 学会局部性的GPS控制网的图形设计,掌握GPS测量技术设计书的编写。 8.1.1 GPS网技术设计的依据 1.GPS测量规范(规程) (1)《全球定位系统(GPS)测量规范》 (2)《全球定位系统城市测量技术规程》 (3)各行业部门的其他GPS测量规程或细则 2.测量任务书 8.1.2 GPS网的精度, 密度设计 1.GPS测量精度标准及分类 (1)GPS测量精度分类 对于各类GPS网的精度设计主要取决于网的用途。用于地壳形变及国家基本大地测量的GPS控制网可按表8-1分级。

用于城市或工程的GPS控制网可按表8-2分级。 (2)GPS测量的精度标准 GPS测量的精度标准通常用网中相邻点之间的距离中误差表示,其形式为: σ(8-1) 2) 2 (bd = a+ 式中:σ——距离中误差(毫米); ɑ——固定误差(mm); b——比例误差系数(ppm); d——相邻点之间的距离(km)。 实际生产中,应根据测区大小、GPS网的用途,来设计网的等级和精度标准。2.GPS点的密度标准 制定GPS网的密度标准,主要考虑任务要求和服务对象。密度可参照表8-3的规定执行。 8.1.3 GPS网的基准设计 1.基准设计的定义: 在GPS网的技术设计中,必须明确GPS网的成果所采用的 坐标系统和起算数据的工作,称为GPS网的基准设计。GPS网的基准包括位置基准、方位基准和尺度基准。 2.基准设计应考虑的几个问题: (1)应在地面坐标系中选定起算数据和联测原有地方控制点若干个,用以转换坐标。

gps控制测量实习心得

gps控制测量实习心得 实习之后更要认真总结,我相信这也必将成为我们日后工作和学习中的宝贵财富。以下内容是品才网小编为您精心整理的ps控制测量实习心得,欢迎参考! gps控制测量实习心得一、实习目的 GPS静态测量 本次GPS静态观测实习的目的是巩固、扩大和加深我们从课堂上所学理论知识,获得测量工作的初步经验和基本技能,着重培养我们的独立工作能力,进一步熟练掌握测量仪器的操作技能,提高运用理论及计算能力,并对GPS静态观测全过程有一个全面和系统的认识。熟悉GPS静态相对定位原理、Sounth、Trimble、ashtech三种GPS接收机的使用掌握GPS网的网形设计。熟悉GPS静态测量的步骤。学会南方测绘 Gps数据处理软件的简单使用。 实习安排 准备好理论知识,掌握控制测量的技术要求,以及仪器的使用规范及过程,协调好分组的搭配。 仪器调度表 (略) 第三组组长: 第三组组员:

项目与内容时间安排(天)任务与要求 实习动员、领仪器工具、仪器效验1作好测前准备工作GPS静态观测1熟练掌握观测方法、要领 实习总结5整理成果、编写实习报告、归还仪器 实习任务 以各个班为单位建立测量实习队,10人一组(第三组为11人),分3组。每组领取GPS一套(包括主机、脚架、基座、连接线等)、记录板一块、对讲机、记录表。根据中华人民共和国测绘行业标准《全球定位系统城市测量技术规程》和石桥子经济开发区的具体情况,建立E级GPS网。 E级GPS网的精度要求如下表: 级别固定误差(mm)平均边长(km)比例误差系数(mm) E≤~5≤20 每小组利用各组领取到的接收机对两个控制点进行观测,观测时段为一小时,观测3个时段。 测量规范 1、《全球定位系统(GPS)测量规范》(GB/T 18314-20xx)。 2、《全球定位系统城市测量技术规范》(CJJ 73-97)。 3、CH 1002-95《测绘产品检查验收规定》。 4、CH 1003-95《测绘产品质量评定标准》。 测区概况 本测区为本溪市石桥子经济开发区辽宁科技学院周边

GPS做静态测量

G P S做静态测量 静态差分GPS(Static differential GPS)是由两个(含)以上接收仪,进行较长时间(通常为半小时以上)的测量,其包含了一组接收仪间的决定。 伪距差分原理 伪距差分是目前用途最广的一种技术。几乎所有的商用差分GPS均采用这种技术。国际海事委员会推荐的RTCM SC-104也采用了这种技术。 在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。利用一个α-β将此差值滤波并求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提高。 随着GPS技术的进步和接收机的迅速发展,GPS在测量定位领域已得到了较为广泛的应用。但是,针对不同的领域和用户的不同要求,需要采用的具体是不一样的。一般来说,GPS测量模式可分为静态测量和动态测量两种模式,而静态测量模式又分常规静态测量模式和快速静态测量模式,动态测量模式分准动态测量模式(后处理动态,走走停停)和测量模式,实时动态测量模式分DGPS和RTK 方式。下面分别介绍如下: 1、常规静态测量 这种模式采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。这种模式一般可以达到5mm十1ppm的。常规静态测量常用于建立全球性或国家级大地,建立监测网、建立长距离检校基线、进行岛屿与大陆联测、定位及精密工程控制网建立等。 2、快速静态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、、等。需要注意的是这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与相距应不超过20km。 3、准动态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个数据。这种方法不同于快速静态,除了观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF 功能的软件处理时例外)。

GPSRTK测量技术作业手册新

内部资料注意保密Trimble GPS RTK线路定线测量 技术作业指导书 编著:张志刚张冠军 铁道第三勘察设计院勘测设计分院 2004年6月天津

目录 前言 RTK技术简介 (1) 1什么是GPS RTK技术 (1) 2 GPS RTK技术应用范围 (2) 3 GPS RTK的组成 (3) 4 GPS RTK的工作流程 (4) 5作业测区的确定 (5) 6 坐标系统转换参数的求解 (5) 一 TSC1简介 (8) 二 BASE(基准站) (11) 1 BASE硬件 (11) 2 TSC1设置基准站 (12) 三 ROVER(流动站) (16) 1 ROVER硬件 (16) 2 TSC1设置流动站 (16) 3 流动站点校正 (18) 四 RTK测量 (18) 1 测量点 (18) 2 放样点 (18) 3 放样道路 (22) 4 其他测量功能 (23) 5 结束测量 (23) 五 GPS RTK线路定线测量 (24) 1 线路设计 (24) 1.1 TSC1线路设计 (24) 1.2 TGO Roadlink线路设计 (26) 2利用TSC进行中线测量 (32)

1.1 交点、中线控制桩测量 (32) 1.2 加中桩测量 (33) 3 数据处理 (33) 附录 TSC1菜单 (36)

前言GPS RTK技术简介 1 什么是GPS RTK技术 GPS RTK技术(Real-time kinematic)是建立在实时处理两个测站的载波相位基础上的。它能实时提供观测点的三维坐标,并达到厘米级(±1cm+1ppm)的高精度。常规的GPS测量方法,如Static(静态)、FastStatic (快速静态)、Postprocessed kinematic(动态)测量都需要事后进行解算才能获得毫米或厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图、各种控制测量带来了新曙光,极大地提高了外业作业效率。 高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时只需1epoch。流动站可以处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持五颗以上卫星相位观测值的跟踪和必要的几何图形,流动站就可随时给出厘米级定位结果。 RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要求

GPS静态测量原理 测量111 李博周

辽宁林业职业技术学院 林学系 辽宁林业职业技术学院 毕业设计 学院辽宁林业职业技术学院 所属系部林学系 专业名称工程测量技术 学制 3年 年级 2011级 姓名李博周 指导教师王旭

GPS 静态测量原理 摘要 GPS定位的基本原理是以GPS卫星至用户接收机天线之间的距离(或距离差)为观测量,根据已知的卫星瞬时坐标,利用空间距离后方交会,确定用户接收机天线所对应的观测站的位置。GPS静态定位指接收机在定位过程中位置静止不动,包含绝对定位和相对定位两种方式。无论是静态绝对定位还是静态相对定位,所依据的观测量都是卫星到观测站的伪距,根据观测量的不同,静态定位又可分为测码伪距静态定位和测相伪距静态定位。基于载波相位测量的静态相对定位,是目前精度最高的一种方式。 关键词:GPS、后方交会、静态定位、伪距、精度

目录 GPS简介 (1) 1 静态定位概述 (2) 2 静态绝对定位原理 (3) 2.1 伪距观测方程的线性化 (3) 2.2 伪距法绝对定位的解算 (3) 2.3 用载波相位观测值进行静态绝对定位 (4) 3 静态相对定位原理 (5) 3.1观测量的线性组合 (5) 3.2观测方程的线性化及平差模型 (5) 4 整周未知数的确定方法 (7) 4.1经典静态相对定位法确定整周未知数 (7) 4.2 交换天线法确定整周未知数 (8) 4.3 P码双频技术确定整周未知数 (8) 5 周跳分析 (10) 5.1利用单差观测值的高次差探测与修复周跳 (10) 5.2利用双差观测值的高次差探测与修复周跳 (10) 5.3利用平差后的残差探测与修复周跳 (11) 致谢 (12) 参考文献 (13)

GPS精密定位主要作业方法

GPS 精密定位主要作业方法 一、 GPS 测量方法 利用GPS 进行定位的方法有多种,若按观测点的不同位置则可分为 ——绝对定位(或单点定位)。即在地球协议坐标系统中,确定观测站相对地球质心的位置。这肘,可认为参考点与地球质心相重合。 ——相对定位。即在地球协议坐标系统中,确定观测站与某一地面参考点之间的相对位置。 如果按用户接收机天线在测量中所处的状态,则定位方法可分为 —一静态定位。即在定位过程中,接收机天线的位置是固定的,处于静止状态。不过,严格说来,静止状态只是相对的。在卫星大地测量学中,所谓静止状态,通常是指待定点的位置相对其周围的点位没有发生变化,或变化极其缓慢以致在双酗期内(例如数天或数星期)可以忽赂。 ——动态定位。即在定位过程中,接收机天线处于运动GPS 相对定位的作业模式,即利用GPS 确定观测站之间相对位置所采用的作业方式。它与GPS 接收设备的软件和硬件密切相关。同时,不同的作业模式因作业方法、观测时间和应用范围的不向而有所差异。 无论何种方法,都需要观测GPS 卫星获取GPS 观测量来实现,从GPS 信号中可以提取多种信息,主要观测量有: 由测距码信号所得到的伪距(测码伪距)或时间延迟,L1上C/A 码伪距、P 码伪距,L2上P 码伪距; r j j j j t c z z y y x x t c ?+-+-+-=?+222)()()('ρ 由载波相位观测得到的伪距(测相伪距),L1载波相位观测值和L2载波相位观测值(半波或全波); t f t f t t t ?=??+=?+???)()( f c =λ λ?ρ= 由积分多普勒计数得到的伪距差,L1、L2上的多普勒频移,此定位需观测较长时间(数小时),且接收机振荡器高度稳定。 由干涉法测量时间延迟,设备昂贵、数据处理复杂。 目前,广泛采用的基本观测量主要有:码相位观测量和载波相位观测量。实际上,在进行GPS 定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane )、窄巷观测值(Narrow-Lane )、消除电离层延迟的观测值(Ion-Free )来进行数据处理。 L1、L2载波观测量经电离层延迟改正后得到的传播延迟: 2 211)()()(f t f t t T Φ=Φ=? 载波相位观测量线性组合:)()()(21t m t n t nm Φ+Φ=Φ nm nm f t t T )()(Φ=? 2 12 1mN nN N f c mf nf f nm nm nm nm +==+=λ

相关主题
文本预览
相关文档 最新文档