当前位置:文档之家› 半导体激光器发展现状与趋势(精)

半导体激光器发展现状与趋势(精)

半导体激光器发展现状与趋势(精)
半导体激光器发展现状与趋势(精)

材料与器件

半导体激光器发展现状与趋势

何兴仁

(重庆光电技术研究所重庆400060

摘要

半导体激光器占有整个激光器市场的最大份额,并广泛应用于各个领域。为了满足下世纪对更高性能光源的需要,它正朝向宽带宽、大功率、短波长以及中远红外波长发展。量子点激光器作为新一代高性能器件,正在大力开发当中。

关键词半导体激光器,光通信,光存储

1前言

半导体激光器又称为二极管激光器(LD,是目前应用最广泛的光电子器件之一。LD最早大批量应用起始于90年代初的音响CD演放器。此后,随着生长技术的进步、器件量产化能力的提高、性能的改善及成本的下降,LD陆续扩展到许多其它应用领域,包括CD2ROM驱动、激光打印、可擦除光存储驱动、条码扫描、文娱表演、光纤通信,以及航空和军事应用(如军训模拟装置、测距机、照明器、C3I 等。由于LD 的开发始终与迅速增长的用户终端和消费市场,尤其是与计算机、通信技术和军事应用市场紧密结合,其技术和市场一直呈现高速增长趋势。LD的关键技术外延生长技术,由早的L PE发展到普遍采用的MB E和MOCVD,外延材料也因此由体材料演变到超晶格或量子阱之类的人构能带工程材料。LD的阈值电流、响应频率、输出功率、工作温度等主要性能参数大幅度改进,新型器件层出不穷。面向下世纪信息传输宽带化、信

收稿日期:1999202201息处理高速化、信息存储大容量化,以及武器装备高精度、小型化,LD借助于一系列先进技术将继续高速发展。

2技术与应用现状

按照波长和应用领域,LD可大致分为长波长和短波长。实用化短波长LD 覆盖635~950nm范围,以G aAs为衬底外延制作而成,是目前市场上用量最大的器件。在InP衬底上制作的长波长LD,波长范围在950~1550nm,以光纤通信应用为主,其中980nm和1480nm大功率LD用作光纤放大器的泵浦光源[1,2]。

短波长LD对于不同的应用又可分成不同种类。780nm器件是最早的实用化LD,输出功率3mW,用普通的F2P结构,80年代中期用MOCVD实现大批量生产,当时近10家日、美公司生产这种器件。用MOCVD每次可加工30片3英寸的G aAs 外延片,所以780nm波长LD已成为最廉价的激光产品。主要用于音响CD放机、CD2ROM

41

计算机驱动、CD2ROM电视游戏机、迷你放机(只读和激光盘放机等。低档桌上激光打印机用量也占相当数量。该器件的四大生产厂家全集中在日本:松下、索尼、罗本和夏普。目前780nm的LD每年用量已达到1亿支。

670nm以下的Al G a InP红光LD是90年代以来发展最快的半导体光源之一。它采用MOCVD和应变量子阱技术。1985年,日本N EC实现室温连续工作,1988年东芝最先推出670nm产品。90年代红光LD进入条码扫描、激光打印和塑料光纤通信等领域,年市场增长率达100%。到1996年止,全世界用于上述领域的红光LD 已接近年用量500万支。这里特别值得一提的是635 nm~650nm的DVD放机用LD。1995年12月,索尼、菲力浦、Time Warner、东芝与松下、日立、三菱、胜利、先峰,以及后来参加的Thomson2CSF就通用型DVD的标准细节达成最后协议,这不仅掀起一场音像市场的革命,更为红光LD的生产开辟了巨大的潜在市场。预计2000年DVD放像机年产量将超过5000万台。从1996年底开始,三洋每月生产20万支DVD用LD,预计1997年每月提高产量到50万支。夏普、日电每月生产能力可增加到100万支,松下20万支。这些器件均是在G aAs衬底上通过应变层量子阱结构实现,功率3~5mW, I th15mA左右。1997年中期后,这些日本公司又陆续生产

30mW的可写入DVD用LD。这些足以说明应变层量子阱技术在600 nm波段LD 生产中应用完全成熟。

800nm波段LD用途最广泛,其主要特点是大功率。功率提高也是LD实用化的突破口。早在70年代中期,G aAs大功率脉冲激光器就开始用于激光制导和军训。尤其是80年代初,超薄层工艺技术突破,量子阱结构使LD的单管输出功率突破1W (CW的瓶颈。1986年1W以上LD陆续上市。几瓦以上功率的器件有两种:500μm 宽的单条形多模器件和多条形多模阵列。4 W以上功率一般均采用多条形单片阵列。根据现有工艺条件,此功率级的标准产品为1 cm宽阵列条。由单个多条形阵列或若干阵列的组合,可实现更大的输出。对于要求峰值功率的应用,这些阵列条可工作在脉冲模式(QCW,提供100~300W QCW功率。需超过20W CW功率时,可把大功率阵列条以垂直方向堆积,由于这种方式散热困难,堆积组件通常都以Q CW工作。商品市场上的堆积组件脉冲功率高达5kW。个别军用组件功率更大。世界上

800nm左右大功率LD研制生产水平最高的是美国的SDL和Optical Power公司。它们提供的大功率器件占世界市场的60%以上,其次是日本三菱和德国西门子公司。SDL能提供10W~30W CW产品系列,以及数千瓦的脉冲系列堆积组件。Optical Power公司的1 cm单片阵列条输出已超过20W的极限。它们通过改进外延工艺和热监控技术,使1 cm阵列条形LD功率增加一倍,在915nm 峰值波长上单片CW功率达40W,光纤耦合功率30W,脉冲功率155W(水冷条件下。

大功率半导体激光器的应用方式可分为两种:一种作为泵浦固体激光器的泵浦源,另一种是直接利用LD的辐射。808nm LD 泵浦的固体激光器已用于材料加工、光通信、光存储、图像记录等民用领域,以及制导、测距、照明、大气传输等军用领域。固体激光器的传统泵浦源以闪光灯为主,其主要缺点是体积大、寿命短、能耗高、效率低,这些不足正是LD的长处。LD功率低和光束质量差又是固体激光器的优势,所以用LD泵浦固体激光材料,可以优势互补、扬长避短,全面改进固体激光器性能,尤其

51

是电2光效率、体积和寿命,对军事部门非常有吸引力。美国Fibertek公司1991年向陆军交付一台战术用通信发射机,波长532 nm、功率015J/脉冲。1990年麦道公司已开始在F/A218战斗机上试验LD泵浦固体激光测距仪,1991年春投入批量生产。这种激光器已用于相干光雷达。785nm LD泵浦的Ho:YA G红外激光器还作为干扰机源干扰红外制导导弹,波长为2μm,室温输出40W平均功率。

LD泵浦的固体激光器应用市场年增长率达80%以上,1996年民用市场为3114台,1997年增长到4753台,产值分别达到5298万美元和877211万美元。军用市场

的产量少于民品,但产值较高,因军用器件功率和可靠性等要求高于民品。

大功率LD输出更广泛地是直接应用。随着近几年来输出功率不断提高,它在

两用市场中越来越活跃。在军用上,主要是成像雷达、激光测距(1500m左右、武器引爆、武器模拟和卫星之间的大气通信等。雷达主要是820~850nm波长LD及阵列,激光测距和武器引爆用800~900nm大功率脉冲激光器,武器模拟用904nm激光器,大气通信也采用820nm左右的窄光束大功率LD。在民用方面,材料加工和印刷以

及医疗是增长最块的市场,年增长率在50%左右。所以说,800nm波长大功率LD是整个半导体激光市场上最耀眼的明星,是量子阱LD最早实用化的波长区。

在980~1550nm长波长区,980nm、1017nm以及1480nm波长以光放大器泵浦

光源为目的,特点是大功率和单模输出单元器件。其中1480nm In G aAsP/InP长波

长大功率LD最早实用化,用于1550nm波长光放大,80年代中后期用F2P结构,90年代开始以量子阱为主,已形成30mW、50 mW、70mW和100mW系列产品,研制水

平可达到500mW以上单模。980nm In2 G aAs/G aAs大功率LD用于1155μm掺铒光纤放大器,吸收效率更高,噪声更低,因而比1480nm泵浦源更受欢迎。目前这两种放大器用泵浦源都很成熟,在无中继长途大容量数字光通信和孤子波传输系统广泛应用。1017nm波长In G aAlAs/G aAs大功率LD是113μm波长掺钋光放大器用泵浦源,是近几年内发展起来的,已有批量产品,单模输出功率在100mW以上。由于113μm 光纤系统在中短距离和中容量的巨大市场,该器件市场潜力很大。

113μm和1155μm In G aAsP LD分别是石英玻璃光纤零色散和最低损耗区的光源。经三个技术阶段的发展,113~1155μm波长LD生产技术已成熟。L PE生长的

F2P结构113μm LD在80年代中期以前,用于陆地和部分越洋长途干线;1986年DFB结构113μm LD上市,F2P结构器件价格下跌,从上千美元降到数百美元。80年代末期,长途系统应用1155μm DFB LD,F2P LD用于中短系统。同时量子阱结构与DFB结合起来,开发出215Gb/s的产品,工艺技术以MOCVD为主。90年代以来,应变层量子阱技术作为研制器件技术广泛应用,L PE除作为部分生产技术保留外,已完全退出长波长LD研制舞台。长波长LD由于价格远高于短波长LD,其产值在整个LD市场超过50%。其市场主要受发达国家和发展中国家光纤通信设施的促动。这些LD的生产厂家主要分布在日本、北美、欧洲,厂商包括日本的富士通、日立、N EC,北美的朗讯技术和北方电信光电子公司,欧洲的阿尔卡特尔、爱立信和一批小供货商。215Gb/s的1155μmDFB LD广泛应用于更新长途网络,利用4支这种

1155μmDFB LD波分复用(WDM的10Gb/s 系统正在逐步建立。在系统的局间段、中央

61

交换局之间光纤线路用622Mb/s或215 Gb/s LD,在中央局和用户之间主要用113μm F2P LD,传输速率为155Mb/s左右。

3半导体激光器发展趋势

为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量,以及军用装备小型高精度化等需要,半导体激光器正趋向以下几个发展方面,并取得一系列重大进展。

311高速宽带LD

高速宽带LD主要是113μm和1155μm波长LD,用于高速数字光纤通信和微波模拟光信息传输、分配与处理。潜在市场是未来的信息高速公路和军事装备。高速宽带LD从80年代中期长波长光源商品化后便大量开发,主要通过改进管芯制作和

封装技术。最早的高速LD用SI衬底窄有源区BH结构。美国GTE用L PE和V PE两次外延生长的113μm ln G aAsP LD,本征谐振频率超过22GHz,3dB带宽

24GHz; Lasertron、罗克韦尔国际公司均用类似结构获20GHz以上带宽[3]。这种结构因谐振腔小,输出功率受限制。80年代末起,普遍采用DFB技术。90年代以来,又将量子阱引入到有源区中[4]。目前高速BH LD和MQW+DFB LD都已达到商品化,用于10 Gb/s高速数字光纤系统和Ku波段微波模拟光传输。

近几年来,更普遍地将应变层量子阱技术用于高速宽带LD[5]。据理论研究证明: LD的调制带宽特性主要由它的弛豫振荡频率f r和阻尼速率α决定,f r可表示成

f r=

1

2πv

2

g

Γαd G

d N S

=

1

v gгα

hυV actαm

d G

dN

P

式中v g是谐振腔的群速度,α是总的腔损

耗,Γ是光限制因子,d G/d N是微分增益,S是腔内的光子密度,hυ为光子能量, V act为有源区体积,P是发射光功率。对于大的f r,可通过应变层量子阱来提高d G/ d N,减小有源层体积V act,并增加量子阱层数减少αm等来实现。有人预测,压应变In x G a1-x As/InP MQW LD的本征3dB带宽可达到90GHz,而且应变量子阱可使LD 的特征温度、阈值电流、输出功率等主要参数全面改善。如西门子报道的0198μm 压应变ln G aAs/G aAs4阱LD,本征带宽达到63 GHz,3dB带宽达到30GHz;贝尔实验室和朗讯技术公司开发的应变补偿ln G aAs2 G aAsP2In G aP MQW LD,内量子效率80%, 3dB带宽25GHz,低至0115ns的K因子证明了59GHz的最大3dB带宽。德国固体物理应用所等研制的In G aAs2G aAs MQW LD以20Gb/s实现无制冷130℃高温工作。312大功率LD

半导体激光器大功率化趋势仍将集中在800nm波段,其次是2μm左右。在

800nm 波段,光泵浦源又是重点[6]。其发展趋势:一是侧面发射1cm阵列条堆积组件。其基本结构是先把若干1cm阵列条横向拼装成为光子组合块(L SA,然后将许多“L SA”纵向堆积成堆(stack,随即把几个“stack”集合成集合块(manifold,最后把许多“manifold”组合成大阵列。美国的SDL将50个100W的L SA构成manifold,通过

2×2manifold获得20000W峰值功率;用44个100W的L SA构成4×4mani2 fold获得了70400W峰值总功率。

二是开发表面激射的二维阵列。这种结构从技术上讲本身就具备一次性形成单片式超大功率LD的潜力,其次是便于以后集合成超大功率LD组件。目前正在开发的表面大功率LD阵列结构有DBR二次折射光栅、曲形谐振腔和45°角内腔微反射镜。休斯公

71

司danbury光电系统用二次折射光栅G aAlAs DBR结构,以3×4元阵列获得20 W CW输出,这种光源可用于100km左右的远程激光雷达;麻省理工学院林肯实验室利用谐振腔朝上弯曲的曲形腔面发射结构获40W CW输出;法国汤姆逊公司采用这种方式获得了单片1000W准连续工作(QCW;SDL积极开发45°内腔微反射镜面阵,以4×12元获得132W CW输出功率。313短波长LD

对于光信息存储而言,波长越短越有利于聚焦成小光斑,从而增加信息存储密度和容量;许多信息系统终端的感光体的感光度也与光源的波长成反比;在显示方面,绿色是基色之一,所以蓝2绿光已成为全色显示的关键。在600nm以上LD商品化之后,蓝2绿光LD就成了短波长化的主要目标。1991年,美国3M公司的Cheng等人解决了ZnSe材料的p型和n型掺杂技术,以量子阱结构首次报道490nm蓝光激射,使多年徘徊不前的Ⅱ-Ⅴ族材料研究向实用化器件迈出了历史性一步。此后器件研究活跃起来,日本的索尼、松下、日亚,美国的3 M、IBM,欧洲的菲力浦等,以及许多大学都在开发这种器件。1993年[7,8],日本索尼公司523nm ZnSe蓝2绿LD室温下CW工作;1997年室温下CW工作时间超过100小时。同时用于蓝2绿LD的材料还有G aN,日亚的In G aN LD也已实现了室温下CW工作。最近又超过300小时的CW工作时间。两种材料均存在晶体生长中缺陷引起可靠性问题,哪种材料的LD最先进入商品市场目前还难说。但可以肯定蓝2绿光LD在下世纪将成为重点商品化器件。

314量子线和量子点激光器

量子线激光器和量子点激光器的概念是1982年由东京大学尖端技术研究中心的荒川泰彦等人提出来的[9]。在通常的量子阱中,电子在层厚度方向量子化,电子能够沿着薄膜的平面内自由运动,电子的自由度变成2,其态密度呈台阶函数曲线。与此相比,在量子线和量子点中,电子的自由度分别变成1和0。尤其是在量子点结构中,电子已不能自由运动了。随着自由度趋向于0,电子的态密度分布形状将越尖锐。它引起的结果是电子能级分布与增益谱集中,因此对相同的载流子浓度,自由度减少,增益峰值就变高,而使阈值电流明显下降。据理论预测,量子点LD的阈值电流可低于1μA。

另一方面,由于态密度尖锐化,伴随温度上升由费米函数引起的增益扩张得以抑制,这等于抑制了阈值电流的温度依赖性,提高了特征温度系数T0。量子限制效应还使LD的调制带宽和光谱线宽等动态特性大幅度改善。因微分增益g由于量子效应而增大(g的平方根与弛豫振荡频率f r成正比,线宽增强因子α由于量子效应而下降。

量子线和量子点激光器80年代完成理论研究,90年代进入广泛工艺实施阶段。国外有大量公司、研究所和院校在进行该领域的研究。为了实现室温下量子线或量子点LD CW工作,线尺寸必须减少到20nm以下,而且尺寸误差必须十分小。这对微细加工技术提出了严峻的挑战。

目前的试制技术大致分成两类:微细加工与晶体生长法。前者可以是电子束、聚焦离子束、X射线光刻和掩模;后者有横向生长、倾斜衬底台阶气相生长、激光辅助原子束外延(AL E生长等。微细加工技术使用最广的是先在衬底刻蚀出沟槽(Ⅴ形,然后进行选择性生长线结构。贝尔通信研究所(Bellcore最早采用,获80nm量子线和013mA阈值电流,东工大、韩国大学、中科院等均用这种技术获得60~80nm 宽量子线。晶体生长法,最近几年来自组织法使用最广。它是1993年,日本N TT公司的

81

第 12 卷第 4 期光电子技术与信息 1999 年 8 月天明二郎等人用 MOV PE 在GaAs 衬底上生长 In GaAs/ Al GaAs 量子阱过程中 , 偶然发现的纳米尺寸自组织现象。在 ( 311 B 衬底上 , 生长 In GaAs 薄膜后 , 在高温下中断几分钟 , 便在内部自动形成 100 nm 以下尺寸的应变量子点。它比人工法形成的低维化结构显示出更优良的晶格质量与界面结构 , 而且尺寸在 20 ~ 100 nm 范围可控制 , 是目前最有前途的量子点形成技术。N T T 、富士通公司、密执安大学、柏林大学等都用这种技术研制了量子点激光器 , 尺寸最小在 20 nm 以下 , N T T 还获得室温振荡成功。目前量子线和量子点激光器仍处于基础研究阶段 , 还有许多技术问题 , 但它必将成为下世纪新一代高性能 LD 。大功率中红外 ( 3 ~5 μm LD 是目前急需的

半导体光源 , 它在红外对抗、红外照明、激光雷达、大气窗口自由空间通信、大气监视和化学光谱学等方面有广泛应用前景。近几年来 , 中红外 LD 在工作温度和输出功率提高方面取得了明显进展 , 主要采用一般量子阱和新开发的量子阱结构。在普通的 QW 结构中 ( I 型 , 电子和空穴被限制在相同的层内。因 Ga InAsSb 和 Al GaAsSb 能够形成 I 型能带对准 , 以有效地限制载流子并提供良好的光波导2 μm 波长 , 由 Ga InAsSb 有源层和 Al GaAsSb 限制层构成的 LD 自 80 年代以来获得广泛开发 , 在2 μ m CW 工作高达 400 K , 在217 μm CW 工作到 234 K , 在315 μm 到 175 K , 在319 μ m 到 128 K。由1 μm LD 阵列泵浦的4 μm 激光器在 92 K 产生 2 W 的峰值功率和 240 mW 的平均功率。Ⅱ型结构的激射作用是1986 年由前苏联科学家首次报道的 , 90 年代引入 Ga InSb/ InAs 超晶格。在Ⅱ型结构中 , 电子和空穴被限制在不同的外延层内 , 光学跃迁 315 中红外 LD 选取不受 Sb 化合物限制 , 波长可更长。通过调节不同材料组分和 QW 厚度 , 在 5 ~ 8 μm 工作的级联激光器已实现高达 320 K 脉冲工作和 140 K CW 工作 , 脉冲功率在300 K 达到 200 mW/ 面。 LD 和高性能 LD 的开发 , 下世纪半导体 LD 通过隧道发生。这种结构的 LD 在 218 和413 μm 波长之间脉冲工作达 160 K , 最好性能是312 μm 获 255 K 的最大脉冲工作温度。Ⅲ型结构一般是在 QW 中使用内子带[ 10 ] 跃迁 , 又叫做量子级联 ( QC 激光器。对于Ⅰ型和Ⅱ型结构 , 在 GaSb 或InAs 衬底上生长含 Sb 合金 , 因为它们的禁带能级适合用于中红外激射 , 而内子带激光器的激射波长由能带偏移和量子阱厚度决定 , 材料除上述三种技术外 , 利用现在十分成熟的近红外 LD 作泵浦源 , 不失为获得中红外大功率的有效途径。1994 年 , 林肯实验室用0194 μm LD 作泵浦源 , 先后通过泵浦 Ga InAsSb/ Al GaAsSb 和InAsSb/ AlAsSb DH 结构 , 在 3~4 μm 波长和 95 K 温度下获得 1 ms 脉冲 1 W 以上峰值功率 ; 通过优化结构、改进封装降低热阻在3195 μm 、92 K 取得了 2 W 峰值功率和 240 mW 平均功率 ; 用Ⅰ QW 和Ⅱ型型结构 , 在 3 ~4 μm 也获得了 1 W/ 面以上峰值功率。 4结束语半导体激光器在红光和115 μm 波段范围以内的技术已十分成熟 , 大量的商品器件将涉足更广泛的两用领域 , 保持持续高速的市场增长。 19 在军、民两用的广大市场上受到欢迎。截止 1997 年底 , 全世界的

LD 销量已超过 211 亿支 , 产值超过 20 亿美元 , 占世界整个激光市场的 2/ 3 强。随着新型波长 ( 短、长

第 12 卷第 4 期光电子技术与信息 1999 年 8 月参考文献 1何兴仁 1 国外激光 , 1993 , (4 : 1 (2 : 123 (3 : 306 2 Steele R1 L aser Focus Worl d , 1997 , 33 (2 : 84 5 Goutain E et al . Elect ron L ett , 1996 , 32 (10 : 896 6 He X et al . Elect ron L ett , 1997 , 33 (14 : 1221 7 Nakamura S et al . J Japan A ppl Phys , pt 2 , 1997 , 36 : 1059 8 Taniguchi S et al . Elect ron L ett , 1996 , 32 ( 6 : 552 9荒川泰彦等 . 光学 , 1996 , 25 (8 : 442~472 10 Sirtori C et al . A ppl Phys L ett , 1996 , 68 : 1745 3 Atlas D A et al . I EEE Photo Techn L ett , 1993 , 15 4 Lingren S et al . I EEE Photo Techn L ett , 1994 , 19 The Status of Development in Diode Lasers and Its Trends He Xi n gren

( Chongqi ng O ptoelect ronic Research Instit ute Chongqi ng 400060 Abstract Diode lasers represent t he largest share of t he worldwide laser market , and are used widely in many fields. In order to meet to request for higher performance diode lasers next cent ury , far inf rared wavelengt h. As new a generation device quant um dot lasers are being researched and developed wit h an effort . Key words diode lasers , optical commun ication , optical memory it ’s develop ment are t rending towards wide bandwidt h , high power , short wavelengt h and mid2 ( 上接第 13 页 ing for high density data storage and various aspect s associated wit h t his recording technology , mechanisms. Finally , develop ment s of recording medium is discussed. 20 crystals ; Second , application of two2 p hoton absorption to t hree2 dimension density optical data namely , fiber probe fabrication and characterization , and apert ure2medium separation cont rol Key words holograp hic data storage , two2p hoton absorption , optical near2 field recording This article int roduces recent advances in high2density optical data storage. First , we will discuss t hree2 dimension holograp hic memory systems , including multiplexed recording met hods such as multi2wavelengt h , multi2 angle , nondest ructive readout met hod , error correction in vol2 ume holograp hic memory systems and lifetimes of t hermally2fixed holograms in p hotoref ractive storage is described. Following t his , we will review recent advances in optical near2field record2

Recent Advances in High2Density Optical Data Storage W ang W ei w ei M i ng Hai ( Department of Physics , University of Science and Technologyof China Hefei 230026 Abstract

全球和中国半导体产业发展历史和大事记

全球和中国半导体产业发展历史和大事记 1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。 1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。 1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。 1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI (甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。 1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。 1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。 1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。 1963年,河北省半导体研究所制成硅平面型晶体管。 1964年,河北省半导体研究所研制出硅外延平面型晶体管。 1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。 1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。 1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。 七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

功率半导体器件在我国的发展现状

功率半导体器件在我国的发展现状 MOSFET是由P极、N极、G栅极、S源极和D漏级组成。它的导通跟阻断都由电压控制,电流可以双向流过,其优点是开关速度很高,通常在几十纳秒到几百纳秒,开关损耗小,适用于各类开关电源。但它也有缺点,那就是在高压环境下压降很高,随着电压的上升,电阻变大,传导损耗很高。 随着电子电力领域的发展,IGBT出现了。它是由BJT和MOS组成的复合式半导体,兼具二者的优点,都是通过电压驱动进行导通的。IGBT克服了MOS的缺点,拥有高输入阻抗和低导通压降的特点。因此,其广泛应用于开关电源、电车、交流电机等领域。 如今,各个行业的发展几乎电子化,对功率半导体器件的需求越来越大,不过现在功率半导体器件主要由欧美国家和地区提供。我国又是全球需求量最大的国家,自给率仅有10%,严重依赖进口。功率半导体器件的生产制造要求特别严格,需要具备完整的晶圆厂、芯片制造厂、封装厂等产业链环节。国内企业的技术跟资金条件暂时还无法满足。 从市场格局来看,全球功率半导体市场中,海外龙头企业占据主导地位。我国功率半导体器件的生产制造还需要付出很大的努力。制造功率半导体器件有着严格的要求,每一道工序都需要精心控制。最后的成品仍需要经过专业仪器的测试才能上市。这也是为半导体器件生产厂家降低生产成本,提高经济效益的体现。没有经过测试的半导体器件一旦哪方面不及格,则需要重新返工制造,将会增加了企业的生产成本。

深圳威宇佳公司是国内知名的功率半导体检测专家,专门生产制造简便易用、高精度的设备,让操作人员轻松上手操作,省力更省心。如生产的IGBT动态参数测试设备、PIM&单管IGBT 专用动态设备、IGBT静态参数测试设备、功率半导体测试平台等,均是经过经验丰富的技术人员精心打磨出来的,设备高可靠性、高效率,已在市场上应用超过10年,历经了超过500万只模块/DBC的测试考验。

半导体产业现状、发展路径与建议

半导体产业现状、发展路径与建议 摘要:在当前数字时代、智能时代,半导体无处不在,对科技和经济发展、社会和国家安全都有着重大意义。半导体产业属于高度资本密集+高度技术密集的大产业,经历了由美国向日本和美日向韩国、中国台湾的两次产业转移,每次转移均伴随着全球消费需求周期变化以及产业垂直精细化分工。而当前中国已成为全球最大的半导体消费国,同时也是全球消费电子制造中心,这会推动半导体产业进一步向中国移转。在已经到来的半导体行业第三次产业转移中,中国将成为最大获益者。准确把握半导体行业发展趋势,正确制定支持策略,对于半导体行业业务机遇、加强服务实体经济和科技创新的能力具有重要意义。 关键词:半导体产业;现状;发展路径;建议 1我国半导体产业的发展现状 1.1技术处于追赶期,仍有相当差距 据中国半导体行业协会统计,中国半导体呈现“设计-制造-封测”两头大中间小的格局。分领域看,国内芯片设计业增速最快,为27%,与美国等全球先进企业差距不断缩小。封测业因成本和市场地缘优势,发展相对较早,具有较强的国际竞争力。但是在制造方面,国内企业与全球先进水平还存在较大差距,难以掌握核心技术和关键元件,生产线采用的技术落后于国际先进水平至少一代,核心技术甚至要落后三代。例如,台湾地区就明令禁止向大陆相关工厂提供最尖端的生产工艺,只允许引进落后一代的技术。从芯片制造领域细分来看,目前处理器市场已有中国公司具备参与国际竞争的能力,但在存储芯片市场,国内企业几乎是一片空白。目前中国三大存储芯片企业——长江存储、合肥长鑫、福建晋华等正加紧建设存储芯片工厂,最快在2018年开始投产,不久的将来中国将成为与日韩比肩的存储芯片生产地。其中,规模最大的为紫光集团旗下的长江存储,主要采用3DNANDFlash技术;合肥长鑫、福建晋华则以DRAM存储芯片为主。 1.2中国半导体行业迎来黄金发展期 从行业趋势判断,中国半导体行业正面临前所未有的战略机遇,可谓是天时地利人和。天时,首先是摩尔定律已近极限,为后来者提供了追赶的空间。摩尔定律揭示了信息技术进步的速度,尽管这种趋势已经持续了超过半个世纪,摩尔定律仍应该被认为是观测或推测,而不是一个物理或自然法则。由于硅半导体的发展趋近物理极限,芯片性能不可能无限制翻番,其性能的提升越来越困难。当芯片发展到7纳米以后,发展速度会降低。在2013年年底之后,晶体管数量密度预计只会每三年翻一番,该定律一般预计将持续到2015年或2020年。而在向新的发展方向和领域突破时,半导体行业重新划定了新的起跑线,这为后来者提供了追赶的时机。其次,随着数字经济的发展,芯片不仅仅应用于电脑、手机,还包括云计算服务器,无人驾驶的智能汽车上,以及物联网上的芯片,芯片应用领域的迅速扩大,为后来者站稳市场脚跟创造了新的机会。地利,中国已经成为全球最大的半导体消费市场,本土化、国产化需求成倍增长。同时,中国芯片制造领域也在持续发力,经过多年自主创新和国际并购,在半导体行业积累了一定的技术和人才,在产业布局和个别环节上出现了具有一定竞争力的企业,为后续实现赶超和跨越式发展打下了良好基础。人和,中国具有稳定的政治环境和政策基础,支持半导体行业的发展已经被提升到国家战略高度,出台了明确的发展规划,在政策和资金上给予大力扶持。 1.3国家战略支持

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

【发展战略】我国半导体产业的现状和发展前景

五、半导体篇 ——我国半导体产业的现状和发展前景 电子信息产业已成为当今全球规模最大、发展最迅猛的产业,微电子技术是其中的核心技术之一(另一个是软件技术)。现代电子信息技术,尤其是计算机和通讯技术发展的驱动力,来自于半导体元器件的技术突破,每一代更高性能的集成电路的问世,都会驱动各个信息技术向前跃进,其战略地位与近代工业化时代钢铁工业的地位不相上下。 当前,世界半导体产业仍由美国占据绝对优势地位,日本欧洲紧随其后,韩国和我国台湾地区也在迅速发展。台湾地区半导体工业已成为世界最大的集成电路代工中心,逐步形成自己的产业体系。 我国的微电子科技和产业起步在50年代,仅比美国晚几年。计划经济时期,由于体制的缺陷和其间10年“文革”,拉大了和国际水平的差距。进入80年代,我国面对国内外微电子技术的巨大反差和国外对我技术封锁,我们没有能够在体制和政策上及时拿出有效应对措施。国有企业无法适应电子技术的快节奏进步,国家协调组织能力下降,科研体制改革缓慢,以致1980~1990年代我国自主发展半导体产业的努力未获显著效果。 “市场‘开放’后,集成电路商品从合法、不合法渠道源源涌入,集成电路所服务的终端产品,以整机或部件散装的形式,也大量流入,但人家确实考虑到微电子的战略核心性质,死死卡住生产集成电路的先进设备,不让进口,在迫使我们落后一截,缺乏竞争力的同时,又时刻瞄准我们科研与生产升级的潜力,把我们的每一次进步扼杀在萌芽状态,冲垮科技能力,从外部加剧我们生产与科研的脱节,迫使我们不得不深深依赖他们。……我们的产业环境又多多少少带有计划色彩,不能很快与国际接轨,其中特别是对微电子产业发展有重大影响的企业制度、资本市场、税收政策、科研体制等,又不适应市场经济要求,使得我们在国际竞争中缺乏活力”。1 20世纪90年代,我国半导体产业的增长速度达到30%以上,但其规模仅占世界半导体子产业的1%,仅能满足大陆半导体市场的不足10%。即使“十五”期间各地计划的项目都能如期实施,到2005年,我国半导体产业在世界上的份额,顶多占到2%~3%。自己的设计和制造水平和国际先进水平的差距很大,企业规模小、重复分散、缺乏竞争力,基本上是跨国公司全球竞争战略的附庸,自己的产业体系还没有成形。 我国半导体产业如此落后的现状,使得我国的经济、科技、国防现代化的基础“建筑在沙滩上”。在世界微电子技术迅猛发展的情况下,我国如不努力追赶,就会在国际竞争中越来越被动,对我国未来信息产业的升级和市场份额的分配,乃至对整个经济发展,都可能造成十分不利的影响。形势逼迫我国必须加快这一产业的发展。“十五”计划中,加快半导体产业的发展被放在重要地位,这是具有重大意义的。 发展中国家要追赶国际高科技产业的步伐,一般都会面临技术、资金、管理、市场的障碍。高科技的产业化是一个大规模的系统工程,需要科研和产业的紧密结合,以及各部门的有效协调,而这些都不是单个企业所能跨越得过去的。在市场机制尚未成熟到有效调动资源的情况下,高层次的组织协调和扶持是必需的。构建具有较高透明度的政策环境和市场环境。有助于鼓励高科技民营企业进入电路设计业领域,鼓励生产企业走规模化和面向国内市场自主开发的路子,形成产业群体。 1许居衍院士,2000年。

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体激光器的最新进展及应用现状

半导体激光器的最新进展及应用现状 发表时间:2018-11-11T11:02:03.827Z 来源:《电力设备》2018年第18期作者:黄志焕[导读] 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。 (天津环鑫科技发展有限公司 300384) 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。由于半导体激光器具有体积小、寿命长、电光转换效率高、调制速度快、波长范围宽和易于集成等优点,在光互连、光通信、光存储等方面具有广泛的应用。 关键词:半导体激光器;最新进展;应用现状 1半导体激光器研究的意义半导体激光器的研究是我国光电技术研究的重要内容,是国家重点提出并且一直在努力寻求新的突破的领域。就当前半导体激光器研究的意义来看,对国家的发展具有重要的现实意义。与此同时,半导体激光器在各行各业的应用都十分广泛,并且呈现出以每年20%以上的增长速度,比如,军师领域的激光雷达、制导以及医疗、通讯、光盘等都开始应用半导体激光器。其涉及领域之广,扩展速度之快,应用价值之强,是被广泛认可的。近年来,随着信息科技的不断发展,人们对半导体激光器的性能要求越来越高,传统的半导体激光器在具体的实践应用当中已经表现出明显的不足之处。因此进行半导体激光器的研究,不短提升半导体激光器的现代化水平,具有重要的现实意义。 2半导体行业半导体器件是电子电路中必不可少的组成成分。半导体是人们为了生产生活需要,将两物质按照电学性质进行分类时确定的一个名称。它的导电性介于导体和绝缘体之间。半导体导电性能全是由其原子结构决定的。以元素半导体硅和锗为例,其原子序列分别是14和32,它们两个最外层电子数都是4。半导体具有自由电子和空穴两种载流子。而半导体的性质不同于导体和绝缘体,就是因为半导体拥有的载流子数目不同而载流子是能够运动的荷电粒子。电子和空穴都是载流子,它们相互运动即可产生电流。硅和锗是最为典型的元素半导体。 根据构成物质元素的不同,半导体可分为元素半导体和化合物导体,元素半导体由一种元素构成,化合物半导体由多种元素构成。而根据掺杂类型的不同,半导体可分为本征半导体、N型半导体和P型半导体;如果按照原子结构的排列规则不同,又可分为单晶半导体、多晶半导体和非晶态半导体。半导体行业具有技术密集、资金密集,高风险高回报和知识密集等特点。进入2010年以来,国家大力支持半导体行业的发展,2011年11月,国家税务总局和财政部联合发布了《关于退还集成电路企业采购设备增值税期末留纸税额》;2012年4月政府部门又发布了《关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》;而于2014年,工信部又发布了《国家集成电路产业发展推进纲要》。近几年,我国半导体行业发展速度超快,半导体产业逐渐呈现向大陆地区转移的新趋势,为我国各行业的发展带来设备国产化的发展机遇。而且政府政策大力支持半岛体行业的发展,大基金入场将会加速产业转型升级,成熟化发展。半导体具有掺杂特性、热敏性和光敏性三大特点。 3激光器顾名思义,激光器是一种能发射激光的装置。1954年,人们制成了第一台微波量子放大器;1958年A.L.肖洛和C.H.汤斯把微波量子放大器的原理推广到光频范围;1960年T.H.梅曼等人制成了第一台红宝石激光器;1961年A.贾文等人制成了第一台氦氖激光器。1962年R.N.霍耳等人制成了第一台半导体激光器;之后,激光器的种类就越来越多。一般而言,按工作介质分类,激光器可分为固体激光器、气体激光器、染料激光器和半导体激光器4大类。激光器的组成一般由3个重要部分构成,即工作物质、激励抽运系统、谐振腔。其中激光工作物质是一种激光增益的媒介,其原子或分子的能级差决定了激光的波长与频率。激光抽运系统是指为使激光器持续工作给予能量的源头,它实现并维持了工作物质的粒子数反转。光学谐振腔是激光生成的容器,有多种多样的设计方式是激光器设计的核心。 4激光器系统功能 4.1逻辑控制 系统通过操作面板实现逻辑控制,主要控制功能有3个。(1)内时钟工作:通过RS-422通信接口,向电源控制单元发射出光指令,工作频率可1-20Hz切换,同时通过LED反馈激光器工作状态。(2)外时钟工作:利用外部开关切换至外时钟,利用DSP外部中断接口检测外时钟。(3)自检功能:通过按压自检开关,触发激光器发射激光。 4.2高精度时序控制 激光器输出能量的大小和稳定性与激光电源的高精度时序是密不可分的,必须确保电源控制系统输出时钟的精度及稳定性。为实现μs级高精度控制逻辑,采用DSP控制芯片内置的PLL模块完成高精度时序控制,锁相环独有的负反馈和倍频技术可以提供高精度、稳定的频率,DSP 输入时钟30MHz,倍频到150MHz,时钟周期可达6.67ns。通过精确的技术方法,按照设计的延时产生所需的各路时钟,可以满足高精度的时序配置要求。 4.3恒流源驱动控制 激光器电源控制系统接收到激光发射的信号后,DSP输出12位数字信号,通过DAC1230芯片,将数字信号转换成相应的模拟参考电压信号。恒流源电路中的采样电阻R将通过泵浦模块的电流转换成相应的电压,经过F放大电路后,与参考电压进行比较,产生功率驱动信号,此信号控制功率管的开关。同时可通过DSP改变参考电压的大小,实现恒流源电流的调节。激光电源控制系统还可通RS-422通信接口,远程设置恒流源的电流和脉宽。 4.4温度控制系统 温度是影响激光器泵浦模块输出波长和泵浦效率的重要因素,故对泵浦模块进行控温是必不可少的。半导体激光器一般采用半导体热电致冷器进行控温,该制冷器具有无机械运动、无噪声、无污染、体积小、可靠性高、寿命长、制冷迅速、冷量调节范围宽及冷热转换快等特点。测温元件采用电流输出型温度传感器AD590,特点是工作直流电压较宽,一般为4-30V,输出电流为223μA(-50℃)-423μA(+150℃),灵敏度为1μA/℃。

2019年半导体分立器件行业发展研究

2019年半导体分立器件行业发展研究 (一)半导体行业基本情况 1、半导体概况 (1)半导体的概念 半导体是一种导电性可受控制,常温下导电性能介于导体与绝缘体之间的材料。半导体的导电性受控制的范围为从绝缘体到几个欧姆之间。半导体具有五大特性:掺杂性(在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性)、热敏性、光敏性(在光照和热辐射条件下,其导电性有明显 的变化)、负电阻率温度特性,整流特性。半导体产业为电子元器件产业中最重 要的组成部分,在电子、能源行业的众多细分领域均都有广泛的应用。 (2)半导体行业分类 按照制造技术的不同,半导体产业可划分为集成电路、分立器件、其他器件等多类产品,其中集成电路是把基本的电路元件如晶体管、二极管、电阻、电容、电感等制作在一个小型晶片上然后封装起来形成具有多功能的单元,主要实现对

信息的处理、存储和转换;分立器件是指具有单一功能的电路基本元件,主要实现电能的处理与变换,而半导体功率器件是分立器件的重要部分。 分立器件主要包括功率二极管、功率三极管、晶闸管、MOSFET、IGBT等半导体功率器件产品;其中,MOSFET和IGBT属于电压控制型开关器件,相比于功率三极管、晶闸管等电流控制型开关器件,具有易于驱动、开关速度快、损耗低等特点。公司生产的MOSFET系列产品和IGBT系列产品属于国内技术水平领先的半导体分立器件产品。半导体器件的分类示意图和公司产品所处的领域如下图所示:

在分立器件发展过程中,20 世纪50 年代,功率二极管、功率三极管面世并应用于工业和电力系统。20 世纪60 至70 年代,晶闸管等半导体功率器件快速发展。20世纪70年代末,平面型功率MOSFET 发展起来;20 世纪80 年代后期,沟槽型功率MOSFET 和IGBT 逐步面世,半导体功率器件正式进入电子应用时

半导体发展现状与发展趋势

半导体发展现状与发展趋势 学院:机电学院班级:材成102 学号:5901210080 姓名:雷强强 摘要:半导体照明具有节能、环保、寿命长、尺寸小等优点,能够应用在各种各样的彩色和白色照明领域。发展半导体照明产业具有重大意义,能缓解能源危机,改善环境污染问题,有利于国民经济可持续发展。本文在介绍半导体照明特点的基础上,论述了半导体照明研究进展,分析了我国半导体照明产业发展面临的相关技术问题,最后对半导体照明工程发展趋势作了展望。 关键词:半导体照明、发光二极管、节能与环保 引言: 1879年,爱迪生发明了第一只作为热辐射电光源的碳丝白炽灯,使人类从漫长的火光照明时代进入了电气照明时代,第一次革命性地改变了人们的照明方式,拉开了人类现代文明的帷幕。 照明电光源经历了白炽灯、荧光灯、高强度气体放电灯三代产品,光效不断提高,耗电量不断下降,对人类社会的发展起了至关重要的作用。今天,人们在关注光照效率的同时,更注重照明方式对环境的影响。随着科学技术的进步,又一种新型电光源---发光二极管

照明(LED)即半导体照明,真正引发了电光源照明技术的质变,以其体积小、寿命长、耐闪烁、抗震动、色彩丰富、安全可控、节能环保、无紫外线和红外线辐射等全面优势掀起了第四次电光源技术革命,将电光源照明推进到节能环保的时代。 半导体照明应用的意义,绝不亚于前几次照明领域的技术革命。因为半导体照明将作为最有效的节能和环保的手段,将通过改善人类生存环境、发展照明的新概念和新模式来改善和提高人类的生活质量。 1.半导体照明的特点 1.1 半导体照明的机理 所谓半导体照明,是指利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合,释放出过剩能量引起光子反射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED 的核心PN 结,具有正向导通、反向截止等特性。当PN 结施加正向电压,电流从LED 的阳极流向阴极时,半导体晶体发出从紫外到红外不同颜色的光线,光的强弱与电流大小有关,电流越大,发光亮度越高[1]。 1.2 半导体照明的优点 在同样亮度下,半导体灯的电能消耗仅为白炽灯的八分之一,因此半导体照明的应用将大大节约能源,同时还将减少二氧化碳的排放量[2]。2003 年,我国照明用电共2292 亿度。按照每年增长5%计算,到2010 年,照明用电可达3225 亿度以上。假如到2010 年有三分

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

功率器件的发展历程

功率器件的发展历程 IGBT、GTR、GTO、MOSFET、IGBT、IGCT…… 2009-12-08 08:49 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是: 漏电流小、通态压降较高(1 0~1 8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1 6~4 0V)。它主要用于斩波、逆变等电路中充当旁路

关于中国半导体产业发展的现状分析和趋势展望

关于中国半导体产业发展的现状分析和趋势展望 摘要:步入二十一世纪的第十个年头,伴随着中国经济实体的繁荣发展,中国的半导体产业即将进入产业大发展的战略机遇期,如何把握机遇更好更快的发展半导体产业成为了未来中国经济发展的重点之一。中国半导体设计、制造、封测共同发展,结构日渐优化,产业链逐步完善,形成了相互促进共同发展的良好互动的大好局面。然而,由于各式各样的原因,半导体产业同时也面临着种种困难和挑战,如何制定科学合理的发展战略则成为了产业发展的重中之重。总之,中国半导体产业的发展充满机遇和挑战。 关键词:半导体产业科学发展产业调整战略优化 正文: 一、中国半导体产业的现状及分析 中国的半导体市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大,相反,中国的半导体市场正日益成为外资公司的乐土。国内半导体公司的发展面临强大的压力,生存环境堪忧。从两大分支上看,分立器件由于更新换代较慢、对技术和制造的要求较低、周期性也不明显,因而更适合国内企业,加上国际低端分立器件产能的转移,国内企业能够在低端市场获得优势。而从产业链环节上看,我们相对看好设计业,认为本土设计公司有突破的可能。基于政策支持、市场需求和产能转移,我们判断半导体行业在国内有很大的增长潜力。 二、长三角半导体产业的集群效应 我国尤其是长三角地区的半导体产业在国际半导体产业转移过程中获得了极好的发展机会,半导体产业初步形成了有一定规模的半导体产业集群,大大地推动了长三角地区的产业结构升级和带动了地区经济的发展。目前长三角地区已经成为我国集成电路产业的重镇,在国际半导体产业版图也占有极其重要的一席之地。但是应该认识到,长三角地区的半导体产业集群还只是如低廉的劳动力成本、地方政府提供的土地与财税优惠政策等基本生产要素驱动所形成的。这种低层次生产要素无法构成我国半导体产业的长久竞争优势,很快就会被以低成本比较优势的后起之秀所取代。长三角地区目前已经具有较好的半导体产业集群基础,国内又有极为庞大的内需市场,在国际半导体产业大转型的产业背景下,我们应转变传统靠低成本比较优势来招徕产业投资的观念,而应积极建立促进半导体产业高层次生产要素产生的机制,来提升长三角地区半导体产业集群的国际竞争力。 There was favorable opportunity for semiconductor industry development in China, esp. the Changjiang River delta, during the global industry transferring. There is semiconductor industrial cluster in this area and it improves the industry structures greatly and drives the economy development. The Changjiang River delta has been being as the most important area of China Semiconductor industry and it also is important in global semiconductor market.But we have to say that the semiconductor industrial clusters in the Changjiang River delta is initiated by generalized factors such as low labor cost, privilege policy of finance and landing provided by local governments. These generalized factors cannot be the competitive strength in long term and will be replaced soon by other area with low-cost comparison strength. The Changjiang River delta has good foundation of semiconductor industrial clusters and there is a huge marketing, so we should take proactive actions to buildup the environment and system to encourage high-level factors generating for semiconductor industry, during the transforming time of industry. Only in this way, we can promote the global competitive strength of the semiconductor industry in the Changjiang River delta. 三、南昌半导体照明成为国家半导体照明工程产业化基地

相关主题
文本预览
相关文档 最新文档