当前位置:文档之家› 常系数线性方程组

常系数线性方程组

常系数线性方程组
常系数线性方程组

线性微分方程组

第五章 线性微分方程组 [教学目标] 1. 理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解的性质与结构, 2. 理解n 阶线性微分方程与一阶线性微分方程组的关系。 3. 掌握非齐次线性微分方程组的常数变易法, 4. 理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。 5. 掌握常系数线性微分方程组的Laplce 变换法。 [教学中难点]求解常系数非齐次线性微分方程组 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce 变换法。 [考核目标] 1.线性微分方程组解的性质与结构。 2.能够求解常系数线性微分方程组。 §5.1 存在唯一性定理 5.1.1记号和定义 考察形如 1 11112211221122222 1122()()()()()()()()()()()()n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++?? ??'=++++? (5.1) 的一阶线性微分方程组,其中已知函数()(,1,2,,)ij a t i j n = 和()(1,2,,)i f t i n = 在区间a t b ≤≤上 上是连续的。方程组(5.1)关于12,,,n x x x 及1 2,,,n x x x ''' 是线性的. 引进下面的记号: 1112121 22 212()() ()()() ()()()() ()n n n n nn a t a t a t a t a t a t A t a t a t a t ??????=?? ? ? ?? (5.2) 这里()A t 是n n ?矩阵,它的元素是2 n 个函数()(,1,2,,)ij a t i j n = . 12()()()()n f t f t f t f t ??????=?????? 12n x x x x ??????=?????? 1 2n x x x x '????'??'=???? '?? (5.3)

(整理)几个重要的特殊数列

几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多?斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为 (),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为 (),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为 (),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给出) 因此对于斐波那契数列,对应的特征方程为,其特征根为:

,所以可设其通项公式为,利用初始条件得,解得 所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。如在上述数列中,我们将作为第

第三章 一线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n ==L det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-L L M M M L

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλL 这时 12100 n T AT λλλ-??????=?????? 方程组(3.20)变为 11122200n n n dz dx z dz z dx z dz dx λλλ??????????????????????=???????????????? ?????? M M (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=????????M 220010(),,()0001n x x n Z x e Z x e λλ????????????????==???????????????? L M M 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ???? ??==?????? M (1,2,,)i n =L

2021年常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 欧阳光明(2021.03.07) 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics,Chaohu CollegeAnhui,Chaohu) Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the

矩阵乘幂优化k阶常系数线性递推关系

矩阵乘幂优化k 阶常系数线性递推关系 一、认识k 阶常系数线性递推关系 我们熟悉的Fibonacci 数列:F[n]=F[n-1]+F[n-2],就是一个2阶常系数线性递推关系,由此我们得出k 阶常系数线性递推关系的一般形式: k n k n n n F a F a F a F ???+++=Λ2211 其中:,是常数,有k 项,所以叫着k 阶常系数线性递推关系; k a a a 、、、Λ21∑=?×=k i i n i n F a F 1 二、对矩阵的认识 矩阵就是一个数字阵列,一个n 行r 列的矩阵可以表示为: ????? ???????nr n n r r a a a a a a a a a Λ ΛΛ Λ212222111211 我们称上面的矩阵为r n ×矩阵。例如下面一个2×3矩阵; ?? ????662341 如果一个行数和列数相等的矩阵,我们叫作方阵。例如下面3×3方阵: ???? ??????679762341 其实,矩阵对我们来说,并不陌生,因为它正好对应Pascal 中的一个二维数组。 Type matrix=array[1..n,1..r] of longint; 三、矩阵的运算 1、加法,减法 ?? ????=??????+??????964687652342312345 ??????=???????????? ?010003652342662345 2、乘法: 设A ,B 是两个矩阵,令C=A ×B ;那么: (1)A 的列数必须和B 的行数相等;设A 是n ×r 矩阵,B 是r ×m 矩阵; (2)A 和B 的乘积C 是一个n ×m 的矩阵;

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

奥数专题之递推

奥数专题之递推 递推法专题 递推法是组合数学中的一个重要解题方法,许多问题通过递推法来解决就显得精巧简捷.鉴于这一方法在学习中的应用越来越广泛,掌握和运用这种方法,就显得更加重要.递推方法问题主要有两类:一是问题中有明显的递推关系,重点在于递推关系的应用;二是问题中没有明显的递推关系,需要对已有条件进行变形或改变问题的有关形式而建立递推关系,将问题转化为第一类问题。本文重点探索第二类问题。 通过建立、研究递推关系Sk+1=f(Sk),使问题得以解决的方法称为递推方法。 例1平面上有n条直线,它们中任意两条都不平行,且任意三条都不交于一点。这n 条直线可以把平面分割成多少个部分? 请看一个引起普遍关注的关于世界末日的问题。 例2有这样一段关于“世界末日”的传说。在印度北部的一个佛教的圣庙里,桌上的黄铜板上,放着三根宝石针,每根长约0.5米。据说印度教的主神梵天在创造世界时,在其中的一根针上,自上而下由小到大放了六十四片金片。每天二十四小时内,都有僧侣值班,按照以下的规律,不停地把这些金片在三根宝石针上移来移去:每次只准移动一片,且不论在那根针上,较小的金片只能放在较大的金片上。当所有六十四片金片都从梵天创造世界时所放的那根针上移到另一根针上时,世界的末日就要到来。这虽是一个传说,但却引起人们的重视,大家都想知道僧侣移动完毕这六十四片金片需要多少时间。也就是说,人类在这个世界上还可以生存多少时间。 例3有10级台阶,小王从下向上走,若每次只能跨一级或两级,他走上去共有多少种不同的走法? 追问:10级的情况可以一一列出,台阶数比较多的情况,怎么办? 提示:此即为斐波那契数列{ a n}求通项的问题。 例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则4张贺年卡不同的分配方式共有( ) (A)6种(B)9种(C)11种(D)23种 这里,我们引进一个概念: 设a1,a2,a3,…,a n是1,2,3,…,n的一个排列,如果a i i,(i=1,2,…,n),则称这种排列为一个错位排列(也称为更列)。

特征方程解数列递推关系

用特征方程与特征根解数列线性递推关系式的通项公式 一.特征方程类型与解题方法 类型一 递推公式为An+2=aAn+1+bAn 特征方程为 X 2 =aX+b 解得两根X 1 X 2 (1)若 X 1≠X 2 则A n =pX 1n +qX 2 n (2)若X 1=X 2=X 则A n =(pn+q)X n (其中p.q 为待定系数,由A 1.A 2联立方程求得) (3)若为虚数根,则为周期数列 类型二 递推公式为 特征方程为X = d c b a X X ++ 解得两根X 1 X 2 (1)若X 1≠X 2 则计算2111x A x A n n --++=2 1 x d cA b aA x d cA b aA n n n n -++-++=k 2 1x A x A n n -- 接着做代换B n =2 1 x A x A n n -- 即成等比数列 (2)若X 1=X 2=X 则计算x A n -+11=x d cA b aA n n -++1 =k+x A n -1 接着做代换B n =x A n -1 即成等差数列 (3)若为虚数根,则为周期数列 类型三 递推公式为 特征方程为X =d c b ax X ++2 解得两根X 1 X 2 。然后参照类型二的方法进行整理 类型四 k 阶常系数齐次线性递归式 A n+k =c 1A n+k-1+c 2A n+k-2+…+c k A n 特征方程为 X k = c 1X k-1+c 2X k-2+…+c k (1) 若X 1≠X 2≠…≠X k 则A n =X k n 11+X k n 22+…+X k k n k (2) 若所有特征根X 1,X 2,…,X s.其中X i 是特征方程的t i 次重根,有t 1+t 2+…+t s =k 则A n=X n Q n )(11+X n Q n )(22+…+X n Q s n s )( , 其中)(n Q i =B 1+n B 2+…+n B ti ti 1 -(B 1,B 2,…,B ti 为待定系数)

递归数列通项公式的求法

递归数列通项公式的求法 确定数列的通项公式,对于研究数列的性质起着至关重要的作用。求递归数列的通项 公式是解决数学竞赛中有关数列问题的关键,本文着重对递归数列通项公式加以研究。 基础知识 定义:对于任意的* N n ∈,由递推关系),,,(21k n n n n a a a f a ---= 确定的关系称为k 阶递归关系或称为k 阶递归方程,由k 阶递归关系及给定的前k 项k a a a ,,,21 的值(称为初始值)所确定的数列称为k 阶递归数列。若f 是线性的,则称为线性递归数列,否则称为非线性递归数列,在数学竞赛中的数列问题常常是非线性递归数列问题。 求递归数列的常用方法: 一.公式法 (1)设}{n a 是等差数列,首项为1a ,公差为d ,则其通项为d m n a a m n )(-+=; (2)设}{n a 是等比数列,首项为1a ,公比为q ,则其通项为m n m n q a a -=; (3)已知数列的前n 项和为n S ,则) 2() 1(11 ≥=??? -=-n n S S S a n n n 。 二.迭代法 迭代恒等式:112211)()()(a a a a a a a a n n n n n +-++-+-=--- ; 迭乘恒等式: 11 2211a a a a a a a a n n n n n ????= --- ,(0≠n a ) 迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题: 类型一:已知)(,11n f a a b a n n +==+,求通项n a ; 类型二:已知n n a n f a b a )(,11==+,求通项n a ; 三.待定系数法 类型三:已知)1(,11≠+==+p q pa a b a n n ,求通项n a ; 四.特征根法 类型四:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x +=2 ,其根为特征根。 (1)若特征方程有两个不相等的实根βα,,则其通项公式为n n n B A x βα+=(1≥n ),其中A 、B 由初始值确定; (2)若特征方程有两个相等的实根α,则其通项公式为1 )1([--+=n n n B A x αα(1≥n ), 其中A 、B 由初始值确定。

数列递推关系稳定性的数形结合方法探究(确定版)

数学系毕业论文 论文 (设计)题目:数列递推关系稳定性的数形结合方法探究 英文题目:The research of combination of figure and chart in the stability of series recurrence relation 姓名_____ 梁士伟 ______ 学号_____ 090501115 ____ 专业____数学与应用数学 _ _ 班级_____09数学(1)班 指导教师_____ 孙晓通 _____ 职称____ 讲师 ____ 提交日期____2013年 5 月 18日

数列递推关系稳定性的数形结合方法探究 摘要 数列递推关系是诸多重要数学思想方法的载体,作为离散函数的典型模型,既具备函数的性质,又具有自己独特的递推关系,与其它的知识更有着相当密切的联系,这些决定了它在研究数列性质的重要地位.而稳定性是数列的一个重要的性质之一,而从数列递推关系出发来研究数列的稳定性已经取得比较丰硕的成果,但是利用数形结合的方法来研究数列递推关系的稳定性却是非常少的,针对这一点,本文以数形结合这个新的角度来切入研究数列递推关系的稳定性.且本文针对一阶数列递推关系的稳定性做了数形结合的探究,结果发现探究的结果和严格证明的结果一致,且更能以直观的效果来判定其稳定性..本文的研究是直观方法的角度来研究问题的,这与传统的纯代数式证明方法有很大的不同点.其次,本文的研究为数列递推关系稳定性的严格证明提供了方向.另外,本文为读者提供了一种以新角度探索问题的学习方式. 关键词:递推关系;稳定性;数形结合

目录 1.引言 (1) 1.1研究背景 (1) 1.2本文主要研究的问题 (2) 1.3 研究的意义 (2) 2.预备知识 (2) 2.1 数列 (2) 2.2 数列递推关系 (3) 2.3 数列的稳定性 (3) 3.数形结合 (4) 3.1 数形结合方法 (4) 3.2 数形结合思想下的数学思维力的培养[7] (6) 4.递推关系稳定性的研究结果及分析 (8) 4.1定义和作图步骤 (8) 4.2一阶递推关系稳定性数形结合探究分析 (9) 5.研究结果的启示 (12) 5.1一阶线性常系数递推关系稳定性问题 (12) 5.2 一阶非线性常系数递推关系稳定性问题 (13) 6.结论 (14) 致谢 (15) 参考文献 (16)

二阶常系数递推关系求解方法

阅读材料:二阶常系数递推关系求解方法 如果某数列{}n a 满足涉及连续三项12,,n n n a a a --的递推关系12n n n a pa qa --=+, 3n ≥,其中,p q 是已知的非零常数,并且初始条件即前两项12,a a 的数值已给出,它的通 项将会是何种形式? 我们把递推关系12n n n a pa qa --=+写成 ()112n n n n a a a a μλμ----=- 其中,λμ是待定系数,上式通过合并同类项,还原为 ()()12n n n a a a λμλμ--=+- 与12n n n a pa qa --=+进行系数对比,有 p q λμλμ+=?? =-? 由一元二次方程根与系数关系,我们知道,,λμ是关于x 的一元二次方程20x px q --=(该方程通常写成2 x px q =+)的两根。也就是说对于满足递推关系12n n n a pa qa --=+, 3n ≥的数列{}n a ,其通项公式与一元二次方程2x px q =+的根密切相关。 一般地,我们称方程2 x px q =+及其根,λμ分别为递推关系12n n n a pa qa --=+的特征方程和特征根。 我们就一元二次方程2x px q =+的根的情况分成两点讨论 一、当λμ≠时,即特征方程的判别式2 40p q ?=+≠时, 递推关系12n n n a pa qa --=+可以写成 ()112n n n n a a a a μλμ----=- ① 由于λ与μ的地位对等,我们也可以写出 ()112n n n n a a a a λμλ----=- ② 由①知数列{}1n n a a μ+-是以21a a μ-为首项,λ为公比的等比数列,所以有 ()1121n n n a a a a μμλ-+-=- ③

齐次和非齐次线性方程组的解法(整理)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性常系数微分方程典型例题

二阶常系数非齐次微分方程典型例题 例1:y′′?5y′+6y=e?x 解:通过特征根方程可知,y′′?5y′+6y=0的通解为: y=C1e2x+C2e3x 观察通解特征,设特解y?=k e?x y?′=?k e?x ,y?′′=k e?x 代入原方程得:12ke?x=e?x, k=1 12 答案:y=C1e2x+C2e3x+1 12 e?x 例2:y′′?5y′+6y=2e3x 解:通过特征根方程可知,y′′?5y′+6y=0的通解为: y=C1e2x+C2e3x 观察通解特征,设特解y?=k xe3x y?′=k(1+3x)e3x ,y?′′=k(6+9x)e3x 代入原方程得:k e3x=2e3x ,k=2 答案:y=C1e2x+C2e3x+2xe?x 例3:y′′?5y′+6y=2x+4cos3x?e x 解:通过特征根方程可知,y′′?5y′+6y=0的通解为: y=C1e2x+C2e3x 观察通解特征,设特解y?=ax+b+ccos(3x)+dsin(3x)+ke x y?′=a?3csin3x+3dcos3x+ke x ,y?′′=?9ccos3x?9dsin3x+ke x 代入原方程得:a=1 3,b=5 18 ,c=?2 39 ,d=?10 39 ,k=?1 2 . 答案:y=C1e2x+C2e3x+1 3x+5 18 ?2 39 cos(3x)?10 39 sin(3x)?1 2 e x 例4:y′′?2y′+y=2e3x 解:通过特征根方程可知,y′′?2y′+y=0的通解为: y=C1e x+C2xe x 观察通解特征,设特解y?=k e3x y?′=3k e3x ,y?′′=9k e3x 代入原方程得:k=1 2 答案:y=C1e x+C2xe x+1 2 e x 例5:y′′?2y′+y=2e x 解:通过特征根方程可知,y′′?2y′+y=0的通解为: y=C1e x+C2xe x 观察通解特征,设特解y?=k x2e x

常系数线性微分方程的解法

常系数线性微分方程的解法 摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法 Method for solving the system of differential equation with Constant Coefficients Linear Abstract: Based on the linear equations with constant coefficients of analysis and synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution. Key Words: Characteristic root ;Variation law ;The undetermined coefficient method 前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。 1.预备知识 复值函数与复值解 如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ?ψ=+与它对应,其中()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,1i =-是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于 0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义

齐次线性方程组的基础解系存在定理及其应用

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

相关主题
文本预览
相关文档 最新文档