当前位置:文档之家› 2018年高三数学第一轮复习单元讲座:第36讲 空间向量及其应用

2018年高三数学第一轮复习单元讲座:第36讲 空间向量及其应用

2018年高三数学第一轮复习单元讲座:第36讲 空间向量及其应用
2018年高三数学第一轮复习单元讲座:第36讲 空间向量及其应用

普通高中课程标准实验教科书—数学[人教版]

高三新数学第一轮复习教案(讲座36)—空间向量及其应用

一.课标要求:

(1)空间向量及其运算

①经历向量及其运算由平面向空间推广的过程;

②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;

③掌握空间向量的线性运算及其坐标表示;

④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。

(2)空间向量的应用

①理解直线的方向向量与平面的法向量;

②能用向量语言表述线线、线面、面面的垂直、平行关系;

③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);

④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二.命题走向

本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。

预测07年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。

三.要点精讲

1.空间向量的概念

向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。

相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

加法交换率:.a b b a +=+

加法结合率:).()(c b a c b a ++=++

数乘分配率:.)(b a b a λλλ+=+

说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。

3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说a 、b 平行时,也具有同样的意义。

共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数

λ使b =λa 注:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa ,其中λ是唯一确定的实数。②判断定理:若存在唯一实数λ,使b =λa (a ≠0),则有a ∥b (若用此结论判断a 、b 所在直线平行,还需a (或b )上有一点不在b (或a )上)。 ⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向,当λ<0时与a 反向的所有向量。 ⑶若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导OP 的表达式。 推论:如果 l 为经过已知点A 且平行于已知非零向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式

OA OP =a t + ①

其中向量a

叫做直线l 的方向向量。 在l 上取a AB =,则①式可化为 .)1(OB t OA t OP +-= ②

当21=t 时,点P 是线段AB 的中点,则 ).(2

1+= ③ ①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。 4.向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a 在α平面内,我们就说向量a 平行于平面α,记作a ∥α。注意:向量a ∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理 如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条

件是存在实数对x 、y ,使.b y a x p +=①

注:与共线向量定理一样,此定理包含性质和判定两个方面。

推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使

,y x +=④

或对空间任一定点O ,有.y x ++=⑤

在平面MAB 内,点P 对应的实数对(x, y )是唯一的。①式叫做平面MAB 的向量表示式。 又∵.,OM OA MA -=.OM -=代入⑤,整理得

.)1(OB y OA x OM y x OP ++--= ⑥

由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。 5.空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量,存

在一个唯一的有序实数组x , y , z , 使.c z b y a x p ++=

说明:⑴由上述定理知,如果三个向量a 、b 、c 不共面,那么所有空间向量所组成

的集合就是{}

R z y x c z b y a x p p ∈++=、、,| ,这个集合可看作由向量a 、b 、c 生成

的,所以我们把{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于0 可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是0 。

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组z y x 、、,使.z y x ++=

6.数量积

(1)夹角:已知两个非零向量a 、b ,在空间任取一点O ,作a =,b =,

则角∠AOB 叫做向量a 与b 的夹角,记作??b a ,

说明:⑴规定0≤??b a ,≤π,因而??b a ,=??a b ,;

⑵如果??b a ,=2

π,则称a 与b 互相垂直,记作a ⊥b ; ⑶在表示两个向量的夹角时,要使有向线段的起点重

合,注意图(3)、(4)中的两个向量的夹角不同,

图(3)中∠AOB =??OB OA ,,

图(4)中∠AOB =-π??,, 从而有??-,=?-?,=-π??,. (2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。

(3)向量的数量积:??b a b a ,cos 叫做向量a 、b 的数量积,记作b a ?。

即b a ?=??b a b a ,cos , 向量方向上的正射影在e : B A e a AB e a ''=??=? ,cos ||

(4)性质与运算率

⑴??=?e a e a

,cos 。 ⑴()()a b a b λλ?=?

⑵a ⊥b ?b a ?=0 ⑵b a ?=b a ?

⑶2||.a a a =? ⑶()a b c a b a c ?+=?+?

四.典例解析

题型1:空间向量的概念及性质

例1.有以下命题:①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么A a B a O a (3) a a b a a a b a A a B a O a

(1) O a a a b a a a b a A a B a (2)

,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。其中正确的命题是( )

()A ①② ()B ①③ ()C ②③ ()D ①②③

解析:对于①“如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系一定共线”;所以①错误。②③正确。

点评:该题通过给出命题的形式考察了空间向量能成为一组基的条件,为此我们要掌握好空间不共面与不共线的区别与联系。

例2.下列命题正确的是( )

()A 若a 与b 共线,b 与c 共线,则a 与c 共线;

()B 向量,,a b c 共面就是它们所在的直线共面;

()C 零向量没有确定的方向;

()D 若//a b ,则存在唯一的实数λ使得a b λ=;

解析:A 中向量为零向量时要注意,B 中向量的共线、共面与直线的共线、共面不一样,D 中需保证b 不为零向量。

答案C 。

点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处。像零向量与任何向量共线等性质,要兼顾。

题型2:空间向量的基本运算

例3.如图:在平行六面体1111D C B A ABCD -中,

M 为11C A 与11D B 的交点。若AB a =,AD b =,1AA c =,则下列向量中与相等的向量是( )

()A 1122a b c -++ ()B 1122

a b c ++ ()C 1122a b c --+ ()D c b a +-2121 解析:显然=+-=+=111)(2

1AA B BB BM 1122a b c -++; 答案为A 。

点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。用向量的方

C1

法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。

例4.已知:,28)1(,0423p y n m x b p n m a +++=≠--=且p n m ,,不共面.

若a ∥b

,求y x ,的值. 解: a ∥b ,,且,,0a b a λ=∴≠即.42328)1(p n m p y n m x λλλ--=+++

又p n m ,,不共面,.8,13,4

22831=-=∴-=-=+∴y x y x 点评:空间向量在运算时,注意到如何实施空间向量共线定理。

题型3:空间向量的坐标

例5.(1)已知两个非零向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),它们平行的充要条件是( )

A. :||=:||

B.a 1·b 1=a 2·b 2=a 3·b 3

C.a 1b 1+a 2b 2+a 3b 3=0

D.存在非零实数k ,使a =k b

(2)已知向量=(2,4,x ),=(2,y ,2),若||=6,⊥,则x+y 的值是( )

A. -3或1

B.3或-1

C. -3

D.1

(3)下列各组向量共面的是( )

A. =(1,2,3),=(3,0,2),=(4,2,5)

B. =(1,0,0),=(0,1,0),=(0,0,1)

C. a =(1,1,0),b =(1,0,1),c =(0,1,1)

D. =(1,1,1),=(1,1,0),=(1,0,1)

解析:(1)D ;点拨:由共线向量定线易知;

(2)A 点拨:由题知?????=++=++024*******x y x ????-==3,4y x 或???=-=.1,4y x ;

(3)A 点拨:由共面向量基本定理可得。

点评:空间向量的坐标运算除了数量积外就是考察共线、垂直时参数的取值情况。 例6.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4)。设=,

b =AC ,

(1)求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.

思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.

解:∵A(-2,0,2),B (-1,1,2),C(-3,0,4),a =AB ,b =AC , ∴=(1,1,0),=(-1,0,2).

(1)cos θ||||b a =52001?++-=-1010, ∴和的夹角为-1010

(2)∵k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2), k -2=(k+2,k ,-4),且(k +)⊥(k -2),

∴(k -1,k ,2)·(k+2,k ,-4)=(k -1)(k+2)+k 2-8=2k 2+k -10=0。

则k=-25

或k=2。

点拨:第(2)问在解答时也可以按运算律做。(+)(k -2)=k 22-k ·-2b 2=2k 2

+k -10=0,解得k=-25

,或k=2。 题型4:数量积

例7.(2000江西、山西、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则

①(·)-(·)= ②||-||<|-| ③(·)-(·)b 不与c 垂直

④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( )

A.①②

B.②③

C.③④

D.②④

答案:D

解析:①平面向量的数量积不满足结合律.故①假; ②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;

③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,

所以垂直.故③假;

④(3+2)(3-2)=9··-4·=9||2-4||2成立.故④真.

点评:本题考查平面向量的数量积及运算律。

例8.(1)(2002上海文,理2)已知向量和的夹角为120°,且||=2,||=5,则(2-)·=_____.

(2)设空间两个不同的单位向量=(x 1,y 1,0),=(x 2,y 2,0)与向量=(1,1,

1)的夹角都等于4π

。(1)求x 1+y 1和x 1y 1的值;(2)求<,>的大小(其中0<<,><π)。

解析:(1)答案:13;解析:∵(2-)·=22-·=2||2-||·||·cos120°=2·4-2·5(-2

1)=13。 (2)解:(1)∵||=||=1,∴x 21+y 21=1,∴x 22=y 22=1.

又∵与的夹角为4π,∴·=||||cos 4π=22222111++=26. 又∵·=x 1+y 1,∴x 1+y 1=26

另外x 21+y 21=(x 1+y 1)2-2x 1y 1=1,∴2x 1y 1=(26)2-1=21.∴x 1y 1=41。

(2)cos<,=x 1x 2+y 1y 2,由(1)知,x 1+y 1=26,x 1y 1=41.∴x 1,y 1是方程

x 2-26x+41

=0的解. ∴???????-=+=,426,42611y x 或???????+=-=.426,42611y x 同理可得???????-=+=,426,42622y x 或???????+=-=.426,42622y x

∵≠,∴???????-==+==,426,4261221y x y x 或???????+==-==.426,4261221y x y x

∴cos<,>=426+·426-+426+·426-=41+41=21

.

∵0≤≤π,∴=3π

评述:本题考查向量数量积的运算法则。

题型5:空间向量的应用

例9.(1)已知a 、b 、c 为正数,且a+b+c=1,求证:113+a +113+b +113+c ≤43。

(2)已知F 1=i +2j +3k ,F 2=-2i +3j -k ,F 3=3i -4j +5k ,若F 1,F 2,F 3共同作用于同一物体上,使物体从点M 1(1,-2,1)移到点M 2(3,1,2),求物体合力做的功。

解析:(1)设m =(113+a ,113+b ,113+c ),n =(1,1,1),

则||=4,||=3. ∵·≤||·||,

∴·=113+a +113+b +113+c ≤||·||=43. 当1131+a =1131+b =1131

+c 时,即a=b=c=31

时,取“=”号。

(2)解:W =F ·s =(F 1+F 2+F 3)·21M M =14。 点评:若=(x ,y ,z),=(a ,b ,c),则由·≤||·||,得(ax+by+cz)2≤(a 2+b 2+c 2)(x 2+y 2+z 2).此式又称为柯西不等式(n=3)。本题考查||·||≥·的应用,解题时要先根据题设条件构造向量,,然后结合数量积性质进行运算。空间向量的数量积对应做功问题。

例10.如图,直三棱柱111C B A ABC -中,,,1111C A BC AB BC ⊥⊥求证:

.11C A AB = 证明:,1111C C A A +=

,0)()(,211111111111=-?=+?+=?+=C C BC C A CC BC C C C A BC C A CC BC BC

.1121C A C C ?=∴ 同理,,111111C B BB BC BB AB +=+=

,0),(011112

1

11 =?+?∴==+?=?C A CC BB CC BC AB 又,11C A =.0)(=+?∴

设D 为BC 中点,则.2=+,,2AD BC ⊥∴=?∴

,AC AB =∴又.,1111AB C A B B A A =∴=

点评:从上述例子可以看出,利用空间向量来解决位置关系问题,要用到空间多边形法则,向量的运算,数量积以及平行,相等和垂直的条件。

五.思维总结

本讲内容主要有空间直角坐标系,空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式.空间直角坐标系是选取空间任意一点O 和一个单位正交基底{i ,j ,k }建立坐标系,对于O 点的选取要既有作图的直观性,而且使各点的坐标,直线的坐标表示简化,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。如向量的数量积a ·b =|a |·|b |cos在二维、三维都是这样定义的,不同点仅是向量在不同空间具有不同表达形式.空间两向量平行时同平面两向量平行时表达式不一样,但实质是一致的,即对应坐标成比例,且比值为λ,对于中点公式要熟记。

对本讲内容的考查主要分以下三类:

1.以选择、填空题型考查本章的基本概念和性质

此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。

2.向量在空间中的应用

在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质。

在复习过程中,抓住源于课本,高于课本的指导方针。本讲考题大多数是课本的变式题,即源于课本。因此,掌握双基、精通课本是本章关键。

立体几何与空间向量-浙江省台州市书生中学2020届高三数学复习专题练习(无答案)

立体几何 例1.在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π 2.三视图 例2.某简单组合体的三视图如图所示,则该几何体的体积为( ) A .164+π B .484π+ C .4812π+ D .4816π+ 3.常见几何体的体积计算公式 例3.已知直角三角形 ABC 两直角边长之和为3,将ABC ?绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________. 例4.如图,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为等边三角形,点、分别为线段,上的动点(不含端点),且 ,则三棱锥体积的最大值为__________. 例5.如图,在几何体中,平面底面ABC , 四边形是正方形,,Q 是的中点,且,. 求证:平面; 求二面角 的余弦值.

例6.如图几何体中,底面ABCD 为正方形,PD ⊥平面ABCD , //EC PD ,且22PD AD EC ===.(1)求证://BE 平面PDA ; (2)求PA 与平面PBD 所成角的大小. 例7.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都 相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,…,球n O 与三棱锥A BCD -的 三个面和球1n O -都相切(2n ≥,且n *∈N ),则球1O 的体积等于__________,球n O 的表面积等于__________. 例8.如图所示,在等腰梯形ABCD 中,,,E ,F 为AB 的三等分点,且将和分别沿DE 、CF 折起到A 、B 两点重合,记为点P . 证明:平面 平面PEF ; 若,求PD 与平面PFC 所成角的正弦值.

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高三数学专题复习:空间向量

一、知识梳理 【高考考情解读】 高考对本节知识的考查以解答题的形式为主:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明、空间角(主要是线面角和二面角)的计算.2.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题. 1. 直线与平面、平面与平面的平行与垂直的向量方法 设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同). (1)线面平行:l ∥α?a ⊥μ?a ·μ=0?a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α?a ∥μ?a =k μ?a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β?μ∥v ?μ=λv ?a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直:α⊥β?μ⊥v ?μ·v =0?a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角:设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22 . (2)线面夹角:设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ| =|cos 〈a ,μ〉|. (3)面面夹角:设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v | =|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离 直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距 离:d =|PM →·n ||n | (其中n 为α的法向量,M 为α内任一点). 二、课前预习 1.平面α的法向量为m ,向量a 、b 是平面α之外的两条不同的直线的方向向量,给出三个论断:①a ⊥m ;②a ⊥b ;③m ∥b .以其中的两个论断作为条件,余下一个论断作为结论, 写出所有正确的命题______________________. 2.如图,直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1, ∠BCA =90°,棱AA 1=2,则cos 〈BA 1→,CB 1→〉的值为________. 3.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,

高三数学复习专题空间向量与立体几何考点系统复习

A B C A 1 B 1 C 1 M y z A B C D E F x y z M N A 1 x D 1 B 1 A D B C C 1 y z E F 高三数学复习专题 空间向量与立体几何考点系统复习 一、利用向量处理平行与垂直问题(特别是探索性问题) 例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是 1CC 得中点。求证:AM B A ⊥1 练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ? 例 2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线 AE BD ,上,且AE AN BD BM 3 1 ,31==,求证://MN 平面CDE 练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE A B C D A 1 B 1 C 1 D 1P x z y

A B C D E P x y z F A 1 x D 1 B 1 A D B C C 1 y z E 1 F 1 H G A 1 x D 1 B 1 A D B C C 1 y z E 1 F A 1 D 1 B 1 C 1 z 2、如图,在底面是菱形的四棱锥P —ABCD 中, ?=∠60ABC , ,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使 BF ∥平面AEC?证明你的结论. 二、利用空间向量求空间的角的问题 例 1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=4 1 A 1 B 1,D 1F 1=4 1 D 1C 1,求B E 1与D F 1所成的角的大小。 例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 4 1 D 1C 1,试求直线 E 1 F 与平面D 1AC 所成角的大小 例3 在正方体1111D C B A ABCD -中,求二面角11C BD A --的大小。

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

高考数学《向量》专题复习 专题训练

高考《向量》专题复习 1.向量的有关概念: (1)向量的定义:既有大小又有方向的量。向量可以任意平移。 (2)零向量:长度为0的向量叫零向量,记作:. (3)单位向量:长度为一个单位长度的向量叫做单位向量。 任意向量的单位化:与AB 共线的单位向量是. (4)相等向量:长度相等且方向相同的两个向量叫相等向量。 (5)平行向量又叫共线向量,记作:∥. ①向量)0(→→→≠a a 与→b 共线,则有且仅有唯一一个实数λ,使→→=a b λ; ②规定:零向量和任何向量平行; ④平行向量无传递性!(因为有0); (6)向量的加法和减法满足平行四边形法则或三角形法则; 2.平面向量的坐标表示及其运算: (1)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a ++=+→→; (2)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a --=-→→; (3)设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则=),(1212y y x x --; (4)设),(11y x a =→,),(22y x b =→,向量平行→→b a //1221y x y x =?; (5)设两个非零向量),(11y x a =→,),(22y x b =→,则2121y y x x b a +=?→→, 所以002121=+?=??⊥→ →→→y y x x b a b a ; (6)若),(y x a =→,则22y x a +=→; (7)定比分点:设点P 是直线21,p p 上异于21,p p 的任意一点,若存在一个实数λ,使 21PP P λ=,则λ叫做点P 分有向线段21P P 所成的比,P 点叫做有向线段21P P 的以 定比为λ的定比分点;当P 分有向线段21P P 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题 例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。求证:AM B A ⊥1 练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ? 例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 3 1,31==,求证://MN 平面CDE 练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE

2、如图,在底面是菱形的四棱锥P —ABCD 中, ?=∠60ABC , ,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点 F, 使BF ∥平面AEC?证明你的结论. 二、利用空间向量求空间的角的问题 例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=4 1A 1B 1,D 1F 1=4 1D 1C 1,求BE 1与DF 1所成的角的大小。 例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且 = 11E D 41 D 1C 1,试求直线 E 1 F 与平面D 1AC 例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

2010高三数学高考第一轮复习向量复习教案:空间向量的坐标运算

空间向量与立体几何 第二课时 空间向量的坐标运算 一、复习目标:1、理解空间向量坐标的概念;2、掌握空间向量的坐标运算; 3.掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 二、重难点:掌握空间向量的坐标运算;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 三:教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、基础知识过关(学生完成下列填空题) 1、空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系 ,,i j k 都叫坐标向量. ),,(321a a a ),,(321b b b (1) a ±b = 。 (2) λa = .(3) a ·b = . (4) a ∥b ? ;a ⊥b ? . (5)模长公式:若123(,,)a a a a =, 则21||a a a a =?=+ 21312||||a b a b a b a ??==?+2||(AB AB x ==),,(),,,(222111z y x B z y x A == 则AB = ,= . AB 的中点M 的坐标为 . 4、直线的方向向量的定义为 。如何求直线的方向向量? 5、平面的法向量的定义为 。如何求平面的法向量?

(二)典型题型探析 题型1:空间向量的坐标 例1、(1)已知两个非零向量=(a 1,a 2,a 3),=(b 1,b 2,b 3),它们平行的充要条件是( ) A. :||=:|| B.a 1·b 1=a 2·b 2=a 3·b 3 C.a 1b 1+a 2b 2+a 3b 3=0 D.存在非零实数k ,使=k (2)已知向量=(2,4,x ),=(2,y ,2),若||=6,⊥,则x+y 的值是( ) A. -3或1 B.3或-1 C. -3 D.1 (3)下列各组向量共面的是( ) A. =(1,2,3),=(3,0,2),=(4,2,5) B. =(1,0,0),=(0,1,0),=(0,0,1) C. a =(1,1,0),b =(1,0,1),c =(0,1,1) D. a =(1,1,1),b =(1,1,0),c =(1,0,1) 解析:(1)D ;点拨:由共线向量定线易知; (2)A 点拨:由题知?????=++=++024*******x y x ????-==3,4y x 或???=-=.1,4y x ; (3)A 点拨:由共面向量基本定理可得。 点评:空间向量的坐标运算除了数量积外就是考查共线、垂直时参数的取值情况。 例2、已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4)。设a =,b =, (1)求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果. 解:∵A(-2,0,2),B (-1,1,2),C(-3,0,4),a =,b =, ∴a =(1,1,0),b =(-1,0,2). (1)cos θ||||b a 52001?++-=-1010,∴和的夹角为-1010。 (2)∵k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2), k a -2b =(k+2,k ,-4),且(k a +b )⊥(k a -2b ), ∴(k -1,k ,2)·(k+2,k ,-4)=(k -1)(k+2)+k 2-8=2k 2+k -10=0。 则k=-25 或k=2。 点拨:第(2)问在解答时也可以按运算律做。(+)(k -2)=k 22 -k ·-22=2k 2+k -10=0,解得k=-25 ,或k=2。 题型2:数量积 例3、(1)(2008上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -)·=_____. (2)设空间两个不同的单位向量=(x 1,y 1,0),=(x 2,y 2,0)与向量=(1,1,1)的夹角都等于4π 。(1)求x 1+y 1和x 1y 1的值;(2)求<,>的大小(其中0<<,><π)。

(完整word版)高三数学空间向量专题复习附答案

、利用向量处理平行与垂直问题 例 1、 在直三棱柱 ABC A 1B 1C 1中, ACB 900 , BAC 300, BC 1,A 1A 6,M 练习:棱长为 a 的正方体 ABCD —A 1B 1C 1D 1中,在棱 DD 1上是否存在点 P 使B 1D ⊥ 面 PAC ? 例 2 如图,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 M ,N 分别在对 11 角线 BD, AE 上,且 BM BD,AN AE ,求证: MN //平面CDE 33 练习 1、在正方体 ABCD A 1B 1C 1D 1中,E,F 分别是 BB 1, ,CD 中点,求证: D 1F 平面 ADE 是 CC 1 得中点。求证: A 1 B AM y z A 1 D F

2 、 如 图 , 在 底 面 是 菱 形 的 四 棱 锥 P —ABCD 中 , ABC 60 , PA AC a,PB PD 2a,点 E 在PD 上,且 PE:ED= 2: 1.在棱 PC 上是否存在一点 F, 使 BF ∥平面 AEC? 证明你的结论 . ABCD A 1B 1C 1D 1中, F 分别是 BC 的中点,点 E 在 D 1C 1上,且 1 1 D 1C 1,试求直线 E 1 F 与平面 D 1AC 所成角的 大小 4 、利用空间向量求空间的角的问题 例 1 在正方体 D 1F 1= 1D 1C 1, 4 求 BE 1与 DF 1所成的角的大小。 例 2 在正方体 D 1 E 1 例 3 在正方体 ABCD A 1B 1C 1D 1中, 求二面角 A 1 BD ABCD A 1B 1C 1D 1 中,E 1,F 1 z y x C 1的大小。

高考数学复习题库 空间向量及其运算

高考数学复习题库空间向量及其运算 空间向量及其运算 一.选择题 1.若{a,b,c}为空间的一组基底,则下列各项中,能构成基 底的一组向量是( ). A.{a,a+b,a-b} B.{b,a+b,a-b} C.{c,a+b,a-b} D.{a+b,a-b,a+2b} 解析若c.a+b.a- b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则 a.b.c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾, 故c,a+b,a-b可构成空间向量的一组基底. 答案 C 2.以下四个命题中正确的是( ). A.空间的任何一个向量都可 用其他三个向量表示 B.若{a,b,c}为空间向量的一组基底,则 {a+b,b+c,c+a}构成空间向量的另一组基底 C.△ABC为直角 三角形的充要条件是·=0 D.任何三个不共线的向量都可构成空 间向量的一组基底解析若a+b.b+c.c+a为共面向量,则a+b =λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ, μ不可能同时为1,设μ≠1,则a=b+c,则a.b.c为共面向 量,此与{a,b,c}为空间向量基底矛盾. 答案 B 3.有下列命题:①若p=xa+yb,则p与a,b共面;②若 p与a,b共面,则p=xa+yb. ③若=x+y,则P,M,A.B共 面;④若P,M,A,B共面,则=x+y. 其中真命题的个数是( ). A.1 B.2 C.3 D.4 解析其中①③为正确命题. 答案 B

4. 如图,在底面ABCD为平行四边形的四棱柱ABCD- A1B1C1D1中,M是AC与BD的交点,若=a,=b,=c则下列向量中与相等的向量是( ) A.-a+b+c B.a+b+c C.a-b+c D.-a-b+c 解析=+=++=-a+b+c. 答案 A 5.如图所示,已知空间四边形OABC,OB=OC,且∠AOB= ∠AOC=,则cos〈,〉的值为( ). A.0 B. C. D. 解析设=a,=b,=c 由已知条件〈a,b〉=〈a,c〉=,且|b|= |c|,·=a·(c-b)=a·c-a·b =|a||c|-|a||b|=0, ∴cos〈,〉=0. 答案 A 6.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( ) A. B. C.1 D. 解析=++,∴||2=||2+||2+||2+2·+2·+2·=1+1+1-=3-,故||=. 答案 D 7.下列命题中①若a∥b,b∥c,则a∥c;②不等式|a+b|<|a|+|b|的充要条件是a与b不共线;③若非零向量c垂直于不共线的向量a和b,d=λa+μb(λ.μ∈R,且λμ≠0),则c⊥d. 正确命题的个数是( ). A.0 B.1 C.2 D.3 解析只有命题③是正确命题. 答案 B 二.填空题 8.如图所示,已知空间四边形OABC,其对角线为OB.AC,M.N 分别为OA.BC的中点,点G在线段MN上,且=2,若=x+y+z,

高三数学总复习-空间向量

当前 形势 空间向量与立体几何在近五年北京卷(理)考查14分 高考要求 内容 要求层次 具体要求 A B C 证明平行与垂直√运用向量的数量积证明直线与直线的平行与垂直直线的方向向量√灵活掌握共线向量性质 平面的法向量√利用向量的数量积来计算平面的法向量 线、面位置关系√运用空间向量的性质判断线面之间的平行与垂直线线、线面、面面的夹角√运用空间向量的数量积计算线线角线面角面面角 北京高考解读 2006年2007年2008年2009年2010年(新课标) 17题 (14分) 17题 (14分) 16题 (14分) 16题 (14分) 16题 (14分)新课标剖析 满分晋级 第14讲空间向量 立体几何9级 立体几何之角度 距离问题 立体几何10级 空间向量与立体 几何综合 立体几何11级 立体几何综合 1 立体几何(下)·第1讲·提高-尖子-目标·教师版

2 立体几何(下)·第1讲·提高-尖子-目标·教师版 空间中的点面距离: 空间中的角与空间中的位置关系 空 间向量与立体几何 ⑴体积法 ⑵空间向量法:定点A 到平面的距离,可设平面的法向量为n ,面内点B , 点到平面的距离为 AB n n ? 直线的方向向量与平面的法向量的概念; (设直线12l l ,的方向向量分别为12v v ,,平面αβ,的法向量分别为12n n , ) ⑴线线的平行关系:1l ∥2l (或1l 与2l 重合)1v ?∥2v ; 线面的平行关系:1l ∥α或1l α??存在实数x y ,,使1v xm yn =+; (其中m n , 为平面α内的两个不共线的向量) 面面的平行关系:α∥β(α,β重合)?1n ∥2n ; ⑵线线垂直与线线所成角:1 2l l 1 2120v v v v ???=; 12cos cos v v θ=??,(θ为12l l , 的夹角,π02θ?? ∈???? ,); ⑶线面垂直与线面所成角:1l α⊥11v n ?∥; 11cos sin v n θ=??,(θ为1l 与平面α所成的角, π02θ??∈???? ,) ; ⑷面面垂直与面面所成角(二面角): 12120n n n n α β???=; 12cos cos n n θ=??,(θ为平面α,β所生成的二面角, [)0πθ∈,) 知识点睛

空间向量与立体几何知识总结(高考必备!)

y k i A(x,y,z) O j x z 辅导科目:数学 授课教师: 全国章 年级: 高二 上课时间: 教材版本:人教版 总课时: 已上课时: 课时 学生签名: 课 题 名 称 教 学 目 标 重点、难点、考点 教学步骤及内容 空间向量与立体几何 一、空间直角坐标系的建立及点的坐标表示 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底) 为坐标向量,则存在 唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++ ,有序实数组123(,,)a a a 叫作向量a 在 空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a = .在空间直角坐标系O xyz -中, 对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A xi yj z k =++ ,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a = ,123(,,)b b b b = , 则112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈ , 112233//,,()a b a b a b a b R λλλλ?===∈ , (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =--- . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?= 11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设b a ,是空间两个非零向量,我们把数量>

2020届高三全国高考数学理科专题训练:空间向量(无答案)

空间向量 ● 高考复习 考点知识汇集 一、空间向量的含义 1、定义:空间中,具有大小和方向的量。向量的大小叫做向量的长度或模。 2、规定:①长度为0的向量叫做零向量,记为0 ; ②模为1的向量称为单位向量; ③与向量a 长度相等而方向相反的向量,称为a 的相反向量。记为a ④方向相等且模相等的向量称为相等向量。 3、性质:向量具有平移不变性。 二、空间向量的坐标表示 1、空间直角坐标系Oxyz 是过空间定点O (原点)作三条互相垂直的数轴,具有相同的单位长度。 ①三条数轴分别称为x 轴(横轴:单位长度i )、y 轴(纵轴:单位长度j )、z 轴(竖 轴:单位长度k ),统称为坐标轴; ②由坐标轴确定的平面叫坐标平面。 2、设点P 为空间的一个定点,过点P 分别作垂直于x 、y 、z 轴的平面,依次交x 、y 、z 轴于点M 、Q 、R 。设点M 、Q 、R 在x 、y 、z 轴上的坐标分别为x 、y 、z ,那么就得到与点P 对应惟一确定的有序实数组 z y x ,,。 3、向量P (O 为原点)的坐标记作: = z y x ,, = k z j y i x 。

4、①点A (x ,y ,z ):关于x 轴的对称点为(x ,y ,z );关于xOy 平面的对称点为(x ,y ,z )。 ②在y 轴上的点设为(0,y ,0);在平面yOz 中的点设为(0,y ,z )。 5、若空间的一个基底的三个基向量互相垂直,且长度为1,这个基底叫单位正交基底,用 k j i ,,表示。空间中任一向量 z y x k z j y i x a ,, 。 三、空间向量的直角坐标运算公式 设: 321a a a a ,, , 321b b b b ,, 1、法则 ①向量和运算: 332211b a b a b a a b b a ,, 向量差运算: 332211b a b a b a b a ,, 数乘运算: 321a a a a ,, R 数乘分配律: b a b a 332211b a b a b a ,, R 数量积运算、交换律:332211b a b a b a a b b a ? ? ; 2a = 2 3 2221a a a a a ? b a b a b a ? ? ? ②不满足乘法结合律: c b a c b a ?? ?? 2、共线向量 ①含义:空间中,有向线段所在的直线平行或重合,这些向量叫共线向量或平行向量。

高考数学空间向量与立体几何总复习

空间向量与立体几何总复习一、知识网络构建 二、课标及考纲要求

三、知识要点及考点精析 (一)空间向量及其运算 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 还需要掌握的几个相关的概念包括相等向量、零向量、共线向量等. 2.空间向量的线性运算 (1)空间向量的加法、减法和数乘运算 平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b+a ; ②结合律,即()()+=+a +b c a b+c ; ③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). (2)空间向量的基本定理 ① 共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使 λa =b .

② 共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b . ③ 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b +c .其中{},,a b c 是空间的一个基底,a , b , c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合). (3)两个向量的数量积 两个向量的数量积是a ?b= |a||b|cos,数量积有如下性质: a , b , c ① a ?e= |a|cos(e 为单位向量); ② a ⊥a ?a ?b=0; ③ a ?a=|a|2; ④ |a ?b|≤| a||b|. 数量积运算满足运算律: ①交换律,即a ?b= b ?a ; ②与数乘的结合律,即(λa )?b=λ(a ?b ); ③分配律,即(a+b ) ?c =a ?c +b ?c . 3.空间向量的坐标运算 (1)给定空间直角坐标系xyz O -和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =. (2)空间向量的直角坐标运算律 ①若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,, -a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,a ?b ),,(332211b a b a b a =.

相关主题
文本预览
相关文档 最新文档