当前位置:文档之家› 超疏水表面

超疏水表面

超疏水表面
超疏水表面

关于超疏水表面的基本介绍及其制备

【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。

【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。2)使用无机物或在金属表面制备具有超疏水性表面的材料。3)使用高分子材料制备具有超疏水性的表面。4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。

超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。

【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。只有拥有较大的接触角(CA>150和较小的滚动角(SA<10)的表面才是真正意义上的超疏水表面。所谓接触角,就是液滴在固体表面形成热力学平衡时所持有的角。通过液体-固体-气体接合点中水珠曲线的终点和固体表面的接触点测定出来。滚动角可作为评价表面浸润性的另一指标,指的是一定质量的液滴在倾斜面上开始滚动的临界角度。滚动角越小,固体表面表现出的疏水性越好。因为地球的重力作用,水滴在倾斜的固体表面有下滑的趋势。随着固体倾斜角的变大,水滴沿斜面方向的下滑分力也在不断增大,当倾斜角增大到某一临界角度时,水滴会从固体表面滑落下来,这时的临界角就是水在此种固体表面的滚动角。滚动角越小,固体表面的超疏水性能越好。

接触角三大理论

杨氏方程(1805年)

Wenzel’s Theory(1936年):

Cassic’s Theory(1944年):cosq C = f s cosq s + f v cos q v

q s= q, q v = 180°

f s + f v=1

cos q C= -1+f s (cos q + 1

研究表明,材料的表面能与表面结构是影响表观接触角大小的重要因素,单纯通过改变表面能可获得光滑表面接触角的极限是120°,因此表面微细粗糙结构是获得超疏水表面的关键。随着微纳米科技的发展,超疏水表面的可控加工成为可能,由于其广阔的应用前景,超疏水表面的浸润性及其应用成为研究的热点。

【制备方法】1 蒸汽诱导相分离法

在一定条件下,高分子溶液在溶剂蒸发过程中,溶液热力学状态不稳定,高分子链间易发生自聚集,形成高分子聚集相。当高分子链聚集到一定程度时,高分子聚集相间发生相分离过程,并形成具有微米纳米级粗糙结构的表面,这种制膜方法被称为蒸汽诱导相分离法。

蒸汽诱导相分离法具有原料来源广泛、工艺简洁、成本低、所制备表面大小不受限制等优点,但可能存在膜强度不够好的缺点。

2 模板印刷法

使用荷叶作为原始模板得到PDM S 的凹模板,再使用该凹模板得到PDM S 凸模板,该凸模板是荷叶的复制品,它与荷叶有同样的表面结构,因此表现出良好的超疏水性和很低的滚

动角。该工艺类似于“印刷”,因此称为模板印刷法。用金属镍来

代替PDM S ,获得竹叶的凹模板。再在金属镍凹模板上使用紫外光固化的高分子材料复制,得到类似竹叶的复制品(图),该复制品具有超疏水能力。金属镍模板更耐磨、刚性更好、更易准确复制。

3 电纺法

通过一种简单的电纺技术,将溶于DMF 溶剂中的PS 制成具有多孔微球与纳米纤维复合结

构的超疏水薄膜图。其中多孔微球对超疏水性能起主要作用,纳米纤维起固定多孔微球的作用,该膜的WCA 达到160. 4。

4 溶胶-凝胶法

溶胶凝胶法就是用含有高化学活性组份的化合物作前驱体进行水解得到溶胶后使其发生缩合反应,在溶液中形成稳定的凝胶,最后干燥凝胶。溶剂去除后,有时留下一些微纳米孔,这些微纳米孔结构赋予材料某些特殊性能,包括超疏水性。如有机硅气凝胶,由于孔结构发达使它具有非常高的比表面积、已知材料中最低的密度、非常低的导热系数以及其他特性,因此它被称为“第四代材料”。有些方法制备的有机硅气凝胶还具有超疏水功能。

溶胶-凝胶法对于无机超疏水材料如ZnO、和的制备具有一定的优势,但存在着工艺路线较长、有溶剂污染和成本较高等缺点。

5 模板挤压法

模板挤压法就是使用孔径接近纳米级的多孔氧化铝膜作为模板,将溶解于溶剂的高分子滴于其上,干燥后得到超疏水表面。通过模板挤压法用亲水性聚乙烯醇材料制备了超疏水表面,接触角可以达到171. 2°。这可能是由于聚乙烯醇分子在纳米结构上发生重排,使得疏水烷基基团向外,亲水羟基基团向内并形成分子间氢键,体系表面能降低造成的。图:

通过模板挤压法制备了超疏水阵列聚苯乙烯纳米管膜。该膜不但有超疏水特性,还具有对水超强的高粘滞力,甚至水滴完全反转都不掉落,类似“壁虎脚”。图:

模板挤压法效果好、工艺较简单,但如何获得价格便宜、尺寸大并且性能可靠的模板是关键。

6 激光和等离子体刻蚀法

在室温环境下用CO2脉冲激光处理聚二甲基硅氧烷(PDMS),其表面的WCA高达175°。可能的原因为在激光处理后,PDM S 表面产生多孔结构,PDM S 的分子链排列规整。在氧气

气氛下用等离子处理LDPE 膜,然后再在CF4气氛下用等离子处理,获得透明度高的超疏水LDPE 膜。但该类方法存在仪器昂贵、成本高、得到超疏水表面积有限等缺点。

7 拉伸法

通过拉伸聚四氟乙烯膜Teflon 膜得到表面带有大量孔洞的纤维,从而获得超疏水膜。另外,在拉伸尼龙膜时证实,微观结构为三角形网状结构的尼龙膜具有超疏水特性,但双向拉伸后,尼龙膜由超疏水转变为超亲水,与水的接触角从151. 2变为0°(图)

,这估计是三角形网状结构的尺寸在拉伸后发生变化造成的。拉伸法简单、成本低、可获得面积大的超疏水表面,值得更多的研究。

8 腐蚀法

使用低表面能物质修饰铝合金,得到具有超疏水性的金属表面。另外,对金属铜、锌表面进行化学腐蚀处理,也获得了具有超疏水性的金属表面。

另外,有些方法类似于腐蚀法,即通过一种手段除掉某一部分。在清洁的玻璃片上涂上聚苯乙烯(PS)水性悬浮液,120 ℃烘干,得到布满相互有些粘结的PS 纳米级微球的玻璃片。滴一滴0. 5 mol/ L 的Fe (NO3 ) 3 溶液于其上,Fe (NO3)3溶液渗入PS纳米级微球的缝隙。最后,将样400℃下烧结2h ,使PS模板挥发, Fe (NO3 ) 3分解形成的Fe2O3构成纳米柱状结构图

9 其他方法

制备超疏水表面还有一些其他方法。将多孔聚氨酯片浸入粒径约200nm的聚苯乙烯悬浮液中,干燥后该聚氨酯片具有超疏水性和超亲油性,可以作为油水分离器(图)。电化学法也是常用方法之一。使用模板法和电化学沉积法制备了微观结构类似玫瑰花的超疏水表面。使用一步电沉积的方法在导电玻璃基底上制备了具有疏水性能的ZnO薄膜,该膜在紫外光照射下可转变成亲水性薄膜。

【展望】有关超疏水性表面的研究近几年有较多的报道,成为各学科发展的热点之一。但目前有关超疏水表面的制备方法的种类并不多,且过于依赖精密的仪器设备和复杂的化学物质,可供使用的基底还有限,不能够规模化生产。另外,对仿生超疏水性表面的结构与疏水性之间的关系以及动力学还没有系统研究。因此,今后的研究将在以下几个方面进行:实现在广泛的工程材料表面的超疏水性;发展制备超疏水性表面的有效方法;扩展超疏水性表面的应用领域。

人工制备超疏水表面虽然时间不长,但发展特别迅速,好的制备方法也越来越多,随着研究的深入,会有更多的制备方法出现。目前,本领域的研究可以朝实用化和产业化方向发展。另外,还可以扩宽研究的领域,如开发超疏水超疏油表面材料、超疏水超亲油材料、超疏水吸油材料、疏水气凝胶以及带有其他功能的超疏水材料等。

【应用举例】它可以用来防雪、防污染、抗氧化以及防止电流传导等。如果建筑物的外墙、露天的广告牌等表面像荷叶一样,就可以保持清洁。船只等在水面航行时需要消耗很多的能源来克服行进中的摩擦阻力,对于水下航行体如潜艇等甚至可达到80%;而对于运输管道如输油(水)管道,其能量几乎全部被用来克服流固表面的摩擦阻力。随着微机电的发展, 机构尺度越来越小,固液界面中的摩擦力相对越来越大,如微通道流等摩擦阻力问题已成为相关器件发展的一个重要的制约因素。因此尽量减少表面摩擦阻力是提高航速和节约能源的主要途径。近年来利用超疏水表面减阻的研究越来越受研究者的重视。如利用超疏水硅表面进行减阻研究中发现,减阻可达30%-40%。利用改性硅橡胶和聚氨酯树脂为主,添加低表面能无机填料或有机填料,在制成的双组分涂料的疏水表面减阻的实验中发现,在相对较低的流速时,其最大表面减阻可达30%,但随着流速的增加这种减阻效果下降,原因归于表面粗糙度的影响。目前,有关这方面的研究有待进一步深入。

【参考文献】

1,哈工大报---揭秘超疏水性表面发布时间:2009-7-2 16:15:37

2,超疏水表面的制备方法文章编号:1008-9357(2008)02-0230-07

3,超疏水表面润湿性与流动减阻机理研究(学位论文)作者:吕田上海交通大学

分类号:0647

4,高雪峰,江雷. 天然超疏水生物表面研究的新进展[J] .物理, 2006 , 35 (7) : 559564.

5,郭志光,刘维民.,仿生超疏水性表面的研究进展[J ] . 化学进展,2006 ,18 (6) :721726.

6,冯琳.超疏水天然材料[D ] . 北京:中国科学院物理研究所. 2005.

7,What do we need for a superhydrophobic surface? A review on the recent ,progress in the preparation of superhydrophobic surfaces

Xue-Mei Li, David Reinhoudt* and Mercedes Crego-Calama*

Received 17th October 2006

First published as an Advance Article on the web 31st January 2007

DOI: 10.1039/b602486f

超疏水材料研究进展

超疏水材料研究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于 90o 时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为 7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于 90o 时,我们认为这种材料是疏水

材料;如果材料的表面接触角大于 150o那么我们认为这种材料是超疏水材料,例如我 们前面所提到的荷叶,水滴在其表面的接触角大于 150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图 2 超疏水材料的用途 超疏水材料在流体减阻中的应用 超疏水表面的一个突出的性质是滑移效应的出现, 这一点已被广泛认可[3]。随着疏 水表面滑移效应的发现, 人们开始重视研究基于疏水表面滑移效应所产生的减阻新技术. Watanabe 等[4]研究了内壁覆盖氟烷烃改性的丙烯酸树脂条纹的超疏水圆管的减阻性能, 实测的压强 - 速度剖面曲线表明, 当雷诺数为 500~10000 时, 阻力下降达 14%, 对应的滑移长度达 450μm。Bechert 等[5]受到鲨鱼表皮三维肋条结构的减阻性能的启发, 从实验出发研究了具有类似结构的新型机翼表面的减阻性能, 结果表明这种表面比光滑的机翼表 面剪应力降低 %。Koeltzsch 等[6]研究了具有分叉型肋条结构的管道内壁表面的减阻性能, 以及不同肋条结构的影响效果, 这为输油管道内壁的减阻方法提供了新思路。王家楣等[7]从船首底部喷气生成微气泡出发研究了不同雷诺数、不同微气泡浓度下的减阻试验, 为 微气泡减阻技术的应用提供了依据。徐中等[8]采用标准κ - ε湍流模型对凹坑形表面在空气介质中不同条件下的流动进行了模拟, 得到的最大减阻率达到 %. 超疏水材料在抗腐蚀中的应用 通过超疏水膜技术在金属表面形成一层超疏水性的膜层,可以有效地增强金属表面阻抗、降低腐烛电流密度,使平衡腐烛电位向正方向移动,提高金属的防腐能力。超疏水膜技术应用于金属防腐已有大量研究。刘涛[9]在铜、锅及铁锅金属间化合物表面制备

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

超疏水表面的制备方法及应用的研究进展

超疏水表面的制备方法及应用的研究进展 摘要:在材料科学发展日新月异的今天,超疏水表面一直是材料研究的重点, 并在军事、工业、民用方面具有极高的应用前景。而润湿性是决定材料疏水性的 关键所在,如何降低润湿性是提高材料疏水性的主要手段。本文简单介绍了表面 润湿性的基本理论,综述了超疏水表面的制备方法,及其相关应用的研究进展。 关键词:超疏水表面;润湿性;微/纳米结构 1.引言 在自然界中,许多生物都有着特殊的表面结构,而其中植物叶片的表面结构 因其特殊的性质引起了人们极高的兴趣。而在植物叶片中,荷叶叶片上表面的特 殊性质又极为明显,荷叶的表面不均匀且大量地分布着平均直径在5~9微米的乳突,而乳突又是由许多的平均直径在121.1~127.5纳米的纳米分支结构组成。除 此之外,我们还可以发现在荷叶的下一层表面中还存在着纳米级的蜡晶。通过蜡 晶结构与乳突组成的微纳结构,成功地减少了叶面与液体的接触面积。与此同时,通过微纳结构,荷叶也减少了与脏污的接触,便于脏污被带走,这就是荷叶叶片 所表现出的自清洁性。而溯其根本,自清洁性又是超疏水性的一个表现。自然界 中还有很多动植物的表面有超疏水的性质,例如在水面自由移动的水蛭。为了这 些动植物的研究,是人们对于超疏水表面的认识更加深入,这对于制备功能材料 具有很好的意义。 润湿性是影响超疏水性质的关键,是指某种液体在一个平面上的延展,覆盖 的能力。假设有一液面铺展在一平面上,气、液、固三种物质接触于同一点处。 气-液界面的切线与固-液接触面的夹角为θ,称θ为接触角。为了方便判定,通 常以水与固体表面的接触角θ的大小来判断润湿性,并区分亲疏水表面。当θ大 于150?时,该表面被称为超疏水表面;当θ大于90°时,被称为疏水表面;当θ 小于90°时,被称为亲水表面;当θ小于10°时,被称为超亲水表面。其中,90° 作为亲水与疏水的分界。 假设有一理想的平滑均匀平面,没有任何粗糙介质,则表面接触角θ满足杨 氏方程: 图1两种粗糙表面的润湿模型:Wenzel模型和Cassie模型 近年来,由于超疏水表面在日常生活中及工业生产等方面有极高的价值,超 疏水表面的制备及相关应用研究日益增多,本文主要综述超疏水表面的制备方法 与其相关应用。 2超疏水表面的制备方法 固体表面的润湿性主要由两个因素决定:表面的粗糙程度和表面能。目前常 见的制备方法有刻蚀法、模版法、气相沉积法、电纺法、溶胶-凝胶法、机械拉伸、相分离法等等。但以这种方法分类并不能准确而直观的表明其制备方法的本质依据。根据润湿性的影响因素,制备方法可大致分三类:赋予低表面能物质表面适 当的粗糙结构,对粗糙表面进行表面改性以降低表面能和降低表面能同时增加粗 糙程度。 2.1赋予低表面能物质粗糙结构 赋予低表面能物质粗糙结构大致而言,就是在低表面能物质表面构造微观结构,这种方法制备的超疏水表面具有可控性强、稳定性好的性质。

2011-金属基体超疏水表面制备及应用的研究进展

金属基体超疏水表面制备及应用的 研究进展 Progress in Fabrication and A pplicat ion of Superhydrophobic Surfaces on M etal Substrat es 徐文骥,宋金龙,孙 晶,窦庆乐 (大连理工大学精密与特种加工教育部重点实验室,辽宁大连116024) XU Wen ji,SONG Jin long,SUN Jing,DOU Q ing le (Key Labor ator y for Precision and No n traditio nal M achining Technolog y fo r M inistry of Education,Dalian U niversity of T echno logy,Dalian116024,Liaoning,China) 摘要:在介绍润湿性相关理论的基础上,综述了国内外金属基体超疏水表面的制备方法及应用,重点讨论了阳极氧化法、电化学沉积法、化学腐蚀法、化学沉积法、一步浸泡法、热氧化法、模板法、复合法等,及超疏水表面在响应开关、自清洁、流体减阻、耐腐蚀、防冰霜、油水分离、微型水上运输器等方面的应用,最后评述了各种方法的特点,提出了在金属基体上制备超疏水表面所面临的问题。 关键词:金属基体;超疏水表面;研究进展 中图分类号:T G66 文献标识码:A 文章编号:1001 4381(2011)05 0093 06 Abstract:On the basis of the fundamental theories,the fabr ication and application of superhydropho bic surfaces on metal substrates w er e r eview ed.It em phasized to discuss preparation methods of anod ization,electro chem ical depositio n,chem ical etching,chemical deposition,one step solution imm er sion,thermal ox idatio n,template,co mposite,etc.Super hy drophobic surfaces on m etal substrates w ere also summarized in the applicatio n of response sw itch,self cleaning,drag reduction,corro sion resistance,anti icing,w ater and oil m ixture separatio n,miniatur e transporter over w ater.M ean w hile,characteristics of different kinds o f techniques w ere discussed.Finally,the pr oblem s about fabricatio n of super hy drophobic sur faces on m etal substrates w er e bro ug ht fo rw ar d. Key words:metal substrate;superhydropho bic surface;research progr ess 润湿性是固体表面的重要性质之一[1],常用接触角来衡量,当接触角小于90 时为亲水表面,小于5 时为超亲水表面,大于90 时为疏水表面,大于150 时为超疏水表面。在自然界中,到处可见超疏水现象,荷叶、水稻叶子等植物叶片具有自清洁效应,水黾能够毫不费力地站在水面上[2],蝴蝶翅膀能在雨中不被淋湿。1996年Onda等[3]首次报道了人工合成超疏水表面, 1997年,德国植物学家Bar thlott和Neinhuis[4,5]对植物的超疏水性进行了系统研究,发现荷叶的自清洁性是由表面微米结构和表面蜡层共同引起的。江雷等[6]对荷叶的进一步研究,发现微米结构的乳突上还存在纳米结构,而微纳米结构和表面蜡层共同作用是引起荷叶表面超疏水的根本原因。 由于超疏水表面具有自清洁[7,8]、减阻[9-11]、耐腐蚀[12,13]、防结冰[14-19]等特性,而金属材料在工农业生产中又被广泛地应用,因此研究金属基体超疏水表面的制备方法及应用极为重要,也引起了各国研究人员的极大兴趣。 1 相关理论 1.1 Yong氏模型 当少量液滴滴在理想固体(绝对光滑)表面,在固、液、气三相的交界处,由固、液界面经过液体内部至液、气界面的夹角称为接触角 ,其大小满足Yo ng氏方程[20]: cos =( sg- sl)/ lg(1)式中: sg, sl和 lg分别表示固 气、固 液、液 气界面的表面张力。 由式(1)可得,当液体确定时,即 lg确定时,接触

超疏水表面涂层的制备

超疏水表面涂层的制备 摘要:近年来,由于超疏水膜表面在自清洁、微流体系统和特殊分离等方面的潜在应用,超疏水性膜的研究引起了极大的关注。本文着重介绍了超疏水表面涂层的几种制备方法,并对超疏水表面涂层的发展前景进行了展望。 关键字:超疏水、自清洁、制备方法 超疏水表面已在自然界生物的长期进化中产生,许多动植物(如荷叶、水稻叶、蝉翼和水黾腿)表面具有超疏水和自清洁效果,最典型的代表是所谓的荷叶效应超疏水表面是指与水的接触角大于150°而滚动角小于10°的表面[1]。Barthlott和Neinhuis[2]通过观察植物叶表面的微观结构,认为自清洁特征是由粗糙表面上微米结构的乳突以及表面的存在蜡状物共同引起的。江雷[3]认为荷叶表面微米结构的乳突上还存在着纳米结构,而这种纳/微米阶层结构是引起表面超疏水的根本原因。固体表面超疏水性是由固体表面的化学成分和微观几何结构共同决定的。由于超疏水涂层独特的表面特性和潜在的应用价值而成为功能材料领域的研究 热点,,并获得越来越广泛的应用。 超疏水涂层的制备方法 通常,制备超疏水表面有两种途径一种是在具有低表面能的疏水性材料表面进行表面粗糙化处理;另一种是在具有一定粗糙度的表面上修饰低表面能物质。查找和整理前人对于超疏水薄膜的研究,整理下来超疏水薄膜的制备方法可分为6种方法[4],分别为:气相沉淀法、相分离法、模板法及微模板印刷法、刻蚀法、粒子填充法和其他方法。 气相沉积法 气相沉积法包括物理气相沉积法(PVD)、化学气相沉积法(CVD)等。它是将各种疏水性物质通过物理或化学的方法沉积在基底表面形成膜的过程。 Julianna A等[5]通过气相沉积法,在聚丙烯膜表面沉积多孔晶状聚丙烯涂层,使聚丙烯膜呈现超疏水性,接触角达到169°,其接触角提高了42°。他们同时对聚四氟乙烯膜进行沉积处理,接触角提高30°左右。他们用原子力显微镜表征其表面形貌,两种膜表面都呈高低不同的各种突起,他们认为正是这种高低不同的突起使膜的疏水性增强。 相分离法 相分离法是在成膜过程中通过控制成形条件,使成膜体系产生两相或多相,形成均一或非均一膜的成膜方式。该方法制备过程简便,实验条件较为容易控制,可以制备均匀、大面积的超疏水薄膜,具有较大的实际应用价值。 Takahiro Ishizaki和Naobumi Saito[6]把镁合金浸渍在硝酸铈水溶液中20分钟,二氧化铈结晶膜就可以在镁合金表面纵向生长了。晶体的密度随着浸渍时间的增加而增加。然后,把结晶膜浸泡在含有FAS和四(三甲基硅氧基)钛(TTST)甲苯溶液中,FAS分子就可以覆盖在结晶膜上,形成超疏水的涂层。这里TTST作为催化剂,促进FAS分子的水解和/或者聚合。 模板法及微模板印刷法 模板及软模板印刷法是以具有微米或纳米空穴结构的硬的或软的基底为模

超疏水表面的制备方法_石璞

功 能 高 分 子 学 报Journal of Fu nctional Polym ers Vol.21No.22008年6月 收稿日期:2008-03-10 基金项目:国家自然科学基金(10672197) 作者简介:石 璞(1976-),男,安徽安庆人,讲师,在读博士,研究方向:生物医学材料。E -m ail:s hipu1976@https://www.doczj.com/doc/867167728.html, 通讯联系人:陈 洪,E -mail:ch enh ong cs@https://www.doczj.com/doc/867167728.html, 综 述 超疏水表面的制备方法 石 璞1,3, 陈 洪2, 龚惠青3, 袁志庆1, 李福枝3, 刘跃军3 (1.中南大学粉末冶金研究所,长沙410083; 2.中南林业科技大学,长沙410004; 3.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008) 摘 要: 超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究 的热点之一。其中超疏水表面的制备方法是研究的关键点。介绍和评述超疏水表面的制备方法, 对该领域的发展方向进行了展望。 关键词: 超疏水;表面;制备方法 中图分类号: O647 文献标识码: A 文章编号: 1008-9357(2008)02-0230-07 Methods to Prepare Superhydrophobic Surface SH I Pu 1,3, CH EN H ong 2, GONG H u-i qing 3, YUAN Zh-i qing 1, LI Fu -zhi 3, LIU Yue -jun 3 (1.Institute o f Pow der M etallurgy ,Central South U niv ersity ,Chang sha 410083,China; 2.Central South University of Forestry and Technology ,Changsha 410004,China; 3.Key Laboratory of New Material and Technology for Package,Hunan University of Technology ,Zhuzhou 412008,Hunan,China)Abstract: Superhydr ophobic m aterials have received tremendous attention in recent year s because of its special proper ties such as w ater -proof,ant-i po llution,reduction resistance o f flow ing liquid,etc.It beco mes ho tspo t research in functional m aterial field,and the preparation m ethods to acquir e excellent superhydropho bic surface are key to the r esearch.Repr esentative articles in r ecent years about prepar ation methods are review ed in this article.T he prospect of dev elo pments is proposed. Key words: super hy drophobic;surface;preparation methods 自从Onda 等[1]1996年首次报道在实验室合成出人造超疏水表面以来,超疏水表面引起了研究人员的广泛兴趣。总体说来,目前的研究主要集中在以下几个领域:(1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。高雪峰和江雷[2]、冯琳[3]、郭志光[4~5]等的论文中有详细的描述和精美的电镜照片。(2)使用无机物[6]或在金属表面制备具有超疏水性表面的材料。(3)使用高分子材料制备具有超疏水性的表面。(4)理论研究[7~11],主要是通过构建模型以探讨表面结构状况与接触角或滚 动角的关系。关于超疏水表面的基本理论,金美华的博士论文[38]有详细论述。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米-纳米级粗糙结构;另外一类是用低表面能物质在微米-纳米级粗糙结构上进行修饰处理。其中,制备合适微米-纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶-凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 230

表面微细结构制备超疏水表面

评 述 第49卷 第17期 2004年9月 表面微细结构制备超疏水表面 郑黎俊 乌学东* 楼 增 吴 旦 (上海交通大学化学化工学院, 上海 200240. * 联系人, E-mail: xdwu@https://www.doczj.com/doc/867167728.html, ) 摘要 超疏水是指固体表面上水的表观接触角超过150?的一种特殊表面现象, 本文从热力学角度评述了导致超疏水状态的两种理论模型: Wenzel 模型和Cassie 模型, 讨论了表面微细结构对超疏水状态的影响以及Wenzel 和Cassie 两种状态之间的内在联系. Wenzel 和Cassie 是两种可以同时共存的超疏水状态, 在一定条件下可以实现从Cassie 到Wenzel 状态的不可逆转变, 而这两者在接触角滞后中表现出截然不同的性质. 概括和总结了通过设计表面微细结构来达到超疏水表面的制备策略, 并对超疏水表面在现代工程领域内的应用前景作了展望. 关键词 微细结构表面 自洁表面 接触角 超疏水性 粗糙度 表面润湿是固体表面的重要特征之一, 也是最为常见的一类界面现象, 它不仅直接影响自然界中动、植物的种种生命活动, 而且在人类的日常生活与工农业生产中也起着重要的作用. 润湿性可以用表面上水的接触角来衡量, 通常将接触角小于90?时的固体表面称亲水表面(hydrophilic surface), 大于90?称疏水表面(hydrophobic surface). 近年来, 随着微纳米科学技术的不断发展, 以及越来越多的行业对特殊表面性能材料的迫切需求, 人们对微观结构在生命科学和材料科学中的应用有了更多的认识, 对于固体表面微细结构与润湿性之间的关系也有了更深入的理解[1,2]. 对润湿性可控表面研究的重大进步, 使得制备无污染、自清洁表面的梦想成为了现实[3]. 自洁表面一般可通过制备超亲水或超疏水表面两种途径制得: Wang 等[4]利用紫外光诱导产生的接触角接近0?的超亲水TiO 2表面, 这种表面材料已经成功地被用作防雾及自洁的透明涂层[5], 其机理为液滴在高能表面上铺展开形成液膜, 然后通过液膜流动, 夹带表面污物运动而起到自洁的功能; 而科学家在对动植物表面 的研究中发现[6], 自然界中通过形成超疏水表面来达到自洁功能的现象更为普遍, 最典型的如以莲叶为代表的多种植物叶子的表面[7](莲叶效应 Lotus- ef-fect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等等, 这是大自然对我们的暗示. 通过观察和研究发现, 此类表面上除了具有疏水的化学组分外, 更重要的是在微观尺度上具有微细的粗糙结构. 如图1所示, 电子显微镜下, 荷叶表面具有双层微观结构, 即由微米尺度的细胞和其上的纳米尺度蜡状晶体两部分组成; 蝶类翅膀上的粉末由100 μm 左右的扁平囊状物组成, 囊状物由无数对称的几丁质(chitin)组成的角质层构成, 其表面并不光洁, 这就是蝴蝶常具有色彩斑斓的结构色以及较好的疏水性的原因[8]; 水鸟类羽毛也具有微米或亚微米尺度的致密排列, 同时具有较好的 透气性和疏水性. 固体表面的润湿性由其化学组成和微观几何结构共同决定. 众所周知, 润湿性能主要受固体表面化学组成的影响, 固体表面自由能σSG 越大, 就越容易被一些液体所润湿, 反之亦然. 所以寻求和制备高表面自由能或低表面自由能的固体表面是制备超亲水 图1 (a) 荷叶表面的双层结构; (b) 蝴蝶鳞片的排列以及鳞片表面的微观结构; (c) 羽毛的微观结构 https://www.doczj.com/doc/867167728.html, 1691

【CN109881193A】一种三维三级微纳结构的稳定超疏水金属表面及制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910338618.1 (22)申请日 2019.04.25 (71)申请人 清华大学 地址 100084 北京市海淀区100084信箱82 分箱清华大学专利办公室 (72)发明人 钟敏霖 张红军 潘瑞  (74)专利代理机构 北京鸿元知识产权代理有限 公司 11327 代理人 邸更岩 (51)Int.Cl. C23C 22/63(2006.01) C23C 22/78(2006.01) C23C 22/83(2006.01) B82Y 30/00(2011.01) B82Y 40/00(2011.01) (54)发明名称 一种三维三级微纳结构的稳定超疏水金属 表面及制备方法 (57)摘要 一种三维三级微纳结构的稳定超疏水金属 表面及制备方法,属于结构化功能表面技术领 域。该金属表面含有三级微纳结构,该结构以分 布在金属基材表面的三维微米锥结构为基础,在 微米锥表面分布有呈辐射状密集生长的一维纳 米棒、纳米管或二维纳米片,且在微米锥表面以 及在微米锥与微米锥之间弥散分布有微米球或 微米花。其制备方法采用超快激光烧蚀与化学氧 化法相结合的复合方法制备,再经由低自由能表 面化学修饰,从而实现高稳定超疏水自清洁功 能,可承受高达1400Pa的拉普拉斯压力仍保持大 于150°的接触角。本方法具有高效、可控及适合 大面积制备等优势,可广泛应用于超疏水自清 洁、抗结冰、抗腐蚀、抗污、抗菌、集水、减阻、油水 分离等应用领域。权利要求书1页 说明书7页 附图3页CN 109881193 A 2019.06.14 C N 109881193 A

超疏水材料的应用前景

超疏水材料的应用前景 近年来,超疏水材料以其优越的性能,超强的疏水能力,在家电行业的应用前景越来越广泛,引起了该领域专家的极大关注。本文总结归纳了超疏水材料的疏水机理和研究现状。最后,对超疏水材料在家电行业的发展前景进行了展望。 落在荷叶上的雨滴不能安稳地停留在荷叶表面,而是缩聚成大大小小的水珠并滚落下来,水珠在滚动的过程中会带走叶片表面的灰尘。因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。因此,科研工作者从中获得灵感和启迪,对超疏水表面展开大量的研究。 近年来,有关超疏水表面的制备及其性能方面的研究,成为了材料科学领域的关注热点,发展极其迅速。超疏水材料以其优越的性能,超强的疏水能力,在家电行业中有着越来越广泛的应用前景。 1 疏水机理 1.1 超疏水表面的特征 自然界中的很多植物叶片,如荷叶、粽叶、水稻叶、花生叶等,都具有超疏水能力。通过扫描电镜观察,这些叶片的表面并不光滑,而是分布着很多微纳米凸起。直径约为125 nm的纳米枝状结构分布于直径约为7 μm 的微米级的乳突结构上,形成分级构造。同时,叶面还覆盖有一薄层蜡状物,其表面能很低。当雨水落在叶片表面时,凸起间隙中的空气会被锁定,雨水与叶面之间形成一层薄空气层,这样雨水只与凸起尖端形成点接触,表面黏附力很弱。因此水在表面张力作用下可缩聚成球状,并能在叶片表面随意滚动。而灰尘与叶片也为点接触,表面黏附力很小,很容易被水珠带走。在分级构造和蜡状物的联合作用下,叶片得以实现超疏水性和自清洁功效。除了植物之外,自然界中的许多动物体表面也具有很强的疏水和自清洁功能,如鸭子羽

毛、蝴蝶翅膀、水上蜘蛛、水黾、蝉等。房岩等人发现蝴蝶翅膀表面较强的疏水性是翅膀表面微米级鳞片和亚微米级纵肋综合作用的结果。通过高倍扫描电镜观察,蝴蝶翅膀表面由多个鳞片覆瓦状排列组成,鳞片表面由亚微米级纵肋及连接组成,形成阶层复合结构,鳞片的纵肋横截面均为规则的三角形。当水滴滴落到翅膀表面时,大量的空气被围困于亚微米级的间隙中,在翅膀表面形成了一层空气薄膜,使水滴与翅膀不能充分接触,从而使蝴蝶翅膀具有超疏水功能。 1.2 超疏水理论 静态接触角是衡量固体表面疏水性的重要指标之一,它是指在固、液、气三相交界处,由气/液界面穿过液体内部至固/液界面所经过的角度,是润湿程度的量度,用α 表示,如图2。90°的α值是判断固体表面亲水与疏水的临界值:1)α<90°,固体表面是亲水性的; 2)α>90°,固体表面是疏水性的; 3)特别地,当θ>150°时,水滴很难润湿固体, 而且容易在其表面随意滚动,这样的表面被称为超疏水表面,具有自清洁性能的超疏水表面是近年来的科研热点。接触角是表征固体表面疏水性能的静态指标,除此之外,衡量固体表面的疏水性能的动态指标是滚动角,其数值越小,表明疏水性越好,相应的自清洁功能越优异。如图3 所示,将液滴放置在水平的固体表面,将表面沿着一定方向缓慢倾斜,当液滴在倾斜的固体表面上刚好要发生滚动时,倾斜表面与水平面的夹角就是滚动角的大小,以β 表示。对于理想的固体表面(光滑、平整、均匀),固体、气体、液体界面件表面张力会达到平衡,体系总能量趋于最小,Young’s 方程给出了接触角与表面能之间的关系: γ s,g =γs,l +γg,l cosθ (1)

超疏水表面的原理及应用

超疏水表面的原理及应用 发表时间:2019-03-20T13:41:30.343Z 来源:《科技新时代》2019年1期作者:李庭姝 [导读] 超疏水表面有着广泛的应用前景,比如在减阻、润滑等方面。本文主要介绍了超疏水表面的基本理论和相关制备方法 深圳市宝安中学广东深圳 518101 摘要:超疏水表面有着广泛的应用前景,比如在减阻、润滑等方面。本文主要介绍了超疏水表面的基本理论和相关制备方法,以及它的两种影响因素和相关研究进展,并在此基础上归纳总结了超疏水表面应用的一些优缺点。 关键词:超疏水表面、润湿性、微/纳米结构、防冰冻、减阻 超疏水表面的基本原理 1. 自然界中有很多动植物的表面具有超疏水的性质,例如玫瑰和荷叶。仿照生物表面的微观结构,人们开始关注仿生材料。通过对这些生物的研究,人们对于超疏水表面的认识更加深入,新技术在生活中的应用更加广泛。 1.1超疏水表面的基本理论 当液体与固体接触时,液体沿固体表面扩展的现象称为液体与固体的浸润现象。在气体、液体、固体三相的交界处作液体表面与固体表面的切线,则此切线所构成的液体内部的夹角θ即为接触角。液滴在斜面上时,随着斜面倾斜角的增大,液滴开始滚动的临界角则定义为滚动角。 在理想固体表面上,接触角由三相的表面张力决定,并满足Young’s[1]方程: cosθ=(γsg-γsl)/γlg γsg、γsl 、γlg分别为固-气、固-液、气-液间的表面张力。由于真实固体表面并非理想固体的光滑表面,故必须还要考虑表面的粗糙度。提出相关的较为成熟的基本理论有Cassie状态及Wenzel状态等。 Cassi研究了组成不均一的固体表面对液滴浸润性的影响[2]。在Cassie理论中,水滴未进入固体表面粗糙的微孔,从而形成水滴与空气膜界面。Cassie方程为: cosθc=f1cosθ1+f2cosθ2 θc为表观接触角,θ1、θ2分别为液-气、固-气的接触角,f1和f2为液体、固体表面和空气接触的比例。 而Wenzel[3]理论则描述了水滴完全湿润固体表面,与固体不存在空气膜的情况。Wenzel提出的接触角方程为: cosθw=r(γsg-γsl)/γlg=r cosθ 其中r为表面粗糙因子。 当接触角小于90°时,表面为亲水性表面;当接触角大于90°时,表面为疏水性表面;当接触角大于150°,且滚动角小于10°时,表面称为超疏水表面。 2.影响超疏水表面的因素 自然界中有很多动植物的表面有超疏水的性质,例如在水面自由移动的水蛭、出淤泥而不染的荷叶。对于自然界这些动植物的研究,使得人们对于超疏水表面的认识更加深入,这对于制备仿生材料具有很好的意义。固体表面的浸润性主要由两个因素决定:①表面的粗糙程度;②表面能。超疏水表面的制备原则是将两者有机结合,或赋予低表面能物质表面适当的粗糙结构,或对粗糙表面进行表面改性以降低表面能。下面将分别详细介绍超疏水表面的影响因素。 固体表面的化学物质直接影响着浸润性及接触角。金属、玻璃等具有高表面能的物质易被浸润,而高聚物等低表面能物质则难以被浸润。研究人员曾经发现了很多光滑的脂肪族聚酰胺的浸润性,发现接触角随聚合物表面酰胺基的含量增加而增大。研究者们也在对光滑的甲基丙烯甲酯及含氟甲基丙烯甲酯的共聚物表面浸润性的研究中,发现接触角随表面含氟量的增大而增大。Cassie及Wenzel的方程中均包含三相张力γ,也可反映出表面化学物质对接触角的影响。 固体表面的粗糙程度同样影响着接触角,表面越粗糙,表面的疏水性越强。Wenzel在上个世纪40年代研究了固体表面粗糙结构与浸润性的关系,并在自己的方程中引入粗糙因子r来描述他们之间的关系。自然界中,许多具有超疏水性的植物叶面、水禽羽毛表面除了覆盖有一些低表面能的物质,包括分泌出的疏水性的蜡或油脂,表面还非常粗糙,这使其与水的接触角可达150°以上。荷叶表面有许多微米级的乳突,减少了固液基础面积,赋予了它优秀的超疏水性,这种结构也是人们仿生荷叶得到超疏水结构所模仿的。 将两种因素结合起来,可以制备出强浸润性的超疏水表面,即在粗糙度表面修饰低表面能物质,或是在低表面能物质表面构建粗糙结构。张希等[4]将逐层自组装的技术和电化学的沉积过程的技术相结合,将金颗粒沉积在与聚电解质组装的氧化铟锡电极表面上。 3.超疏水表面的制备方法 前面已经提到过影响固体表面的润湿性主要因素有表面的粗糙程度和表面能两种,所以说制备超疏水表面就是将二者有机结合,但凡可以改变表面微/纳结构或降低表面能的方法均可以达到改性的目的。下面将分别介绍几种已有的超疏水表面的制备方法、原理及优缺点。 3.1模板法 模板法是用已有表面存在所需粗糙结构的材料为模板,在一定条件下“复制”获得与模板相同的粗糙表面。基材可以是天然的超疏水材料如荷叶、花瓣等,也可以是多孔氧化铝等其他复合材料。研究者们使用多孔氧化铝作为一种基底模板,通过热压的方法将模板上的聚苯乙烯压入孔中,然后降温去除模板,得到具有纳米结构的聚苯乙烯表面,通过模板的尺寸,可以控制聚苯乙烯表面的微结构。模板法是一种简洁、高效、可发面积复制的制备方法,有很好的实际应用前景。 3.2气相沉积法 气相沉积法是利用不同的低表面物质通过化学或者物理的方法沉积在基材表面形成低表面能物质膜的过程。气相沉积法包括化学气相沉积法(CVD)、物理气相沉积法(PVD)等。Lau等[5]采用化学气相沉积法在碳纳米管整列薄膜的表面上,沉积一层四氟乙烯膜,可得到具有自清洁性能的超疏水表面。研究者们利用等离子体加强化学气相沉积方法,把五氟乙烷在纤维素薄膜上沉积起来,形成了一层碳氟

超疏水材料研究进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图

超疏水材料及其应用

超疏水材料及其应用 落在荷叶上的雨滴形成水珠顺着叶面缓缓滚动而落下,这种抗水性称为荷叶效应。这是由于荷叶表面的疏水层呈现纳米级的凹凸不平,减少了水珠与叶面的接触面积,植物叶子表面具有的超疏水自清洁的特性,为构建人工疏水表面及设计浸润性可控的界面提供了灵感,引起了研究者的极大关注。 一、超疏水材料的表面特征 润湿性是指液体与固体表面接触时,液体可以渐渐渗入或附着在固体表面上,是固体表面重要特征之一,这种特征由固体表面化学组成及微观结构共同决定,接触角和滚动角是评价固体表面润湿性的重要参数,超疏水性表面具有防雪、防污染、抗氧化及防止电流传导等特性。 植物叶子表面有许多丛生的放射状为茸毛,该微茸毛尖端极易亲水,入水后能瞬间锁定水分子,使叶片表层到茸毛尖端之间形成了一薄层空气膜,从而避免叶片与水直接接触。Brthltt研究发现,这种微茸毛有乳突及腊状物构成,其为微米结构。中科院研究员江雷研究发现,乳突为纳米结构,这种纳米与微米相结合的双微观结构正是引起表面防污自洁的根本原因。 研究表明,具有较大接触角和较小滚动角的超疏水性表面结构为微米级及纳米级结构的双微观复合结构,且这种结构直接影响水滴的运动趋势。超疏水表面的结构通常采用两种方法。一是在疏水材料表面上构建微观结构,二是在粗糙表面上修饰低表面能物质,由于降低表面自由能在技术上容易实现,因此超疏水表面制备技术的关键在于构建合适的表面微细结构。当前,一报道的超疏水表面制备技术主要有溶胶—凝胶法、模板法、自组装法及化学刻蚀法。 二、在日常生活中的应用 空调夏天制冷时,换热器上会产生大量冷凝水,需要专门的排水管排到室外,这不仅降低了空调的能效比,还容易出现漏水现象,更为严重的会造成室内的空气湿度不断减小,使人们生活、工作的环境恶化。同样,冬天空调制热时,室外机换热器会结霜,为了除霜不得不经常停掉空调,这不仅浪费电能不利于制热,还容易出现各种故障。东南大学化工系陈志明教授研究发现,空调换热器的表面用超疏水材料处理后,不仅能避免上述问题的出现,还能明显降低空调器的噪声,延长空调器的使用寿命,且可节约空调器的设计成本。经过工业涂覆验证,其各项性能指标均达到了国际水平,可代替进口产品。

金属表面超疏水钴镀层及其制备方法

发明名称: 金属表面超疏水钴镀层及其制备方法申请人:华南理工大学 地址:广州市天河区五山路381号 发明人:苏峰华,姚凯,刘灿森,黄平

说明书摘要 本发明公开金属表面超疏水钴镀层及其制备方法。本发明首先将金属钴盐0.01~1.0 mol/l 、长直链烷酸0.01~3.0 mol/l和乙醇溶剂放置于容器中,充分搅拌震荡均匀,作为基础电镀液;再以不锈钢、铜等导电金属的待镀工件作为的阴极,纯钴、铜或石墨碳作为阳极,在上述电镀液进行电镀。电镀完成后将作为阴极的已镀工件用乙醇洗净,吹干,即在金属工件表面获得具有超疏水功能的钴镀层。本发明在金属表面制备超疏水钴镀层所需电镀液成分简单,配制方便,环境友好,不含腐蚀性物质。同时,电镀过程简单,易于大规模生产,所制备的超疏水钴镀层的接触角在150~160o范围,滚动角小于10o。

权利要求书 1.金属表面超疏水钴镀层的制备方法,其特征在于包括以下步骤: 1)工件预处理:将工件先用400目和800目砂纸打磨,然后用表面活性剂超声清洗10 min(请补充合适的时间范围),再用丙酮超声清洗10 min(请补充合适的时间范围),最后用稀硫酸(请给出合适的浓度范围)清洗半分钟(请补充合适的时间范围)后用纯净水洗净,吹干,得到经过处理的工件; 2)配置电镀液:将金属钴盐和长直链烷酸溶解于乙醇溶液中,搅拌震荡均匀,配置成基础电镀液; 3)将经过处理的工件作为阴极,纯钴、铜或石墨碳作为阳极,在步骤2)配置的基础电镀液中进行电镀,电镀后将阴极工件镀层洗净、吹干,获得超疏水功能的钴镀层。 2. 根据权利1 所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤1)中所述工件为不锈钢和黄铜导电金属材料;所述的表面活性剂为…(请对能用于本发明的表面活性剂的具体物质名称进行列举)。 3. 根据权利1 所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤2)中所述金属钴盐为二氯化钴、硫酸钴及它们的水合物中的一种以上。 4. 根据权利1 所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤2)所述长直链烷酸为碳原子数为8~20的直链烷酸,包括癸酸、肉豆蔻酸或十八烷酸之一。 5. 根据权利1所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤2)所述搅拌震荡采用100~300 W功率超声波超声20 min(请补充合适的时间范围),100~200转/分磁力搅拌器搅拌30 min(请补充合适的时间范围)。 6. 根据权利1 所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤3)所述电镀所用电源为市场上购买的普通直流电和脉冲电镀电源。 7. 根据权利1 所述的金属表面超疏水钴镀层的制备方法,其特征在于,步骤3)所述基础电镀液的温度为室温~75℃,所述电镀的电压为5~50 V;电镀时间为1~60 min。 8. 根据权利1 ,3,4之一所述的金属表面超疏水钴镀层的制备方法,其特征在于,所述金属钴盐在乙醇溶液中浓度为0.01~1.0 mol/L,长直链烷酸在乙醇溶液中浓度为0.01~3.0 mol/L,乙醇药品的纯度为分析纯。

相关主题
文本预览
相关文档 最新文档