当前位置:文档之家› 数学建模练习题

数学建模练习题

数学建模练习题
数学建模练习题

数学建模习题

题目1

1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.5元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小,解释实际意义是什么。

解答:

(1)分析:生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其他成本也包含与w和s成正比的部分,上述三种成本中都包含有与w,s

均无关的成本。又因为形状一定时一般有,故商品的价格可表示为

(α,β,γ为大于0的常数)。

(2)单位重量价格,显然c是w的减函数。说明大

包装比小包装的商品更便宜,曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。

函数图像如下图所示:

题目2

2.在考虑最优定价问题时设销售期为T,由于商品的损耗,成本q随时间增长,设,β为增长率。又设单位时间的销售量为(p为价格)。今将销售期分为和两段,每段的价格固定,记为,.求

,的最优值,使销售期内的总利润最大。如果要求销售期T内的总销售量为,

再求,的最优值。

解答:

由题意得:总利润为

,=+

=

由=0,,可得最优价格

,

设总销量为,

在此约束条件下的最大值点为

,

题目3

3.某商店要订购一批商品零售,设购进价,售出,订购费c

(与数量无关),随

机需求量r的概率密度为p(r),每件商品的贮存费为(与时间无关)。问如何确定订购量才能使商店的平均利润最大,这个平均利润是多少。为使这个平均利

加什么限制?

润为正值,需要对订购费c

解答:

设订购量为u,则平均利润为

u的最优值满足

最大利润为.为使这个利润为正值,应有

.

题目4

4.雨滴匀速下降,空气阻力与雨滴表面积和速度平方的乘积成正比,试确定雨速

与雨滴质量的关系。

解答:

雨滴质量m,体积V,表面积S与某特征尺寸l之间的关系为,,

可得。雨滴在重力和空气阻力的作用下以匀速v降落,所以=,而.由以上关系得.

题目5

5.某银行经理计划啊用一笔资金进行有价证券的投资,可供购进的证券以及其信

用等级、到期年限、收益如表1所示。按照规定,市政证券的收益可以免税,其

他证券的收益需按50%的税率纳税。此外还有以下限制:

1)政府及代办机构的证券总共至少要购进400万元;

2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);

表1 证券信息

证券名称证券种类信用等级到期年限到期税前收益/%

A 市政 2 9 4.3

B 代办机构 2 15 5.4

C 政府 1 4 5

D 政府 1 3 4.4

E 市政 5 2 4.5

(2)如果能够以2.75%的利率借到不超过100万元资金,该经理如何操作?

(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?

解答:

(1)设投资证券A,B,C,D,E的金额分别为(百万元),按照规定、限制和1000万元资金约束,列出模型

s.t.

,即

,即

用LINGO求解得到:证券A,C,E分别投资2.182百万元,7.364百万元,0.454百万元,最大税后收益为0.298百万元。

(2)由(1)的结果中影子价格可知,若资金增加100万元,收益可增加0.0298百万元。大于以2.75%的利率借到100万元资金的利息,所以应借贷。投

资方案需将上面模型第二个约束右端改为11,求解得到:证券A,C,E分

别投资2.40百万元,8.10百万元,0.50百万元,最大税后收益为0.3007百万元。

(3)由(1)结果中目标函数系数的允许范围(最优解不变)可知,证券A的税前收益可增加0.35%,故若证券A的税前收益增加为4.5%,投资不应改

变;证券C的税前收益可减少0.112%(按50%的税率纳税),故若证券C

的税前收益减少为4.8%,投资应该改变。

题目6

6.某公司将4种不同含硫量的液体原料(分别记为甲、乙、丙、丁)混合生产两种产品(分别记为A,B)。按照生产工艺的要求,原料甲、乙、丁必须首先倒入混合池中混合,混合后的液体再分别为原料丙混合生产A,B。已知原料甲、乙、丙、丁的含硫量分别为3%,1%,2%,1%,进货价格分别为6,16,10,15(千元/t);产品A,B的含硫量分别不能超过2.5,1.5(%),售价分别为9,15(千元/t)。根据市场信息,原料甲、乙、丙的供应没有限制,原料丁的供应量最多为50t;产品A,B的市场需求量分别为100t,200t。问应如何安排生产?

解答:

设分别是产品A中是来自混合池和原料丙的吨数,分别是产品B中来

自混合池和原料丙的吨数;混合池中原料甲、乙、丁所占的比例分别为.优化目标是总利润最大,即

约束条件为:

1)原料最大供应量限制:

2)产品最大需求量限制:

3)产品最大含硫量限制:

对产品A,,即

对产品B,类似可得

4)其他限制:

用LINGO求解得到结果为:,其余为0;目标函数值为450.

题目7

7.建立耐用消费品市场销售量的模型。如果知道了过去若干时期销售量的情况,如何确定模型的参数?

解答:

设耐用品销售量为x(t),可用logistic模型描述x(t)的变化规律,即=kx(N-x),其中N是市场饱和量,k是比例系数,N,k,可由过去若干时期的销售量确定,不妨设,则方程可离散化为

,可取或,N和k可由最小二乘法估计。

题目8

8.在鱼塘中投放尾鱼苗,随着时间的增长,尾数将减少而每尾的质量将增加。

(1)设尾数n(t)的(相对)减少率为常数;由于喂养引起的每尾鱼质量的增加率与鱼的表面积成正比,由于消耗引起的每尾鱼质量的减少率与质量本身成正比。分别建立尾数与每尾鱼质量的微分方程,并求解。

(2)用控制网眼的办法不捕小鱼,到时刻T才开始捕捞,捕捞能力用尾数的相对减少量表示,记作E,即单位时间捕获量是En(t).问如何选择T

和E,使从T开始的捕获量最大。

解答:

(1)尾数n(t)满足得.每尾鱼重w(t)

满足,不妨近似设w(0)=0,得.

(2)设t=T时开始捕捞,且单位时间捕捞率为E,则t T时有,

因此得,单位时间捕捞鱼的尾数为En(t),每尾鱼重w(t),所以从T开始的鱼捕捞量是

,问题为求使y最大,可用数值法求解。

题目9

9.速度为v的风吹在迎风面积为s的风车上,空气密度是。用量纲分析方法确定风车获得的功率P与v,s,的关系。

解答:

设,量纲表达式:,解得,故(是无量纲常数)。

题目10

10.大陆上物种数目可以看做常数,各物种独立地从大陆向附近一岛屿迁移。岛上物种数量的增加与尚未迁移的物种数量有关,而随着迁移物种的增加又导致岛上物种的减少。在适当假设下建立岛上物种数的模型,并讨论稳定状况。

解答:

植物、哺乳动物、爬行动物的数量分别记作.若不考虑自然资源对植物生长的限制,则模型为

(0,0,0),.

平衡点为P

1

题目11

11.下表列出了某城市18位35-44岁经理的年平均收入(千元),风险偏好度

和人寿保险额y(千元)的数据,其中风险偏好度是根据发给每个经理的问卷调查表综合评估得到的,它的数值越大就越偏爱高风险。研究人员想研究此年龄段中的经理所投保的人寿保险额与年均收入及风险偏好度之间的关系。研究者预计,经理的年均收入和人寿保险额之间存在着二次关系,并有把握的认为风险偏好度对人寿保险额有线性效应,但对于风险偏好度对人寿保险额是否有二次效应以及两个自变量是否对人寿保险额有交互效应,心中没底。

请你通过表2中的数据建立一个合适的回归模型,验证上面的看法,并给出进一步的分析。

表2

号 1 2 3 4 5 6 7 8 9 y 196 63 252 84 126 14 49 49 266

x1 66.2

9

40.9

6

72.99

6

45.0

1

57.20

4

26.85

2

38.12

2 35.84

75.79

6

x2 7 5 10 6 4 5 4 6 9 序

号10 11 12 8 y 49 105 98 77 33

x1 37.4

1

54.3

8

46.18

6

46.1

3

30.36

6 39.06 79.38

52.76

6

55.91

6

x2 5 2 7 4 3 5 1 8 6

解答:,

最终的回归方程为,且

(如模型中加入项,其回归系数置

信区间均含零点)。表明只有经理们的年均收入及其二次项和风险偏好度本身对

他们投保的人寿保险额有显著影响。

题目12

12.表3给出了某工厂产品的生产批量与单位成本(单位:元)的数据,从散点

图可以明显的发现,生产批量在500以内时,单位成本对生产批量服从一种线性

关系,生产批量超过500时服从另一种线性关系,此时单位成本明显下降。希望

你构造一个合适的回归模型全面的描述生产批量与单位成本的关系。

生产批量65 440 540 750 单位成本 2.48 4.45 4.52 1.38 4.65 2.96 2.18 4.04 4.2 3.1 1.5

不同关系,引入一个虚拟变量D,令建立线性回归模型

数学建模-大学生就业问题

2010-2011第二学期 数学建模课程设计 2011年6月27日-7月1日 题目大学生就业问题 第 11 组组员1 组员2 组员3 组员4 姓名 学号 0808060217 0808060218 0808060219 0808060220 专业信计0802 信计0802 信计0802 信计0802 成绩

论文摘要 本文讨论了在新的形势下大学生的就业问题。20世纪90年代以来,我国出现了一种前所未有的现象,有着“天之骄子”美誉的大学生也开始面临失业问题。大学生就业难问题已受到普遍关注。大学生毕业失业群体正在不断扩大,已成为我国扩大社会就业,构建和谐稳定社会的急需解决的社会问题。 本文针对我国现有的国情,综合考虑了高校毕业生的就业率和高校招生规模的扩大之间的关系,建立了定量分析的微分方程模型,随后又建立了了离散正交曲线拟合模型对得出的结果进行了检验,并分析模型得出的结果得合理性。最终得到生源数量与失业率之间的拟合多项式和拟合曲线,并预测出了未来高校招生规模的变化趋势。 在找到大学生失业规律以后,本文还具体的对毕业生的性别、出生地对失业的影响做出了定量分析。 关键词:大学生就业微分方程模型多项式曲线拟合MATLAB软件 1、问题重述 大学生就业问题:如果我们将每年毕业的大学生中既没有找到工作又没有继续深造的情况视为失业,就可以用失业率来反映大学生就业的状况。下面的表中给出了某城市的大学生失业数占城市总失业人数的比率,比率的计算是按照国际劳工组织的定义,对16岁以上失业人员进行统计的结果。 表 1

请建立相应的模型对大学生就业状况进行分析找出其中的规律并讨论下面两个问题: (1)、就业中是否存在性别歧视; (2)、学生的出生对就业是否有影响。 2、模型假设 2.1在本次研究中做出以下假设: (1)、假设毕业生求职时竞争是公平的; (2)、假设考研等继续深造的毕业生属于已就业人群; (3)、假设每个毕业生都有就业或者继续深造的意图 (4)、假设就业率和失业率之和为1; (5)、假设本文搜集的数据全部真实可靠; 2.2 在定量分析性别、出生地对失业的影响时还要做以下假设: (1)、假设毕业生就业情况只受性别、出生地等因素的影响; (2)、假设具有上述同等条件的毕业生间就业机会相同 (3)、假设附件中的数据信息均合理; 3、问题分析 3.1 对问题的分析 若要分析新失业群体产生的主要原因,并就其重要性给出各种因素的排序,就需要对搜集的数据进行整理,并进行系统的分析,划分为不同的体系和矛盾,然后我们考虑用Logistic模型分析。 为了得到新失业群体对高校招生生源的影响和预测未来高校招生规模的变

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

MATLAB经典数学建模教程

第 1 节Matlab 基本知识 一、Matlab 的主要功能 Matlab是一种功能非常强大的工程语言,诞生于20世纪70年代,1984年正式推向市场。2002年8月,Matlab6.5开始发布。是进行科学研究和产品开发必不可少的工具。 ●数值和符号计算 矩阵(数组)的四则运算(Matrix+Laboratory)、数值差分、导数、积分、求解微分方程、微分方程的优化等 ●数字图像、数字信号处理 ●工程和科学绘图 ●控制系统设计 ●财务工程 ●建模、仿真功能 二、Matlab 的界面 1.命令窗口(Command Window): Matlab各种操作命令都是由命令窗口开始,用户可以在命令窗口中输入Matlab命令,实现其相应的功能。此命令窗口主要包括文本的编辑区域和菜单栏(如:四则运算;“;”禁止显示变量的值;↑↓遍历以前的命令)。在命令窗口空白区域单击鼠标右键,打开快捷菜单,各项命令功能如下: Evaluate Selection :打开所选文本对应的表达式的值。 Open Selection :打开文本所对应的MatLab文件。 Cut :剪切编辑命令。 Paste :粘贴编辑命令。 2. M-文件编辑/调试(Editor/Debugger)窗口 Matlab Editor/Debugger窗口是一个集编辑与调试两种功能于一体的工具环境。 M-文件(函数文件) ●什么是M-文件:它是一种和Dos环境中的批处理文件相似的脚本文件,对于简单问题, 直接输入命令即可,但对于复杂的问题和需要反复使用的则需做成M-文件(Script File)。 ●创建M-文件的方法: Matlab命令窗的File/New/M-file。 在Matlab命令窗口运行edit。 ●M-文件的扩展名:*.m ●执行M-文件:F5 ●M文件的调试 选择Debug菜单,其各项命令功能如下: Step :逐步执行程序。 Step in :进入子程序中逐步执行调试程序。

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

大学生就业问题数学模型

重庆交通大学学生实验报告 实验课程名称数学模型课程设计 开课实验室数学实验室 学院 XXX级 XXX 专业 1 班 开课时间 2013 至 2014 学年第 2 学期设计题目大学生就业问题

2013 年 12月 大学生就业问题 摘要:近年来,我国高校毕业生数量逐年增多,加之当前金融危机的影响,毕业生的就业形势受到前所未有的挑战,甚至出现了所谓“毕业即失业”的说法。因此大学生毕业后能否顺利就业,已成为全社会普遍关注的热点问题。大学生就业难不仅有社会原因,也有大学生自身的原因。如何解决大学生就业难的问题不仅关系到大学生的切身利益,更关系到社会的和谐稳定,需要政府、企业、高校和大学生共同的努力。本文从大学生自身,企业和社会三个大方面方面进行了分析和论述,从而总结出相关的结论及解决大学生就业难题的可行方法。 关键词大学生就业 Matlab 数据拟合 一、问题重述 据中国媒体援引人力和社会保障部的最新统计数据,二零一零年全国高校毕业生为630万人,比去年的611万多19万人,加上往届未能就业的,需要就业的毕业生数量很大,高校毕业生就业形势十分严峻。 随着九十年代末大学扩招和教育产业化政策推行以来,大学生人数的增幅远远超过经济增长所需要的人才增长,大学生就业不难才是怪事,"毕业即失业"成为中国大学生的普遍现象。 尽管如此,中国教育部决定继续扩大全日制专业学位硕士研究生招生规模,努力培养更多高层次、应用型人才。表面上看,研究生扩招能提高大学生学历层次,可以缓解就业难。但是,如果不清理高等教育积弊,扩招研究生来应对就业难将是饮鸩止渴,使就业矛盾更加突出。 现在大学生就业难的问题,是由许多原因造成的,既有社会原因,也有历史原因。 请用数学建模的方法从以下几个侧面探讨大学生就业问题: (1)利用网上大学生就业统计数据建立大学生就业供需预测模型,利用所建模型对2012年就业形势进行预测; (2)分析影响大学生就业的主要因素,建立就业竞争力评价模型,利用所建模型评估你的竞争力;

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模参考书大全

专业性参考书(这方面书籍很多,仅列几本供参考) : 1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991). 4.数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5.数学模型,濮定国、田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7.数学模型,陈义华编著,重庆大学出版社,(1995) 8.数学模型建模分析,蔡常丰编著,科学出版社,(1995). 9.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11.数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996). 13.数学模型方法,齐欢编著,华中理工大学出版社,(1996). 14.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996). 15.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。 17.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学模型课程设计一

课程设计名称: 设计一:MATLAB 软件入门 指导教师: 张莉 课程设计时数: 8 课程设计设备:安装了Matlab 、C ++软件的计算机 课程设计日期: 实验地点: 第五教学楼北902 课程设计目的: 1. 熟悉MA TLAB 软件的用户环境; 2. 了解MA TLAB 软件的一般目的命令; 3. 掌握MA TLAB 数组操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 4. 掌握MA TLAB 语言的几种循环、条件和开关选择结构。 课程设计准备: 1. 在开始本实验之前,请回顾相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 采用向量构造符得到向量[1,4,7,,31] 。 //a=[1:3:31] 2. 随机产生一向量x ,求向量x 的最大值。 // a=rand(1,6) max(a) 3. 利用列向量(1,2,3,,6)T 建立一个范德蒙矩阵A ,并利用位于矩阵A 的奇数行偶数列的元素建立一个新的矩阵B ,须保持这些元素的相对位置不变。 4. 按水平和竖直方向分别合并下述两个矩阵: 100234110,5670018910A B ????????==???????????? 5. 当100n =时,求1121n i y i ==-∑的值。 6. 一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数。 7. 求[1000,2000]之间第一个被17整除的整数。 8. 用MATLAB 绘制两条曲线,[0,2]x π∈,以10 π为步长,一条是正弦曲线,一条是余弦曲线,线宽为6个象素,正弦曲线为绿色,余弦曲线为红色,线型分别为实线和虚线,并给所绘的两条曲线增添图例,分别为“正弦曲线”和“余弦曲线”。

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

数学建模基础教程

数学建模新手“必读教程” 第一部分基本知识: 一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解

环境数模课程设计说明书

2016《环境数学模型》课程设计说明书 1.题目 活性污泥系统生化反应器中底物降解与微生物增长数学模型的建立 2.实验方法与结果 2.1.实验方法 2.1.1.工艺流程与反应器 本设计采用的工艺流程如下图所示: 图2-1 活性污泥系统工艺流程图 本设计工艺采用活性污泥法处理污水,工艺的主要反应器包括生化反应器和沉淀池。污水通过蠕动泵恒速加到生化反应器中,反应器内活性污泥和污水在机械搅拌设备和鼓风曝气设备的共同作用下充分接触,并在氧气充足的条件下进行反应。经处理后,污泥混液通过管道自流到沉淀池中,在里面实现泥水分离。分离后的水通过溢流堰从周边排出,直接被排放到下水道系统,沉淀下来的污泥则通过回流泵,全部被抽回进行回流。 系统运行过程中,进出水流量、进水质量、污水的停留时间、生化反应器的容积、机械搅拌设备转轴转速、鼓风曝气装置的曝气风量气速、污泥回流量等参数在系统运行的过程中都保持不变。待系统持续运行一周稳定后再取样进行分析。 实验的进水为实验室配置的污水,污水分别以葡萄糖、尿素、磷酸二氢钾为碳源、氮源和磷源,其中C:N:P=100:40:1(浓度比),TOC含量为200mg/L。生化反应器内污泥混液的容量为12L,污水停留时间为6h。系统运行时间为两周,第一周是调适阶段,第二周取样测试,测得的数据作为建模的原始数据。 表2-1 污水中各营养物质的含量 2.1.2.取样方法

每隔24h取一次样,通过虹吸管取样。每次取样时,先取进水和出水水样用于测水体的COD指标,其中进水直接取配得的污水溶液,出水取沉淀池上清液。取得的水样过膜除去水中的悬浮固体和微生物,保存在5ml玻璃消解管中,并在4℃下冷藏保存。 取完用于测COD的水样后,全开污泥回流泵,将沉淀池中的污泥全部抽回生化反应器(由于实验装置的原因,沉淀池排泥管易堵,污泥易积聚在沉淀池中,为更准确测定活性污泥的增长情况,在此实验中将泥完全抽回后再测定),待搅拌均匀后,取5ml污泥混液于干净、衡重的坩埚中,待用于测污泥混液的SS。 2.1. 3.分析方法 本实验一共分析进出水COD和污泥混液SS两个指标。其中COD采用《水质快速消解分光光度法》(HJ/T 399-2007)方法进行分析,SS采用《水质悬浮物的测定重量法》(GB 11901-89)方法进行分析。 准确取2ml经过膜处理的水样于5mlcod消解管中,以重铬酸钾为氧化剂,硫酸银-浓硫酸为催化剂,硫酸汞为抗氯离子干扰剂,按一定比例与水样混合均匀。将消解管放在COD 消解仪中,在150℃条件下消解2h。待经消解的溶液冷却后,以空白样为参比液,在COD 分析仪上读出待测水样的COD值,记录数据。 将装在已衡重称重的坩埚中的污泥混液放在烘箱中,在105℃温度下烘3h以上,保证污泥中的水分被充分除去。坩埚冷却后衡重称重,记录干污泥的质量,求得活性污泥的SS。 实验过程的所有样品都设置两个平行样,最后结果取平行样的算术平均值。 2.2.实验结果 2.2.1.实验数据 实验测得数据如下表: 表2-2 活性污泥系统水质分析结果 2.2.2.数据分析

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

数学建模课程设计

攀枝花学院 学生课程设计(论文) 题目:产品广告费用分配对销量及利润的影响模型学生姓名:梁忠 学号: 201210802007 所在院(系):数学与计算机学院 专业:信息与计算科学 班级: 12信本1班 指导教师:马亮亮职称:讲师 2014年12 月19 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题目具有自身阻滞作用的食饵—捕食者模型 1、课程设计的目的 数学建模课程设计是让学生通过动手动脑解决实际问题,让学生学完《数学建模》课程后进行的一次全面的综合训练,是一个非常重要的教学环节。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 根据指导教师所下达的课程设计题目和课程设计要求,在规定的时间内完成设计任务;撰写详细的课程设计论文一份。 3、主要参考文献 【1】姜启源,数学模型(第二版),高等教育出版社,北京。 【2】寿纪麟,数学建模——方法与范例,西安交大出版社。 【3】(美)JOHN A.QUELCH 等著吕—林等译,市场营销管理教程和案例, 北京大学出版社 2000。 【4】戴永良广告绩效评估,中国戏剧出版社,2001。 4、课程设计工作进度计划 序号时间(天)内容安排备注 1 2 分析设计准备周一至周二 2 4 编程调试阶段周三至周一 3 2 编写课程设计报告周二至周三 4 2 考核周四至周五 总计10(天) 指导教师(签字)日期年月日 教研室意见: 年月日 学生(签字): 接受任务时间:2014 年12 月15 日

注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表题目名称具有自身阻滞作用的食饵—捕食者模型 评分项目分 值 得 分 评价内涵 选题15% 01 能结合所学课程知识,有 一定的能力训练。符合选 题要求 5 遵守各项纪律,工作刻苦努力,具有良好的科学 工作态度。 02 工作量适中,难易度合理10 通过实验、试验、查阅文献、深入生产实践等渠 道获取与课程设计有关的材料。 能力水平35% 04 综合运用知识的能力10 能运用所学知识和技能去发现与解决实际问题, 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并 较好地论述课题的实施方案;有收集、加工各种 信息及获取新知识的能力。 06 设计(实验)能力,方案 的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、 操作等实验工作,数据正确、可靠;研究思路清 晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机 进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析 能力(综合分析能力、技 术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果质量45% 09 插图(或图纸)质量、篇 幅、设计(论文)规范化 程度 5 符合本专业相关规范或规定要求;规范化符合本 文件第五条要求。 10 设计说明书(论文)质量30 综述简练完整,有见解;立论正确,论述充分, 结论严谨合理;实验正确,分析处理科学。 11 创新10 对前人工作有改进或突破,或有独特见解。 成绩 指 导 教 师 评 语 指导教师签名:年月日

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

数学建模作业

数学建模作业 :成靖 学号:1408030311 班级:计科1403班 日期:2015.12.30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i加泳姿j 的比赛,记x ij=1, 否则记x ij=0 目标函数: 即 min=66.8*x11+75.6*x12+87*x13+58.6*x14+57.2*x21+66*x22+66.4*x23+53*x24 +78*x31+67.8*x32+84.6*x33+59.4*x34+70*x41+74.2*x42+69.6*x43+57.2*x44+ 67.4*x51+71*x52+83.8*x53+62.4*x54; 约束条件: x11+x12+x13+x14<=1; x21+x22+x23+x24<=1; x31+x32+x33+x34<=1; x41+x42+x43+x44<=1; x51+x52+x53+x54<=1; x11+x21+x31+x41+x51=1; x12+x22+x32+x42+x52=1; x13+x23+x33+x43+x53=1; x14+x24+x34+x44+x54=1; ∑∑ == = 4 1 5 1 j i ij ij x c Z Min

lingo模型程序和运行结果 因此,最优解为x14=1,x21=1,x32=1,x43=1,其余变量为0 成绩为253.2(秒)=4′13"2 即:甲~ 自由泳、乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳.

数学模型课程设计

数学模型课程设计

文档仅供参考,不当之处,请联系改正。 攀枝花学院 学生课程设计(论文) 题目:蔬菜的运输问题 学生姓名:孟蕾 学号: 1080 所在院(系):数学与计算机学院 专业:信息与计算科学 班级:级信本 指导教师:李思霖 6 月 29 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书

课程设计(论文)指导教师成绩评定表

摘要 本文针对蔬菜的运输问题进行分析,针对蔬菜运输时所需要注意的蔬菜供应量,需求量,运输距离,运输补贴,短缺补偿等约束性条件,运用lingo编程的方法解决如何进行蔬菜运输来分别使各类要求的支出最少的问题。 问题一中,要求如果不考虑短缺补偿,只考虑运费补贴最少,请为该市设计最优蔬菜运输方案。我们将供货商和销售点需求分别编号a和b,数量是从1~8和1~35。从题中能够看出其约束条件,所有销售点从第 A基地获得的蔬菜数量应该等于该基地所 i 生产的蔬菜数量;所有基地给 B销售点提供的蔬菜数量要大于等 j 于0,而且应该小于或等于该点的需求量。 问题二中,增添了对短缺补缺的考虑,规定各蔬菜销售点的短缺量一律不超过需求量的30%,在同时考虑短缺补偿和运费补贴的情况下再次设计最有蔬菜方案。由题意即是要求总费用,具体步骤仍同问题一,需要变化的分别是总费用w的表示式和关于销售点需求的约束条件。w变为原运输补贴的公式再加上每个销售点每吨短缺蔬菜的数量乘上各个销售点不同的短缺补偿,短缺数量需要用各个销售点的需求减去所有基地供给给这个的销售点的蔬菜数量之和。 问题三中,要求增加任意两个基地的生产数量,使得不存在短缺情况出现,然后视运费补贴最小的情况来确定哪两个基地分

数学建模作业(三)

数学建模作业(三)第三章习题 2013/04/09

速度为v 的风吹在迎风面积为s 的风车上,空气的密度是ρ,用量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。 ● 对于风车获得的功率p 与v ,s ,ρ的关系我们假设: 1.忽略其它因素对功率的影响 2.将其视为理想化模型 ● 在这些假设下,风车获得的功率与以下物理量有关: 风车获得的功率p ,风速v ,迎风面积s ,空气密度ρ。 ● 它们的量纲分别是 23[]p ML T -=,1[]v LT -=,23[],].[L L s M ρ-== ● 设1234=p v s ααααπρ,有 1234 1412341223123+2++2-3-3-[]()()()()MLT LT L ML M L T ααααααααααααπ---== 由[]1π=得到以下线性方程组 141234********* αααααααα?+=?++-=??--=? 不难验证,这个方程组的秩为3. 因此方程组的解空间是4维。 由 ()()1 =1α 可得方程组的基本解: 1(1,3,1,1),=---e 于是,与这四个参数有关的量纲乘积为 3111=,pv s πρ--- ● 四个物理量之间的关系为()10.f π=即 () 3110.f pv s ρ---= ● 根据隐函数运算法则,得

● 3p s v λρ=, 其中λ为无单位的常比例系数。 俗话说“大饺子能装馅”,试自建一个“包饺子”的数学模型并进行分析,判断这一说法是否正确。 ● “大饺子能装馅”考虑到实际是相同面积的饺子皮可以用掉更多体积的饺子馅。 ● 为了简化模型,我们做出以下假设 1. 饺子都是标准球形 2. 3. 饺子大小全部一致 4. 5. 饺子皮的厚度相同 6. 饺子皮的厚度忽略不计 ● 涉及到的物理量: 饺子皮总面积S ,一个饺子皮的面积s ,饺子数n ,饺子半径r ,所包馅的总体积V ,一个饺子包含馅的体积v ● ● 这些物理量有以下关系: 2 3 s=443 /r v r n S s V nv ππ=== 可得S V =● 因此,大饺子能装馅,这一说法正确。

相关主题
文本预览
相关文档 最新文档